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Abstract: Simultaneous temperature and strain measurement with enhanced accuracy by 
using Deep Neural Networks (DNN) assisted Brillouin optical time domain analyzer 
(BOTDA) has been demonstrated. After trained by using combined ideal clean and noisy 
BGSs, the DNN is applied to extract both the temperature and strain directly from the 
measured double-peak BGS in large-effective-area fiber (LEAF). Both simulated and 
experimental data under different temperature and strain conditions have been used to verify 
the reliability of DNN-based simultaneous temperature and strain measurement, and 
demonstrate its advantages over BOTDA with the conventional equations solving method. 
Avoiding the small matrix determinant-induced large error, our DNN approach significantly 
improves the measurement accuracy. For a 24-km LEAF sensing fiber with a spatial 
resolution of 2m, the root mean square error (RMSE) and standard deviation (SD) of the 
measured temperature/strain by using DNN are improved to be 4.2°C/134.2με and 
2.4°C/66.2με, respectively, which are much lower than the RMSE of 30.1°C/710.2με and SD 
of 19.4°C/529.1με for the conventional equations solving method. Moreover, the temperature 
and strain extraction by DNN from 600,000 BGSs along 24-km LEAF requires only 1.6s, 
which is much shorter than that of 5656.3s by the conventional equations solving method. 
The enhanced accuracy and fast processing speed make the DNN approach a practical way of 
achieving simultaneous temperature and strain measurement by the conventional BOTDA 
system without adding system complexity. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Brillouin Optical Time Domain Analysis (BOTDA) has attracted a lot of research interest 
over the past three decades due to its outstanding capability of distributed temperature and 
strain measurement and hence wide applications in structural health monitoring (SHM) [1,2]. 
Generally long sensing distance, high spatial resolution, high measurement accuracy, and fast 
measurement speed are ultimate goals for the development of BOTDA [3–8]. Moreover, to 
achieve simultaneous temperature and strain measurement is also desirable, although it is 
difficult to realize it in the conventional BOTDA systems because of the Brillouin scattering 
induced cross-sensitivity of temperature and strain. To date some solutions have been 
reported to realize simultaneous temperature and strain measurement [9–22]. Hybrid sensor 
systems combining Brillouin scattering with either Rayleigh scattering or Raman scattering 
have been demonstrated to discriminate temperature and strain [9–11]. However, compared 
with a single BOTDA system, hybrid systems introduce extra system complexity and cost. 
For a single BOTDA system to discriminate the temperature and strain, one of the methods is 
to measure the Brillouin frequency shift (BFS) together with Brillouin peak power or 
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bandwidth or birefringence in a polarization-maintaining fiber (PMF) [12–14], however 
launching of fiber axis with PMF makes the operation complicated and the power 
measurement is usually unstable. Another solution is to use multi-core fiber (MCF) [15], 
where several BFSs obtained from different fiber cores have been used together to measure 
temperature and strain simultaneously. Moreover, using fibers with multi-peak Brillouin Gain 
Spectrum (BGS) has been demonstrated to be an elegant solution, such as photonic crystal 
fiber (PCF) [16], large-effective-area fiber (LEAF) [17–19], dispersion compensating fiber 
(DCF) [20] and few mode fiber (FMF) [21]. However, because of the small difference of 
BFS-temperature/strain coefficients between Brillouin peaks, the solving of two BFS 
equations to recover the temperature and strain produces large errors and hence the obtained 
temperature and strain resolutions are much larger than single temperature or strain 
measurement, e.g. 27°C/570με error in 22km long LEAF [18,19]. Besides the poor accuracy, 
curve fitting process to determine the BFS in the equations solving method usually takes long 
time, which makes the whole process of temperature and strain extraction time-consuming. 

On the other hand, some advanced machine learning techniques have been applied to the 
conventional single BOTDA system to extract temperature information with better sensing 
performance compared with curve fitting methods [22–25]. Artificial Neural Network (ANN) 
has shown higher accuracy and larger tolerance to measurement error in comparison to 
Lorentzian curve fitting (LCF) and cross-correlation method [22]. Besides the robustness to a 
wide range of experimental parameters, Support Vector Machine (SVM) has been 
demonstrated to have a processing speed 100 times faster than Lorentzian curve fitting 
[23,24]. Compared with ANN, Deep Neural Networks (DNN) with autoencoder can be easily 
trained to achieve global optimum for temperature extraction in BOTDA [25]. In addition to 
single temperature measurement, recently we have reported for the first time the preliminary 
work on the feasibility of using DNN for simultaneous temperature and strain measurement 
[26], where a single BOTDA system employing the conventional single mode LEAF sensing 
fiber is adopted and DNN extracts both the temperature and strain directly from the double-
peak BGS of LEAF. Unlike the conventional equations solving method [16–21], there is no 
curve fitting to obtain the BFS of Brillouin peaks and no subsequent procedure of solving two 
BFS equations. In contrast, the extraction of temperature and strain is regarded as a regression 
task for DNN, and through training the DNN builds up the relationship between the double-
peak BGS and the temperature and strain. Thus compared with the conventional equations 
solving method, the DNN approach can potentially improve the accuracy of measured 
temperature and strain, and the whole process of temperature and strain extraction by DNN 
can be expected to be very fast. 

In this paper, we demonstrate the enhanced accuracy and fast processing speed offered by 
DNN approach, and statistically analyze and compare its performance with the conventional 
equations solving method through both simulation and experiment. The impact of noise added 
in the training of DNN is analyzed and the optimal amount of noise needed to improve the 
DNN tolerance to the noise from measured BGSs is discussed. With a little modification of 
the experimental setup to make the strain uniform along the LEAF, we have tested a larger 
range of temperature and strain conditions in this work to verify the reliability of DNN based 
simultaneous temperature and strain measurement. Our results show that the measured 
temperature and strain by DNN have much lower root mean square error (RMSE) and 
standard deviation (SD), which means the measured values are close to the real ones with 
small fluctuations. Compared with the conventional equations solving method, the DNN 
based simultaneous temperature and strain measurement improves the measurement accuracy 
by at least five times, and shortens the processing time by three orders of magnitude. 
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2. Principle and simulation

2.1 Principle of using DNN for simultaneous temperature and strain measurement 

DNN is an advanced hierarchical neural network which belongs to one type of deep learning 
models. Its structure is similar to ANN except the training process includes both unsupervised 
and supervised learning for data size compression which makes the training more efficient. 
Figure 1 illustrates a general structure of DNN model containing an input layer, several 
hidden layers and an output layer. Each node represents a neuron and each connecting line 
represents a synapse with a weight value of wij. Every hidden layer is formed by an 
autoencoder including both encoder and decoder. The output of a neuron after input layer can 
be expressed using the following Eq. (1): 

( )j j ij i jy f w x θ= ⋅ − (1)

where yj is the output of the jth neuron in current layer; fj is the activation function; wij is the 
weight of synapse connecting the ith neuron in the previous layer and the jth neuron in the 
current layer; xi means the output of the ith neuron in the previous layer; θj is a constant bias. 

Fig. 1. General structure of DNN with n autoencoder hidden layers. Wn is the weight vector for 
the nth hidden layer. 

Figure 2 shows the principle. The DNN model contains one input layer (I), two hidden 
layers (H1 and H2) and one output layer (O). In this case, the input vector X (x1, x2, …, x226) 
in Fig. 1 including 226 elements represents the data vector for the double-peak BGS which is 
injected into the input layer of the DNN. The number of elements in X is equal to the number 
of scanned frequencies in the BOTDA system. The output vector Y (y1, y2) has two elements, 
corresponding to the temperature and strain. The utilization of DNN contains two main 
stages: training and testing. Since the BFSs of the double-peak BGS in LEAF are linearly 
proportional to both the temperature and strain but exhibit different responses, the DNN 
model can learn the relationship between the double-peak BGS and the temperature/strain 
after appropriate training process. After training, the designed DNN can be used to extracts 
the values of temperature and strain directly from the input measured double-peak BGS, 
which is the so-called testing stage. 
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2.2 Conventional equations solving method for simultaneous temperature and strain 
measurement 

It is known that the BFSs of Peak 1 and Peak 2 in LEAF sensing fiber have linear 
relationships with both temperature and strain, which are shown as Eqs. (3)–(4) [16–18,20], 

1 1 1Peak Peak Peak
TBFS C T Cε εΔ = ⋅Δ + ⋅Δ (3)

2 2 2Peak Peak Peak
TBFS C T Cε εΔ = ⋅ Δ + ⋅ Δ (4)

where 1PeakBFSΔ  and 2PeakBFSΔ  are the BFS change of Peak 1 and Peak 2 under the 

temperature and strain change of TΔ  and εΔ , respectively. 1Peak
TC  and 1PeakCε are the BFS-

temperature and strain coefficients for Peak 1, while 2Peak
TC  and 2PeakCε are coefficients for

Peak 2, respectively. In the conventional equations solving method [16–21], 1PeakBFSΔ  and 
2PeakBFSΔ  are obtained by Lorentzian curve fitting (LCF) based on Eq. (2), and then the 

temperature and strain are obtained by solving Eqs. (3)–(4) as following [16–18,20], 

2 1 1 2

1 2 2 1

Peak Peak Peak Peak

Peak Peak Peak Peak
T T

C BFS C BFS
T

C C C C
ε ε

ε ε

⋅ Δ − ⋅ Δ
Δ =

⋅ − ⋅
(5)

2 1 1 2

2 1 1 2

Peak Peak Peak Peak
T T

Peak Peak Peak Peak
T T

C BFS C BFS

C C C Cε ε

ε ⋅ Δ − ⋅Δ
Δ =

⋅ − ⋅
(6)

This is generally the procedure of the equations solving method to simultaneously measure 
the temperature and strain based on two BFSs of multi-peak BGS. However, as mentioned in 
[18,19], since the matrix determinant 1 2 2 1Peak Peak Peak Peak

T TC C C Cε ε⋅ − ⋅  is usually very small, 

larger error will be produced when solving Eqs. (3)–(4) to obtain the temperature and strain, 
compared with the case of single temperature or strain measurement. Thus except the time-
consuming curve fitting procedure, the equations solving method imposes stringent 
requirement on the resolution of BFS measurement, and is difficult to obtain the temperature 
and strain with high accuracy, especially when the FUT is long (e.g. several tens of 
kilometers) and the BFS resolution becomes worse. 

2.3 Simulation results 

Based on the parameter setting in Section 2.1, there are 12 temperature conditions, 32 strain 
conditions, 11 BGS linewidth conditions, and 5 peak gain conditions of Peak 2. Thus we have 
12 × 32 × 11 × 5 = 21120 ideal double-peak Lorentzian BGSs and 12 × 32 = 384 target 
temperature and strain values in total for the DNN training. The DNN is trained using error 
back-propagation (BP) algorithm. After repeated trials with different number of hidden layers 
and neurons for optimal performance, the DNN model is eventually designed to have two 
hidden layers with 40 and 8 neurons, respectively. Two hidden layers are found to be enough 
for acceptable results, while more hidden layers will take much longer time for training but 
without obvious performance improvement. The following simulation and experiment results 
are all obtained using this DNN structure (226-40-8-2). 

In this section, we first conduct simulation using simulated double-peak BGSs in the 
testing stage to evaluate the performance of DNN for simultaneous temperature and strain 
measurement. In the simulation, noisy BGSs are simulated by adding Gaussian white noise to 
the profile based on Eq. (2), and the signal-to-noise ratio (SNR) of the simulated BGSs is 
controlled by the amount of noise added. Note that the SNR of the simulated BGS is 
calculated by using the ratio between the amplitude of BGS peak and the standard deviation 
of its spectral points [27]. To improve the noise tolerance of the DNN model, we train the 
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DNN by using combined clean and noisy BGSs. The number of clean BGSs for training is 
21120. The noisy BGSs with an SNR of 10.5dB for training are obtained by adding Gaussian 
white noise to the clean ones. Thus the total number of BGSs used for training is 42240. 
10.5dB SNR is chosen since it just covers the lowest SNR level in our experiment, and the 
DNN trained with noisy BGSs of 10.5dB SNR is found to be enough to achieve the optimal 
performance for temperature and strain extraction in the experiment. After training, the DNN 
model is applied to extract both the temperature and strain from 1000 simulated testing BGSs 
of 20dB SNR, i.e. the case for low noise level. We have randomly selected five groups of 
target temperature and strain for the demonstration (40°C/50με; 45°C/200με; 52°C/1400με; 
55°C/1600με; 60°C/1800με). As an example, we show the results for three groups of target 
temperature and strain in Fig. 3, which plots the extracted temperature and strain distribution 
by DNN. Fluctuations of the extracted temperature and strain are small, and the extracted 
values are close to the target ones for all the three cases. The detailed error performance of 
DNN is analyzed by calculating the Standard Deviation (SD) and Root Mean Square Error 
(RMSE) of the extracted temperature and strain, which is given in Table 1 for all five groups 
of target temperature and strain conditions. SD means the uncertainty or fluctuation of the 
extracted values; while RMSE indicates how close the extracted temperature and strain values 
are to the target ones, which is calculated by comparing the target values and extracted ones 
by DNN. The maximum SD and RMSE of the extracted temperature are only 0.5°C and 
1.2°C, respectively; while those of the extracted strain are 13.5με and 43.7με, respectively. 
The results show that the DNN model trained by using combined clean and noisy BGSs 
performs well when extracting the temperature and strain from noisy testing BGSs with low 
noise level. 
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Fig. 3. Temperature and strain distribution extracted by DNN from 1000 simulated testing 
BGSs of 20dB SNR. 

Table 1. Corresponding error performance of DNN for results in Fig. 3 

Temperature (°C) Strain (με) 

Temperature (°C) Strain (με) 

SD RMSE SD RMSE 

40.0 50.0 0.2 1.2 4.9 11.7 
45.0 200.0 0.4 1.1 9.2 43.7 
52.0 1400.0 0.5 0.9 13.5 25.9 
55.0 1600.0 0.3 0.8 8.9 14.3 
60.0 1800.0 0.2 0.8 4.5 33.8 

Next we further increase the noise level in the testing BGSs, and investigate the DNN 
performance. The DNN model is the same as that used in Fig. 3. Figure 4 shows the extracted 
temperature and strain distribution from 1000 simulated testing BGSs of 10.58dB SNR, 
which is the lowest SNR level observed in our experiment. Due to larger noise in the testing 
BGSs, the fluctuations of the extracted temperature and strain become a little larger than 
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those in Fig. 3, but the extracted values are still close to the target ones. For comparison, we 
also use the conventional equations solving method described in Section 2.2 to extract the 
temperature and strain from the same testing BGSs, and the results are given in Fig. 5. Note 
that we adopt Levenberg-Marquardt algorithm (LMA) for LCF to extract BFS [23], where it 
starts with an initial guess for the gain parameter, central frequency parameter and linewidth 
parameter, and then all of them are iteratively updated until the squared error converges. 
Besides large fluctuations, the extracted temperature and strain in Fig. 5 are far away from the 
target ones, and some extracted values are even out of the scales in Fig. 5, showing poor 
accuracy of the equations solving method when the noise is relatively high. As mentioned in 
Section 2.2, the low accuracy originates from the small difference in BFS coefficients 
between the two peaks, which gives rise to large error when solving the two BFS Eqs. (3)–
(4). The detailed error performance for the results in Fig. 4 and Fig. 5 are compared in Table 
2, which also includes the results for the other two groups of target temperature and strain. 
Take the target temperature and strain of (52.0°C, 1400.0με) as an example. The RMSE of the 
extracted temperature/strain by using DNN are 3.4°C/95.4με, while those by using the 
equations solving method are found to be 27.4°C/746.2με, respectively, which indicates that 
the errors of extracted temperature and strain by the equations solving method are about 8 
times larger than those obtained by DNN. In all the five groups of target temperature and 
strain, the maximum SD of the extracted temperature/strain by DNN are 3.3°C/93.5με, and 
the maximum RMSE are 3.4°C/ 95.4με, respectively. While for the equations solving method, 
the maximum SD are 31.2°C/ 849.8με, and maximum RMSE are 31.2°C/852.0με, 
respectively. Although the error performance of DNN degrades a little due to larger noise in 
input testing BGSs, it still has significant improvement compared to that of the equations 
solving method. 
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Fig. 4. Temperature and strain distribution extracted by DNN from 1000 simulated testing 
BGSs of 10.58dB SNR. 
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Fig. 5. Temperature and strain distribution extracted by the equations solving method from 
1000 simulated testing BGSs of 10.58dB SNR. 

Table 2. Corresponding error performance of DNN and the equations solving method for 
results in Figs. 4 and 5 

Temperatur
e 

(°C) 

Strain 
(με) 

Temperature (°C) Strain (με) 

DNN Equations
solving method 

DNN Equations solving
method 

SD RMSE SD RMSE SD RMSE SD RMSE 

40.0 50.0 1.7 1.9 26.2 26.2 42.3 45.3 714.7 714.7 

45.0 200.0 2.4 2.8 25.5 25.5 63.2 74.0 693.9 694.0 

52.0 
1400.

0 
3.3 3.4 27.4 27.4 93.5 95.4 745.9 746.2 

55.0 
1600.

0 
2.4 2.6 26.9 26.9 66.1 68.6 733.5 733.8 

60.0 
1800.

0 
1.6 1.7 31.2 31.2 35.7 46.6 849.8 852.0 

3. Experiment and results
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FBG FilterPD
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2

3
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FUT

Fixed Movable

FUT

Fig. 6. BOTDA system setup. EDFA: erbium-doped fiber amplifier; PC: polarization 
controller; EOM: electro-optic modulator; RF: radio frequency; PG: pattern generator; VOA: 
variable optical attenuator; ISO: isolator; FUT: fiber under test; PS: polarization scrambler; 
FBG: fiber Bragg grating; PD: photodetector. 

In this section, experimental BGSs under different real temperature and strain values are 
collected using the BOTDA setup shown in Fig. 6. The same DNN model as used in Fig. 3 
and Fig. 4 is applied to extract both the temperature and strain distribution from experimental 
BGSs along the sensing fiber. In the BOTDA setup, the output of a continuous wave (CW) 
tunable laser working at 1550nm is amplified by an erbium-doped fiber amplifier (EDFA1) 
and is then split into two branches after filtering. The light at the upper branch is modulated 
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In the experiment, we apply different values of temperature and strain to the last 7m FUT 
and collect the corresponding experimental BGSs which serve as the input testing BGSs to 
the DNN model for temperature and strain measurement. Eight groups of real temperature 
and strain conditions are randomly selected for the demonstration, which include values that 
do not appear in the training stage, e.g. (61°C, 1861.7με). As an example, we show the results 
for four groups of real temperature and strain conditions in Fig. 8. The blue curves in Fig. 8 
show the temperature and strain distribution along the central part (4.7m section with 
relatively uniform strain) of the last 7m FUT extracted by using DNN. For comparison, the 
results by using the equations solving method are also given, shown as the orange curves in 
Fig. 8. It is obvious that the fluctuations of measured temperature and strain by using DNN 
are small, indicating small uncertainty of the measured temperature and strain. In contrast, the 
fluctuations by using the equations solving method are much larger. In addition, the measured 
values by using DNN are close to the real temperature and strain values, while those by using 
the equations solving method greatly deviate from the real values, e.g. the group of (56.0°C, 
1660.8με) in Fig. 8. This means that the equations solving method has worse error 
performance, which agrees well with that in [18]. 
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Fig. 8. Temperature and strain distribution along the central part of the last 7m FUT extracted 
by DNN (blue curve) and the equations solving method (orange curve), respectively. 

Table 3. Corresponding error performance of DNN and the equations solving method for 
results in Fig. 8 

Temperatur
e 

(°C) 

Strain 
(με) 

Temperature (°C) Strain (με) 

DNN Equations
solving method 

DNN Equations solving
method 

SD RMSE SD RMSE SD RMSE SD RMSE 

46.0 1166.9 2.4 2.6 8.8 20.6 63.7 76.1 237.1 517.3 

46.0 1351.0 2.4 2.4 11.9 24.4 66.2 96.5 320.9 616.2 
51.0 1459.9 2.3 2.3 13.9 13.9 63.3 134.2 378.0 394.3 
51.0 1551.9 2.0 3.4 11.8 15.1 59.5 90.2 322.9 356.9 
56.0 1660.8 1.4 4.2 14.3 24.9 36.0 36.0 385.9 603.4 
56.0 1752.9 1.3 3.1 14.3 30.1 26.8 65.7 383.2 710.2 
61.0 1677.6 1.3 4.2 19.4 19.6 35.6 38.9 529.1 527.1 
61.0 1861.7 1.0 2.3 14.1 14.1 18.8 26.2 383.2 381.6 

The detailed comparison between the error performance using DNN and that using the 
equations solving method has been given in Table 3 for all the eight groups of real 
temperature and strain conditions. Similar to the simulation, SD and RMSE of the measured 
temperature and strain are calculated to evaluate the error performance of the experimental 
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results. The SD indicates the fluctuation of the measured temperature and strain, while the 
RMSE reflects how close the measured values are to the real ones. The real temperature 
values are read from a reference thermometer and the real strain values are obtained from the 
reading of the micro-positioner during the experiment. Since the strain along the central 4.7m 
section of the last 7m FUT is relatively uniform, the SD and RMSE are calculated using the 
data points along this section (117 data points in total under a sampling rate of 
2.5GSample/s). From Table 3, we can see that in each group of temperature and strain, both 
the RMSE and SD by using DNN are much lower than those by using the equations solving 
method. Taking the group of (51.0°C, 1551.9.0με) as an example, the RMSE and SD of the 
measured temperature/strain by DNN are 3.4°C/90.2με and 2.0°C/59.5με, respectively; while 
the RMSE and SD by the equations solving method are found to be 15.1°C/356.9με and 
11.8°C/322.9με, respectively. The errors of the measured temperature and strain by the 
equations solving method are more than four times larger than those by DNN. For DNN the 
worst RMSE of the measured temperature/strain in Table 3 are 4.2°C/134.2με, and the worst 
SD are 2.4°C/66.2με, respectively. While for the equations solving method, the worst RMSE 
are 30.1°C/710.2με, and worst SD are 19.4°C/529.1με, respectively. Much lower RMSE by 
DNN indicates that the measured temperature and strain values are closer to the real values, 
and lower SD by DNN implies that the fluctuations of the measured values are much smaller, 
as shown in Fig. 8. Thus compared with the equations solving method, DNN for simultaneous 
temperature and strain measurement has significantly improved the measurement accuracy. 
Moreover, since there are 600,000 BGSs along 24km LEAF at 2.5GSample/s sampling rate, 
the equations solving method with time-consuming LCF process takes 5656.3s to extract both 
the temperature and strain distribution from such large number of sensing points (computer 
platform: i7-6700K CPU and 16G RAM). While the DNN only consumes 1.6s for the same 
purpose, showing very fast processing speed for simultaneous temperature and strain 
measurement. 

Besides the above situations with constant temperature and strain along the FUT inside 
the oven, we also implement the experiment in which abrupt changes of the environment 
occur along the FUT. The experiment setup is the same as that in Fig. 6, except the FUT 
inside the oven now has a length of 45m and is divided into three sections (i.e. Section 1 of 
19m, Section 2 of 7m, Section 3 of 19m), with the strain only applied to the middle Section 2. 
As an example for the demonstration, we set the temperature of the oven to be 46.0°C and the 
applied strain to be 1166.9με. We compare the performance of the same DNN model and the 
equations solving method as used before, which are shown in Fig. 9 and Table 4. Similarly, 
we can see that the fluctuations of measured temperature and strain by using DNN are small, 
while those by using the equations solving method are much larger. And both the RMSE and 
SD by using DNN are much lower than those by using the equations solving method, as given 
in Table 4 for each section of FUT, implying better error performance of DNN when 
compared with the equations solving method. 

Fig. 9. Temperature and strain distribution along the FUT inside the oven extracted by DNN 
(blue curve) and the equations solving method (orange curve), respectively. 
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Table 4. Corresponding error performance of DNN and the equations solving method for 
results in Fig. 9 

Fiber 
section 

Temperature (°C) Strain (με) 

DNN Equations 
solving method 

DNN Equations 
solving method 

SD RMSE SD RMSE SD RMSE SD RMSE 
1 0.9 3.5 10.8 12.6 23.6 97.0 292.0 339.5 
2 2.4 2.6 8.7 20.6 63.7 76.1 237.1 517.3 
3 0.9 3.4 10.0 11.5 22.4 99.8 272.3 315.7 

In our experiment, the total length of the FUT is 24km and our spatial resolution is 2m. 
The worst uncertainty of measured temperature and strain by the equations solving method is 
19.4°C/529.1με, and they are improved to be 2.4°C/66.2με by using DNN. Note that Ref [18]. 
reports temperature and strain errors of 27°C/570με by the equations solving method for 
22km LEAF length. Other works by the equations solving method demonstrate better error 
performance but within much shorter sensing distance, e.g. 3.9°C/83με in 2m PCF with 
spatial resolution of 15cm [16], 5°C/60με in 3.7km LEAF with spatial resolution of 2m [17], 
1.8°C/37με in 377m LEAF with spatial resolution of 4m [19], 2.6°C/64.6με in 1km DCF with 
spatial resolution of 2m [20], and 1.2°C/21.9με in 3km few-mode fiber with spatial resolution 
of 2.5m [21]. And in [28] ANN has been used to classify the effect of temperature and strain 
in a standard single mode fiber (SSMF), but without the capability of measuring exact 
temperature and strain values, and no analysis of measured temperature and strain errors is 
given. Therefore, compared to the results in literature with similar sensing distance, our DNN 
approach shows much better accuracy than the equations solving method. 

It is worth mentioning that in this work DNN extracts both the temperature and strain 
mainly from the two BFSs of double-peak BGS in LEAF, but it can also be applied to replace 
all the equations solving methods where any two of the parameters (e.g. BFS, Brillouin peak 
power, bandwidth, birefringence etc) are measured to build up the equations [12–21]. The 
large error induced by the small matrix determinant during the equations solving can be 
avoided and the accuracy would be improved. Moreover, multiple measured parameters can 
be potentially combined together as the input to the DNN model to further improve the 
accuracy of simultaneous temperature and strain measurement. 

4. Conclusion 

We have demonstrated simultaneous temperature and strain measurement by DNN assisted 
BOTDA system along 24km LEAF sensing fiber with a spatial resolution of 2m. DNN is 
trained by using combined ideal clean and noisy BGSs, and then extracts both the temperature 
and strain directly from the measured double-peak BGS with high accuracy. Both simulation 
and experiment under different temperature and strain conditions have been conducted to 
evaluate the DNN based temperature and strain measurement, with comparison to the 
conventional the equations solving method in terms of measurement accuracy and processing 
speed. Without the procedure of solving two BFS equations, the DNN scheme avoids the 
large error induced by the small matrix determinant, and hence greatly improves the 
measurement accuracy. The worst temperature/strain RMSE using DNN are 4.2°C/134.2με, 
much lower than that of 30.1°C/710.2με using the equations solving method; and the worst 
temperature/strain uncertainty using DNN are 2.4°C/66.2με, much smaller than that of 
19.4°C/529.1με using the equations solving method, respectively. On the other hand, with no 
curve fitting process, the extraction of both temperature and strain by DNN becomes very 
fast. Only 1.6s is consumed by DNN to extract both the temperature and strain from 600,000 
BGSs along 24km LEAF, which is much shorter than that of 5656.3s by the conventional 
equations solving method. We believe that the enhanced accuracy and fast processing speed 
make DNN a practical way of achieving simultaneous temperature and stain measurement in 
a single BOTDA system. 
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