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In this paper, we present an eleven invariant isotropic irreducible function basis of a
third order three-dimensional symmetric tensor. This irreducible function basis is a
proper subset of the Olive-Auffray minimal isotropic integrity basis of that tensor. The
octic invariant and a sextic invariant in the Olive-Auffray integrity basis are dropped
out. This result is of significance to the further research of irreducible function bases of
higher order tensors. Published by AIP Publishing. https://doi.org/10.1063/1.5028307

I. INTRODUCTION

Tensor function representation theory constitutes an important fundamental of theoretical and
applied mechanics. Representations of a complete and irreducible basis for isotropic invariants could
predict the available nonlinear constitutive theories by the formulation of the energy term. Since
irreducible representations for tensor-valued functions can be immediately yielded from known irre-
ducible representations for invariants (scalar-valued functions),1 the studies of isotropic function
basis have most priority. Perhaps we may trace back the modern development of tensor representa-
tion theory to the great mathematician Hermann Weyl’s book.2 This book was first published in 1939.
Here, we cite its new edition in 2016. Then, since the 1955 paper of Rivilin and Ericksen,3 many
researchers, such as Smith, Pipkin, Spencer, Boehler, Betten, Pennisi, and Zheng,4–10 to name only a
few of them here, have made important contributions to tensor representation theory. For the literature
of tensor representation theory before 1994, people may find it in the 1994 survey paper of Zheng.1

The development of tensor representation theory after 1994 paid more attentions to minimal integrity
bases of isotropic invariants of third and fourth order three-dimensional tensors.9–14 The polynomial
basis of anisotropic invariants of the elasticity tensor was studied by Boehler, Kirillov, and Onat11 in
1994. Zheng and Betten9 and Zheng10 studied the tensor function representations involving tensors of
orders higher than two. Smith and Bao14 presented minimal integrity bases of isotropic invariants for
third and fourth order three-dimensional symmetric and traceless tensors in 1997. Note that Boehler,
Kirillov, and Onat11 had already given a minimal integrity basis for a fourth order three-dimensional
symmetric and traceless tensor in 1994. But the minimal integrity basis given by Smith and Bao14

for the same tensor is slightly different.15 In 2014, an integrity basis with thirteen isotropic invariants
of a (completely) symmetric third order three-dimensional tensor was presented by Olive and Auf-
fray.12 Olive16 (p. 1409) stated that this integrity basis is a minimal integrity basis. Olive, Kolev, and
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Auffray13 presented a minimal integrity basis of the elasticity tensor, with 297 invariants, in 2017.
Very recently, Chen, Qi, and Zou15 showed that the four invariant Smith-Bao minimal isotropic
integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible
function basis of that tensor.

In this paper, the summation convention is used. If an index is repeated twice in a product, then
it means that this product is summed up with respect to this index from 1 to 3.

Suppose that a tensor A has the form Ai1...im under an orthonormal basis {ei}. A scalar function
of A f (A)= f (Ai1...im ) is said to be an isotropic invariant of A if for any orthogonal matrix qij we
have

f (Ai1...im )= f (Aj1...jm qi1j1 . . . qimjm ).

By Refs. 1 and 9, a set of isotropic polynomial invariants f 1, . . ., f r of A is said to be an integrity
basis of A if any isotropic polynomial invariant is a polynomial of f 1, . . ., f r , and a set of isotropic
invariants f 1, . . ., f m of A is said to be a function basis of A if any isotropic invariant is a function
of f 1, . . ., f m. An integrity basis is always a function basis but not vice versa.13 A set of isotropic
polynomial invariants f 1, . . ., f r of A is said to be polynomially irreducible if none of them can
be a polynomial of the others. Similarly, a set of isotropic invariants f 1, . . ., f m of A is said to be
functionally irreducible if none of them can be a function of the others. An integrity basis of A is
said to be a minimal integrity basis of A if it is polynomially irreducible, and a function basis of A
is said to be an irreducible function basis of A if it is functionally irreducible.

In this paper, we present an eleven invariant isotropic irreducible function basis of a third order
three-dimensional symmetric tensor. This irreducible function basis is a proper subset of the Olive-
Auffray minimal isotropic integrity basis of that tensor. The octic invariant and a sextic invariant in
the Olive-Auffray integrity basis are dropped out.

In Sec. II, some preliminary results are given. These include the minimal integrity basis result of
Smith and Bao14 for a third order three-dimensional symmetric and traceless tensor, the consequent
result of Chen, Qi, and Zou15 to confirm that it is also an irreducible function basis, and the result
of Olive and Auffray12 for a minimal integrity basis of a third order three-dimensional symmetric
tensor.

In Sec. III, we present an eleven invariant isotropic function basis of a third order three-
dimensional symmetric tensor. This function basis is obtained by using two syzygy relations to
drop out the octic invariant and a sextic invariant from the Olive-Auffray integrity basis. Note that
a syzygy relation is a set of coefficients in the polynomial ring such that the corresponding element
generated by the function basis vanishes in the module.

Then in Sec. IV, we show that this function basis is indeed an irreducible function basis of a
third order three-dimensional symmetric tensor.

This result is significant to the further research of irreducible function bases of higher order
tensors. First, this is the first time to give an irreducible function basis of isotropic invariants of a third
order three-dimensional symmetric tensor. Second, there are still three syzygy relations among these
eleven invariants. This shows that an irreducible function basis consisting of polynomial invariants
may not be algebraically minimal. We discuss this in Sec. V.

From now on, we use A to denote a third order three-dimensional tensor and assume that it is
represented by Aijk under an orthonormal basis {ei}. We consider the three-dimensional physical
space. Hence i, j, k ∈ {1, 2, 3}. We say that A is a symmetric tensor if for i, j, k = 1, 2, 3 we have

Aijk =Ajik =Aikj =Akji.

We say that A is traceless if
Aiij =Aijj =Aiji = 0.

We use 0 to denote the zero vector and O to denote the third order three-dimensional zero tensor.

II. PRELIMINARIES

In this section, we review the minimal integrity basis result of Smith and Bao14 for a third order
three-dimensional symmetric and traceless tensor, the consequent result of Chen, Qi, and Zou15 to
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confirm that it is also an irreducible function basis, and the minimal integrity basis result of Olive
and Auffray12 for a third order three-dimensional symmetric tensor.

A. An irreducible function basis of a third order three-dimensional symmetric
and traceless tensor

In 1997, Smith and Bao14 presented the following theorem.

Theorem II.1. Let D be an irreducible (i.e., symmetric and traceless) third order three-
dimensional tensor. Denote vp := DijkDij`Dk`p, I2 := DijkDijk , I4 := DijkDij`DpqkDpq` , I6 := vivi,
and I10 := Dijkvivivk . Then {I2, I4, I6, I10} is a minimal integrity basis of D.

Very recently, Chen, Qi, and Zou15 proved the following theorem.

Theorem II.2. Under the notation of Theorem II.1, the Smith-Bao minimal integrity basis {I2,
I4, I6, I10} is also an irreducible function basis of D.

B. The Olive-Auffray integrity basis of a third order three-dimensional symmetric tensor

According to Ref. 10, we decompose a third order three-dimensional symmetric tensor A into a
third order three-dimensional symmetric and traceless tensor D and a vector u, with

ui =Ai``

and

Dijk =Aijk −
1
5

(
ukδij + ujδik + uiδjk

)
,

where δpq = 1 if p = q and δpq = 0 if p , q.
In 2014, Olive and Auffray12 presented the following theorem.

Theorem II.3. Let A be a third order three-dimensional symmetric tensor with the above
decomposition. The following thirteen invariants

I2 :=DijkDijk , J2 := uiui,

I4 :=DijkDij`DpqkDpq` , J4 :=DijkukDij`u` ,

K4 :=DijkDij`Dk`pup, L4 :=Dijkukujui,

I6 := vivi, J6 :=DijkDij`ukD`pqupuq,

K6 := vkwk , L6 :=DijkDij`ukv` ,

M6 :=DijkDpqkuiujupuq, I8 :=DijkDij`ukDpq`Dpqrvr ,

I10 :=Dijkvivjvk ,

where vp := DijkDij`Dk`p and wk := Dijkuiuj, form an integrity basis of A.

As an integrity basis is always a function basis, we may start from the Olive-Auffray integrity
basis

{I2, J2, I4, J4, K4, L4, I6, J6, K6, L6, M6, I8, I10}

to find an irreducible function basis of A.

III. AN ELEVEN INVARIANT FUNCTION BASIS

In this section, we show that the following eleven invariant set

{I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10}

is a function basis of the third order three-dimensional symmetric tensor A. Note that this set is
obtained by dropping K6 and I8 from the Olive-Auffray integrity basis
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{I2, J2, I4, J4, K4, L4, I6, J6, K6, L6, M6, I8, I10}.

Thus, the task of this section is to show that K6 and I8 can be dropped out for a function basis.
We first prove the following proposition.

Proposition III.1. In the Olive-Auffray integrity basis, we have

2I2J2 − 3J4 ≥ 0,

where the equality holds if and only if either D=O or u = 0.

Proof. By definition, if either D=O or u = 0, we have I2J2 = 0 and J4 = 0. Hence 2I2J2 � 3J4

= 0 in this case.
Consider the optimization problem

min{2I2J2 − 3J4 : DijkDijk = 1, uiui = 1},

where the variables are the seven independent components of D and the three components of u.
Using GloptiPoly 317 and SeDuMi,18 we compute the minimum value of this optimization problem
to be 0.2, where the minimizer is D111 = 0.2829, D112 = D113 = 0, D122 = �0.2828, D123 = �0.2450,
D222 = 0, D223 = �0.2828, u1 = �0.4471, u2 = �0.7746, and u3 = �0.4474. Hence, the minimum value
is positive. This implies that if 2I2J2 � 3J4 = 0, then either D=O or u = 0. ◽

We are now ready to prove the following theorem.

Theorem III.2. The eleven invariant set {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is a function
basis of the third order three-dimensional symmetric tensor A.

Proof. Consider all possible tenth degree powers and products of these thirteen invariants I2,
J2, I4, J4, K4, L4, I6, J6, K6, L6, M6, I8, I10 in the Olive-Auffray minimal integrity basis of A. Find
linear relations among these tenth degree powers and products. Then we have two syzygy relations
among these thirteen invariants as follows:

6J2I8 =−I2
2 J2K4 − I3

2 L4 + 3I2I4L4 − 3I2J4K4 + 4J2I4K4

+ 2I2
2 J6 + 3I2J2L6 − 3L4I6 − 6I4J6 + 3J4L6 + 6K4K6, (1)

and

2I2J2K6 + I2
2 J2J4 − I2J2

4 + 2I2K4L4 + 3J2K2
4 − 2J2I4J4

+ J2
2 I6 − 2I2

2 M6 − 12K4J6 + 6L4L6 + 6I4M6 − 3J4K6 = 0,

i.e.,

(2I2J2 − 3J4)K6 =−I2
2 J2J4 + I2J2

4 − 2I2K4L4 − 3J2K2
4 + 2J2I4J4

− J2
2 I6 + 2I2

2 M6 + 12K4J6 − 6L4L6 − 6I4M6. (2)

We first use the syzygy relation (1). If u = 0, then J2 = uiui = 0, and the right-hand side of (1) is
also equal to zero. In this case, we have I8 = DijkDij`ukDpq`Dpqrvr = 0, where vp := DijkDij`Dk`p. If
u , 0, then J2 = uiui , 0. By the syzygy relation (1), we have

I8 =−
1
6

I2
2 K4 +

2
3

I4K4 +
1
2

I2L6 +
1

6J2

(
− I3

2 L4 + 3I2I4L4

− 3I2J4K4 + 2I2
2 J6 − 3L4I6 − 6I4J6 + 3J4L6 + 6K4K6

)
.

Then I8 is a function of I2, J2, I4, J4, K4, L4, I6, J6, K6, L6, M6, I10.
We now use the syzygy relation (2). If 2I2J2 � 3J4 = 0, by Proposition III.1, either D=O or

u = 0. This implies that K6 = 0. Note that in this case, the right-hand side of (2) is also equal to zero.
If 2I2J2 � 3J4 , 0, we have
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K6 =
1

2I2J2 − 3J4

(
− I2

2 J2J4 + I2J2
4 − 2I2K4L4 − 3J2K2

4

+ 2J2I4J4 − J2
2 I6 + 2I2

2 M6 + 12K4J6 − 6L4L6 − 6I4M6
)
.

This shows that K6 is a function of I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10.
Hence, {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is a function basis of the third order three-

dimensional symmetric tensor A. ◽

IV. THIS FUNCTION BASIS IS AN IRREDUCIBLE FUNCTION BASIS

To show that {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is an irreducible function basis of the
third order three-dimensional symmetric tensor A, we only need to show that each of these eleven
invariants is not a function of the other ten invariants.

To show that each of K4, L4, J6, and L6 is not a function of the other ten invariants in this function
basis, we may use a tactic, which is stated in the following proposition.

Proposition IV.1. We have the following four conclusions.

(a) If there is a third order three-dimensional tensor A such that K4 = L4 = J6 = 0 but L6 , 0, then
L6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6, M6, and I10.

(b) If there is a third order three-dimensional tensor A such that K4 = L4 = L6 = 0 but J6 , 0, then
J6 is not a function of I2, J2, I4, J4, K4, L4, I6, L6, M6, and I10.

(c) If there is a third order three-dimensional tensor A such that K4 = J6 = L6 = 0 but L4 , 0, then
L4 is not a function of I2, J2, I4, J4, K4, I6, J6, L6, M6, and I10.

(d) If there is a third order three-dimensional tensor A such that L4 = J6 = L6 = 0 but K4 , 0, then
K4 is not a function of I2, J2, I4, J4, L4, I6, J6, L6, M6, and I10.

Proof. By the definition of invariants I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, and I10, if we keep
D unchanged but change u to �u, then I2, J2, I4, J4, I6, M6, and I10 are unchanged, but K4, L4, J6,
and L6 change their signs.

We now prove conclusion (a). If there is a third order three-dimensional tensor A such that
K4 = L4 = J6 = 0 but L6 , 0, we may keep D unchanged but change u to �u, then I2, J2, I4, J4, I6,
M6, and I10 are unchanged, K4, L4, and J6 are still zeros, but L6 changes its sign and value as it is
not zero. This implies that L6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6, M6, and I10. The other
three conclusions (b), (c), and (d) can be proved similarly. ◽

We now present the main theorem of this section.

Theorem IV.2. The eleven invariant set {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is an
irreducible function basis of the third order three-dimensional symmetric tensor A.

Proof. By Theorem III.2, {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is a function basis of A. It
suffices to show that each of these eleven invariants is not a function of the other ten invariants.

We divide the proof into three parts.
Part (i). In this part, we show that each of I2, I4, I6, I10, and J2 is not a function of the other ten

invariants. The first four invariants form an irreducible function basis of the symmetric and traceless
tensor D. The fifth invariant J2 forms an irreducible function basis of the vector u. Using this property,
we may prove that each of them is not a function of the other ten invariants easily.

By Theorem II.2, {I2, I4, I6, I10} is an irreducible function basis of D. This implies that each of
these four invariants is not a function of the other three invariants. Hence, each of these four invariants
is not a function of the other ten invariants of {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10}.

Let D=O, and u , u′ such that uiui , u′i u
′
i . Then J2 takes two different values, but the other ten

invariants I2, I4, J4, K4, L4, I6, J6, L6, M6, and I10 are all zero. This shows that J2 is not a function
of the other ten invariants I2, I4, J4, K4, L4, I6, J6, L6, M6, and I10.
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Part (ii). In this part, we show that each of K4, L4, J6, and L6 is not a function of the other ten
invariants. We use Proposition IV.1 to realize this purpose.

We first show that L6 is not a function of the other ten invariants. Let A111, A112, A113, A122,
A123, A133, A222, A223, A233, and A333 be the representatives of the components of A. If the values
of these ten components are fixed, then the other components of A also fixed by symmetry. Let
A111 =

3
5 , A122 =

6
5 , A133 =−

4
5 , A223 =

1
2 , A333 =−

1
2 , and A112 = A113 = A123 = A222 = A233 = 0, then we

have K4 = L4 = J6 = 0 and L6 = �2 such that we may use Proposition IV.1 (a). The values of the other
invariants are I2 = 7, J2 = 1, I4 =

37
2 , J4 = 2, I6 = 4, M6 = 0, I10 = 4. By Proposition IV.1 (a), L6 is not

a function of I2, J2, I4, J4, K4, L4, I6, J6, M6, and I10.
Then we show that J6 is not a function of the other ten invariants. Let

A111 =
1
6

√
1
2

(149 −
√

313) −
18(−215 + 7

√
313)

5
√

8 053 043 − 308 071
√

313
,

A112 =
121(2963 − 103

√
313)

10(−215 + 7
√

313)

√
298 − 2

√
313

648 164 815 − 26 977 811
√

313
,

A113 =
3 966 519 − 219 867

√
313

5
√

648 164 815 − 26 977 811
√

313(−215 + 7
√

313)
,

A122 =−
6(−215 + 7

√
313)

5
√

8 053 043 − 308 071
√

313
, A123 = 1,

A133 =−
1
6

√
1
2

(149 −
√

313) −
6(−215 + 7

√
313)

5
√

8 053 043 − 308 071
√

313
,

A222 =
363(2963 − 103

√
313)

10(−215 + 7
√

313)

√
298 − 2

√
313

648 164 815 − 26 977 811
√

313
,

A223 = 1 +
3 966 519 − 219 867

√
313

5
√

648 164 815 − 26 977 811
√

313(−215 + 7
√

313)
,

A233 =
121(2963 − 103

√
313)

10(−215 + 7
√

313)

√
298 − 2

√
313

648 164 815 − 26 977 811
√

313
,

A333 =−1 +
3(3 966 519 − 219 867

√
313)

5
√

648 164 815 − 26 977 811
√

313(−215 + 7
√

313)
.

These values are solutions of K4 = L4 = L6 = 0 and J6 , 0. Except that A123 = 1, the approximate
digit values of the other independent components are as follows:

A111 = 1.554, A112 =−0.1877, A113 =−0.01 287,

A122 = 0.06 780, A133 =−1.283, A222 =−0.5631,

A223 = 0.9871, A233 =−0.1877, A333 =−1.039.

Then we have K4 = L4 = L6 = 0 and J6 = 0.5112, satisfying the condition of Proposition IV.1 (b). The
values of the other invariants are I2 = 17.29, J2 = 1, I4 = 132.6, J4 = 2.547, I6 = 83.81, M6 = 0.1687
and I10 = �831. By Proposition IV.1 (b), J6 is not a function of I2, J2, I4, J4, K4, L4, I6, L6, M6, and
I10.
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We now show that L4 is not a function of the other ten invariants. Similarly, we can find a
symmetric third order three-dimensional tensor A such that K4 = J6 = L6 = 0 and L4 , 0. To be
specific, except that A123 = 1, the approximate digit values of the other independent components are
as follows:

A111 = 1.0358, A112 = 0.06 373, A113 =−0.06 357,
A122 = 1.8269, A133 =−1.9697, A222 = 0.1912,
A223 = 0.9364, A233 = 0.06 373, A333 =−1.1907.

Then we have K4 = J6 = L6 = 0 and L4 = �0.3843, satisfying the condition of Proposition IV.1
(c). We also have I2 = 32.2465, J2 = 1, I4 = 394.69, J4 = 9.1213, I6 = 509.67, M6 = 3.2506, and
I10 = 17 825.1. By Proposition IV.1 (c), L4 is not a function of I2, J2, I4, J4, K4, I6, J6, L6, M6, and I10.

We further show that K4 is not a function of the other ten invariants. Let

A111 =
3

5
√

2
, A112 =

√
3

10 , A113 =
1

10 ,

A122 =
4
√

2
15 −

1√
3
, A123 =

1
3 + 1√

6
, A133 =−

√
2

15 + 1√
3
,

A222 =
3
√

3
10 , A223 =−

9
10 , A233 =

√
3

10 ,

A333 =
13
10 .

Then we have L4 = J6 = L6 = 0 and K4 =
8
9 , satisfying the condition of Proposition IV.1 (d). We also have

I2 = 8, J2 =
3
2 , I4 =

88
3 , J4 =

8
3 ,

I6 =
64
9 , M6 =

11
9 , I10 =

11 776
729 .

By Proposition IV.1 (d), K4 is not a function of I2, J2, I4, J4, L4, I6, J6, L6, M6, and I10.
Part (iii). In this part, we show that each of M6 and J4 is not a function of the other ten invariants.

We cannot use Proposition IV.1 here. However, we may use another tactic. We try to find a tensor A
there such that K4 = L4 = J6 = L6 = 0 to reduce the influence of these four invariants. Then we change
the values of some independent components of A such that the values of K4, L4, J6 and L6 keep to be
zero, the value of M6 or J4 is changed and the values of the remaining other six invariants unchanged.

We first show that M6 is not a function of the other ten invariants. Let u1 = 5a, u2 = 5b, u3 =
5c, D123 = d and the other six independent components of D be zeros. Let a = b = 0 and c = d = 1.

Then I2 = 6, J2 = 25, I4 = 12, J4 = 50, K4 = L4 = I6 = J6 = L6 = I10 = 0, and M6 = 0. Let a= b=
√

2
2 ,

c = 0, and d = 1. We still have I2 = 6, J2 = 25, I4 = 12, J4 = 50, K4 = L4 = I6 = J6 = L6 = I10 = 0, but
M6 = 625. Hence, M6 is not a function of I2, J2, I4, J4, K4, L4, I6, J6, L6, and I10.

Finally, we show that J4 is not a function of the other ten invariants. Let A111 =
3
5 cos θ,

A112 =
1
5 sin θ, A113 = 0, A122 =

1
5 cos θ, A123 = 1, A133 =

1
5 cos θ, A222 =

3
5 sin θ, A223 = 1,

A233 =
1
5 sin θ, and A333 = �1, Then we really have K4 = L4 = J6 = L6 = 0. We also have I2 = 10,

J2 = 1, I4 = 44, I6 = 16, I10 = �64, and

J4(θ)= 2 + 4 cos θ sin θ + 2 sin2 θ, M6(θ)= sin2 θ(2 cos θ + sin2 θ).

Clearly, J4( 3
4π)= 1, M6( 3

4π)= 1
4 , M6(0) = 0, and M6( π4 )= 9

4 . Since M6(θ) is continuous in the
interval [0, π4 ], there exists θ0 ∈ (0, π4 ) such that M6(θ0)=M6( 3

4π)= 1
4 . On the other hand, we have

J ′4(θ)= 4 cos(2θ) + 2 sin(2θ) ≥ 0, ∀θ ∈
[
0,
π

4

]
.

It follows that J4(θ0) ≥ J4(0)= 2 > J4( 3
4π)= 1. Hence, J4 is not a function of I2, J2, I4, K4, L4, I6, J6,

L6, M6, and I10.
Combining the results of these three parts, each of these eleven invariants is not a function of the

other ten invariants. Therefore, this eleven invariant set {I2, J2, I4, J4, K4, L4, I6, J6, L6, M6, I10} is
indeed an irreducible function basis of A. ◽

Part (i) and the first part of Part (iii) of this proof show that each of I2, J2, I4, I6, M6, I10 is not
a function of the other ten invariants. This follows Theorem 3.1 of Ref. 15. For self-sufficiency and
completeness of this paper, we give this part of the proof directly. The organization of the proof to
three parts also makes the proof an integral entity.



081703-8 Chen et al. J. Math. Phys. 59, 081703 (2018)

V. SIGNIFICANCE OF THIS RESULT

This result is significant to the further research of irreducible function bases of higher order
tensors. First, this is the first result on irreducible function bases of a third order three-dimensional
symmetric tensor. Second, there are still at least three syzygy relations among these eleven invariants;
see (3)–(5). This shows that an irreducible function basis consisting of polynomial invariants may
not be algebraically minimal in the sense that the basis consists of polynomial invariants and there
is no algebraic relations in these invariants.19 The second point is observed as there are still some
syzygy relations among these eleven invariants.

Consider all possible sixteenth degree powers or products of the eleven invariants I2, J2, I4, J4,
K4, L4, I6, J6, L6, M6, I10. Find linear relations among these sixteenth-degree powers or products.
Then we have the following three syzygy relations among these eleven invariants:

2I3
2 J3

2 J4 − 4I2J3
2 I4J4 − 6J3

2 J4I6 − 9I2
2 J2

2 J2
4 + 18J2

2 I4J2
4 + 9J4

4 + 36I2J2J2
6 − 54J4J2

6

− 48I2J2
2 K4J6 + 144J2J4K4J6 + 12I2J3

2 K2
4 − 36J2

2 J4K2
4 − 24I2

2 J2L4J6 + 36I2J4L4J6

+ 12I2
2 J2

2 K4L4 − 18I2J2J4K4L4 − 18J2
4 K4L4 + 6I3

2 J2L2
4 − 6I2J2I4L2

4 − 9I2
2 J4L2

4 + 9I4J4L2
4

− 36J2J4L4L6 − 6I3
2 J2

2 M6 + 12I2J2
2 I4M6 + 9J2

2 I6M6 + 36I2
2 J2J4M6 − 72J2I4J4M6

− 18I2J2
4 M6 − 108K4J6M6 + 27J2K2

4 M6 + 18I2K4L4M6 + 54L4L6M6 − 18I2
2 M2

6 + 54I4M2
6

= 0, (3)

4
9

I3
2 J3

2 K4 +
2
9

I4
2 J2

2 L4 +
4
3

I3
2 J2J4L4 −

8
9

I2J3
2 I4K4 −

4
9

I2
2 J2

2 I4L4 −
4
3

I2
2 J2

2 J4K4 − 2I2
2 J2

4 L4

+ 2I2
2 K4L2

4 + 2J2
2 K3

4 + 4I2J2J2
4 K4 + 5I2J2K2

4 L4 − 4I2J2I4J4L4 −
4
3

I3
2 J2

2 J6 +
2
3

J3
2 K4I6

+
1
3

I2J2
2 L4I6 +

8
3

I2J2
2 I4J6 +

4
3

I2
2 J2J4J6 − 2I3

2 L4M6 + J2J4L4I6 − 16I2K4L4J6 − 14J2K2
4 J6

+ 6I2L2
4L6 + 4J2K4L4L6 + 6I2I4L4M6 − 2I2J4K4M6 + 4J2I4K4M6 + 4I2

2 J6M6 − 2J2
2 I6J6

− 4I2J2L6M6 − 12I4J6M6 + 6J4L6M6 + 24K4J2
6 − 12L4J6L6 − 4J3

4 K4 + 4I4J2
4 L4 − J4K2

4 L4

= 0, (4)

and

1
18

I5
2 J3

2 −
2
9

I3
2 J3

2 I4 +
2
9

I2J3
2 I2

4 +
1

12
I2
2 J3

2 I6 −
1
6

J3
2 I4I6 −

1
6

I4
2 J2

2 J4 +
1
3

I2
2 J2

2 I4J4 +
1
2

I2J2
2 J4I6

+
1
2

I3
2 J2J2

4 − I2J2I4J2
4 −

3
4

J2J2
4 I6 −

1
2

I2
2 J3

4 + I4J3
4 − I2

2 J2K4J6 + 2J2I4K4J6 +
1
4

I2
2 J2

2 K2
4

−
1
2

J2
2 I4K2

4 +
3
2

I2J2J4K2
4 −

9
4

J2
4 K2

4 +
1
2

I3
2 J2K4L4 − I2J2I4K4L4 −

1
2

I2
2 J4K4L4 + I4J4K4L4

+ 2I2J2J6L6 − 3J4J6L6 − 2I2J2
2 K4L6 + 3J2J4K4L6 −

1
2

I2
2 J2L4L6 − J2I4L4L6 +

3
2

I2J4L4L6

−
1
6

I4
2 J2M6 +

5
6

I2
2 J2I4M6 − J2I2

4 M6 − I2J2I6M6 +
3
2

J4I6M6 = 0. (5)

As shown by Theorem IV.2, these three syzygy relations do not imply any single-valued function
relation of any of these eleven invariants, with respect to the other ten invariants.

The second point is meaningful to the further research of irreducible function bases of higher
order tensors. For example, for the nine invariant Smith-Bao minimal integrity basis of a fourth
order three-dimensional symmetric and traceless tensor, there are five syzygy relations.15,19 These
five syzygy relations are not so well-structured like (1) and (2), but even more complicated than
(3)–(5). However, it is still possible that the nine invariant Smith-Bao minimal integrity basis is
indeed an irreducible function basis of a fourth order three-dimensional symmetric and traceless
tensor, just like the four invariant Smith-Bao minimal integrity basis is indeed an irreducible func-
tion basis of a third order three-dimensional symmetric and traceless tensor, which was proved in
Ref. 15.
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In Sec. IV, we show that the eleven invariant function basis is indeed an irreducible function
basis, by showing that each of these eleven invariants is not a function of the other ten invariants.
This is the method proposed by Pennisi and Trovato.7 However, we divide the proof into three parts.
In Part (i), we show that each of the five invariants I2, I4, I6, I10, and J2, which form the irreducible
function bases of the composition tensors D and u, is not a function of the other ten invariants. In
Part (ii), we use Proposition IV.1 to show that each of K4, L4, L4, and J6 is not a function of the other
ten invariants. In Part (iii), we use another tactic to show that each of the remaining two invariants
M6 and J4 is not a function of the other ten invariants. Such tactics may also be instructive for the
further research of irreducible function bases of higher order tensors.
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