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Precursory surface standing waves for liquid atomization occur on a spherical droplet subjected to a
radial time-periodic force. In this paper, we carried out a linear stability analysis on the spherical Fara-
day instability. With the Floquet analysis, a derived difference equation gives the dispersion relation
between the Floquet exponent and the spherical modes. For inviscid instability, the problem can also
be reduced to the standard Mathieu equation as the same as its planar counterpart, but the parameters
in the equation correspond to different quantities due to the spherical configuration. The analysis
shows that increasing the density ratio of the ambient fluid to the droplet narrows the range of possi-
bly excited spherical modes under the same forcing condition. For viscous instability, an additional
parameter corresponding to the viscous effects was introduced into the difference equation. With
increasing the droplet viscosity, the surface waves with large mode numbers are stabilized and hence
a larger forcing amplitude is required to cause instability. Furthermore, the most-unstable spherical
mode of the largest growth rate excited in the experimental condition is determined and discussed
for its physical interpretation for droplet atomization caused by Faraday instability. Published by AIP
Publishing. https://doi.org/10.1063/1.5050517

I. INTRODUCTION

An instability takes place at the interface between two
different fluids when a time-periodic acceleration is exerted
perpendicularly to the interface. This phenomenon is referred
to as the “Faraday instability” to honor Faraday1 who first
academically studied the pattern formation of the standing
waves on the surface of a liquid lying on a vibrating plate (a
comprehensive review can be found in Ref. 2). This problem
has attracted much academic attention because it relates to
various interesting physics, such as pattern selection on the
liquid surface,3–6 spatiotemporal chaos,7–10 liquid atomiza-
tion,11–14 and even cellular structures in flames in an acoustic
field.15–17

It was observed that the oscillating frequency of the
excited surface waves (referred to as “Faraday waves”) was
either half1 or equal to18 that of the vibrating plate. This dis-
crepancy between the observed excitation frequencies was
finally explained by Benjamin and Ursell19 who described
the growth of the amplitude of the Faraday waves on the
planar liquid surface by using a system of Mathieu equa-
tions with the linear and inviscid assumptions. In their the-
ory, two non-dimensional parameters, both of which are
functions of fluid properties, forcing conditions, and sur-
face wave modes, comprise the ordinate and abscissa of
an instability diagram on which discrete unstable tongues
with different oscillating frequencies of surface waves are
generated. The excitation and frequency of a surface wave

a)Authors to whom correspondence should be addressed: liyikai@bit.edu.cn
and pengzhang.zhang@polyu.edu.hk

mode depends on its corresponding location on the instability
diagram.

Recognizing that the theory of Benjamin and Ursell can-
not explain the experimental observations related to fluid vis-
cosity, Eisenmenger20 and Ciliberto and Gollub21 proposed
a phenomenological model in which a linear damping term
is empirically added to the Mathieu equation to account for
the effect of viscosity. To further study the viscous dissi-
pation in Faraday instability, Kumar and Tuckerman22 and
Kumar23 applied Floquet theory to the linearized Navier-
Stokes equations and derived an eigenvalue problem for the
vector of Fourier components. A threshold acceleration ampli-
tude of the external forcing for the onset of instability was
obtained and found to be consistent with the experimental
results.24,25

Besides the planar liquid layer, the deformation and atom-
ization occurring on curved or spherical interfaces are also of
great interest.26–31 Considering no external forces, Rayleigh32

derived an expression for the free oscillation frequency of
an inviscid spherical droplet that is slightly disturbed. Later,
Chandrasekhar33 studied viscous effects on droplet oscilla-
tion in the linear regime. The interfacial dynamics are of more
interest when external forces are introduced onto the droplet.
Terrones and Carrara34 performed a linear analysis for the
Rayleigh-Taylor instability on a spherical droplet under a con-
stant radial acceleration. When the external force becomes
oscillatory, the Faraday instability and related mechanisms
emerge, which play very important roles in many applica-
tion fields, such as the oscillation and atomization of a water
drop placed on a vibrating plate,35–39 the oscillation pat-
terns of a levitated water drop subjected to sectorial acoustic
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forces,40 and the atomization of a liquid drop exposed on a
piezoelectric substrate through which surface acoustic waves
(SAW) travel.41,42

The Faraday instability on a spherical interface has dif-
ferent characteristics from that on a planar one. To display
this difference and understand the oscillation and breakup
process of a spherical droplet in a more generalized fashion,
it is worth first conducting a linear stability analysis of the
spherical Faraday instability, which, however, has not attracted
sufficient attention until very recently. Ebo Adou and Tucker-
man43 theoretically studied the linearized Faraday instability
on a spherical viscous liquid droplet by using Floquet analysis
and obtained the instability diagram for inviscid and viscous
droplets. Their analysis was mainly focused on the one-fluid
problem and thus the influence of surrounding medium was
ignored. Although they formulated the boundary conditions
and differential equations for the two-fluid problem where the
surrounding medium is another incompressible viscous fluid,
they did not solve the equation. Furthermore, the study of Ebo
Adou and Tuckerman43 does not discuss its implications to the
droplet atomization, which motivated the present study. Previ-
ous experimental results on the atomization aroused by Fara-
day instability have clearly identified the relationship (usually
referred to as “Lang’s equation”13) between the leading size of
atomized droplets and the forcing frequency, which indicates
the existence of a predominant wavelength growing with the
largest rate.11,13,35,44 However, the physical explanation of this
relationship is not yet clear. In this paper, we also conducted
a linear analysis of Faraday instability on a viscous spher-
ical droplet, with the focus on the effects of the surrounding
fluid density and the dynamics associated with the atomization
event caused by Faraday instability. In particular, we determine
the most-unstable spherical mode to be excited for a specified
experimental condition in the droplet atomization aroused by
Faraday instability and reinterpret Lang’s equation based on
the present theoretical results. Our formulation follows and
extends that used by Chandrasekhar33 for the Rayleigh-Taylor
instability on a sphere.

The rest of this paper is organized as follows. In Sec. II, the
mathematical formulations, including the governing equations
and the derived dispersion relation between the growth rate and
spherical mode numbers are given. The dynamics of Faraday
instability for inviscid and viscous droplets are discussed in
Secs. III and IV, respectively. In Sec. V, the most unstable
mode for a given experimental condition is determined and its
implications for droplet atomization caused by Faraday insta-
bility are discussed. Finally, the conclusions drawn from this
paper are given in Sec. VI.

II. MATHEMATICAL FORMULATIONS
A. Physical model and governing equations

As shown in Fig. 1, a spherical droplet of a viscous and
incompressible fluid is surrounded by a quiescent medium
of an inviscid and incompressible fluid. The densities of the
droplet and the surrounding fluid are ρ1 and ρ2, respec-
tively (ρ1 > ρ2). The two fluids are immiscible and the
surface tension coefficient α is assumed to be constant and
uniform.

FIG. 1. Schematic of the spherical droplet of radius r0 subjected to a radial
periodic acceleration, A(t) = A0 cos(Ωt)er .

An acceleration evolving sinusoidally over time t with an
angular frequency of Ω is imposed radially on the droplet and
expressed by

A(t) = A0 cos(Ωt)er, (1)

where A0 is the acceleration amplitude and er is the unit vector
along the radial direction in the spherical coordinate system
(r, θ, ϕ). The effect of gravitational acceleration, g, is
neglected. This is justified if A0� g, which is generally satis-
fied in the liquid atomization caused by Faraday instability.

The governing equations for the incompressible viscous
fluid motion inside the droplet are

∇ · u1 = 0, (2)

∂u1

∂t
+ (u1 · ∇)u1 = −

1
ρ1
∇p1 + ν1∇

2u1 + A, (3)

where u1 is the velocity vector, p1 is the pressure, and ν1 =

µ1/ρ1 is the kinematic viscosity. Since we neglect the viscous
effects of the surrounding fluid (ν2 = µ2/ρ2 = 0), the gov-
erning equations for the incompressible inviscid fluid motion
outside the droplet are

∇ · u2 = 0, (4)

∂u2

∂t
+ (u2 · ∇)u2 = −

1
ρ2
∇p2 + A, (5)

where u2 is the velocity vector and p2 is the pressure.
The interface between the two fluids is defined by

F(r, θ, ϕ, t) = r −
[
r0 + η(θ, ϕ, t)

]
= 0, (6)

where θ and ϕ are the polar and azimuthal angle, r0 is the
initial radius of the droplet, and η(θ, ϕ, t) is the displacement
disturbance on the droplet surface. The kinematic condition at
the droplet surface is then given by

∂F
∂t

+ (ui · ∇)F = 0, (7)

where i = 1, 2 for the fluid inside and outside the droplet,
respectively. Substituting Eq. (6) into Eq. (7), we obtain

∂η

∂t
+ (ui · ∇)η = uir |r=r0

, (8)

where uir is the radial component of the velocity vector ui.
The dynamic condition at the droplet surface is obtained

by considering the stress balance between the two fluids in
both the normal and tangential directions. The normal stress
balance equation gives



102104-3 Li, Zhang, and Kang Phys. Fluids 30, 102104 (2018)

[n · σ · n]2
1 = α∇ · n = α

(
1

Ra
+

1
Rb

)
, (9)

where [x]2
1 = x2 − x1, n = er is the unit vector normal to the

surface directing from fluid 1 to 2,σ is the stress tensor defined
by

σi = −piI + µi

[
∇ui + (∇ui)

T
]
, (10)

and Ra and Rb are the principle radii of curvature. The balance
equation of tangential stress is given by

[
n · σ · ej

]2

1
= 0, (11)

where ej = eθ , eϕ represent the unit vectors tangential to the
droplet surface towards the polar and azimuthal directions,
respectively.

The detailed procedures to linearize the governing equa-
tions and boundary conditions and the resultant solutions to
the linearized problem are given in Appendixes A and B,
respectively.

B. Dispersion relation

Using Eqs. (B11) and (B15) and the identity

∆θϕYm
l = ∇

2
HYm

l = −l(l + 1)Ym
l , (12)

where Ym
l (θ, ϕ) = Pm

l (cos θ)eimϕ is the spherical harmonic, the
normal stress balance condition (A9) reduces to

+∞∑
l=0

l∑
m=0

+∞∑
n=0





−

(
ρ1

l
+

ρ2

l + 1

)
r0ζ

2
n + 2µ1ζn

l − 1
lr0

(2l + 1)x − 2l(l + 2)Ql+1/2(x)

2Ql+1/2(x) − x
−
α(l − 1)(l + 2)

r2
0


ηn

+
1
2

(ρ1 − ρ2)A0(ηn−1 + ηn+1)

}
eζntYm

l + (ρ1 − ρ2)A0 cos(Ωt)r0 + C1(t) − C2(t) −
2α
r0
= 0. (13)

The coefficients of the Fourier term in Eq. (13) satisfy

1
2

(ρ1 − ρ2)A0(ηn−1 + ηn+1) =


(
ρ1

l
+

ρ2

l + 1

)
r0ζ

2
n − 2µ1ζn

l − 1
lr0

(2l + 1)x − 2l(l + 2)Ql+1/2(x)

2Ql+1/2(x) − x
+
α(l − 1)(l + 2)

r2
0


ηn (14)

since the spherical and Fourier modes are linearly independent.
In addition, we can determine the integral constants C1 and C2

by

(ρ1 − ρ2)A0 cos(Ωt)r0 + C1(t) − C2(t) −
2α
r0
= 0 (15)

along with an additional boundary condition of p1 at r = 0.
The difference equation (14) gives the dispersion relation

between the growth rate (real part of ζn) and the spherical
modes (l) in a complicated fashion, which will be analyzed in
detail in Secs. III and IV.

III. FARADAY INSTABILITY ON AN INVISCID DROPLET
A. Instability boundaries

To facilitate the following discussion and comparison with
previous studies, we first consider an inviscid droplet, for
which Eq. (14) reduces to the dimensionless form of

q(ηn−1 + ηn+1) =
(
4ζ̂2

n + λ
)
ηn (16)

with the definitions of

q =
2(ρ1 − ρ2)l(l + 1)A0[
ρ1(l + 1) + ρ2l

]
r0Ω2

, ζ̂n =
ζn

Ω

and

λ =
4α(l − 1)l(l + 1)(l + 2)[
ρ1(l + 1) + ρ2l

]
r3

0Ω
2

. (17)

Generally, we seek the real part of ζ̂n (growth rate) for
a given composition of (q, λ), which can be understood
as the dimensionless forcing acceleration and reciprocal of

frequency, respectively, for specified fluids, droplet size, and
spherical mode. Of particular interest in the present study is
the neutral stable boundaries that are composed of a set of
points (q, λ) rendering the growth rate β = 0. To determine the
boundaries, we fix β = 0 and Eq. (16) reduces to

qηn−1 + 4(γ̂ + n)2ηn + qηn+1 = ληn, n = 0, 1, 2, . . . , (18)

where γ̂ = 0 or 1/2 corresponding to the harmonic or sub-
harmonic case, respectively. The reality condition requires
η−1 = η*

1 for γ̂ = 0 and η−1 = η*
0 for γ̂ = 1/2,22 where the

quantity with the superscript ∗ represents its conjugate form.
For each value of q, λ can be determined by solving the positive
eigenvalues of the coefficient matrix M of the difference equa-
tion (18). M is a real matrix of infinite dimensions. Typically,
the eigenvalues of M are solved numerically by truncating it
above a sufficiently large number N because the eigenvalues
of lower orders of interest are converged as N increases.45 The
dimension of the truncated matrix is (2N + 2) × (2N + 2)
because each component ηn contains real and imaginary
parts.

Figure 2 shows the instability boundaries subdividing the
λ-q plane into discrete regions. Only the first quadrant is dis-
played because l ≥ 1 for the oscillatory spherical harmonics
results in λ ≥ 0 and q > 0 according to Eq. (17). In Fig. 2,
the gray regions bounded by the neutral boundaries represent
the unstable tongues, which intersect the λ-axis at k2, where
k is an integer. The initial disturbance modes corresponding
to the parameter pairs (λ, q) located in these unstable tongues
oscillate with the frequency of kΩ/2 (k is an odd number for
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FIG. 2. Instability boundaries for the
Faraday instability in the first quad-
rant of the λ-q plane. (a) The first four
unstable tongues highlighted in gray. (b)
Enlarged plot of the region bounded by
the dashed rectangle in (a). The cubic
curve intersecting the q-axis at q3 repre-
sents all possible parameter pairs (λ, q)
for a specified forcing condition ∆0/r0
= 0.2 and α/ρ1∆

3
0Ω

2 = 1 when ρ2 →

0. For each choice of ∆0/r0 and of
α/ρ1∆

3
0Ω

2, a cubic curve can be drawn
in the λ-q plane like the one drawn in
this figure.

subharmonic and even for harmonic) and grow to infinity as
time elapses.

For the inviscid problem of spherical Faraday instability,
there is no need to conduct the Floquet expansion on the time-
dependent coefficient as done in Eq. (A13) because we do not
solve the rotational component of the velocity [see Eqs. (B4)
and (B5)]. As a result, instead of the recursion relation (16),
the governing equation of the displacement disturbance η
can be reduced to the Mathieu equation in the standard form
of19,43

d2η

dt̃2
+

[
λ − 2q cos

(
2t̃

)]
η = 0, (19)

where t̃ ≡ Ωt/2 is a normalized time. The unstable tongues
for Eq. (19) coincide with those shown in Fig. 2. The detailed
procedures to derive the Mathieu equation can be found in
Ref. 43.

From Fig. 2(a), it can be seen that the solution is unstable
even for the case with an infinitesimal forcing acceleration
amplitude A0 (or q) if the forcing frequency Ω satisfies the
condition (i.e., intersection points on the λ-axis)

Ω =
2
k
Ω0, k = 1, 2, . . . , (20)

where

Ω0 =

√
α(l − 1)l(l + 1)(l + 2)[
ρ1(l + 1) + ρ2l

]
r3

0

(21)

is the free oscillating frequency of an inviscid droplet sur-
rounded by another fluid for the spherical mode l.32,46 Thus,
Eq. (20) can be understood as the resonance condition in which
the free oscillating frequencyΩ0 coincides with a subharmonic
or harmonic of the radial forcing vibration.

B. Baseline instability modes

Before the detailed discussion on the influence of sur-
rounding fluid density in Subsection III C and that of droplet
viscosity in Sec. IV, we shall investigate the baseline case asso-
ciated with the limit ρ2 → 0. Consequently, the parameter pair
(λ, q) in Eq. (17) is reduced to

λ =
4α(l − 1)l(l + 2)

ρ1r3
0Ω

2
and q =

2l∆0

r0
, (22)

which can be combined, by eliminating the spherical mode l,
into an explicit expression of λ as a function of q as

λ =
α

2ρ1∆
3
0Ω

2


q3 +

2∆0

r0
q2 − 8

(
∆0

r0

)2

q


=
α

2ρ1∆
3
0Ω

2
q

(
q +

4∆0

r0

) (
q −

2∆0

r0

)
, (23)

where ∆0/r0 and α/ρ1∆
3
0Ω

2 are two dimensionless parame-
ters usually predefined by a specified experimental condition
(i.e., the size and properties of the droplet, forcing amplitude,
and frequency). For each choice of ∆0/r0 and of α/ρ1∆

3
0Ω

2, a
cubic curve can be drawn in the λ-q plane as shown in Fig. 2,
which intersects the q-axis at q1 = −4∆0/r0 < 0, q2 = 0, and
q3 = 2∆0/r0 > 0. Only the last intersection point q3, denoted
by a solid circle on the q-axis in Fig. 2(b), is physically
meaningful in the present study since we must have q > 0.

The forcing accelerations are moderate in most practical
experiments on the pattern selection and atomization induced
by Faraday instability. As a result, the coefficient of the cubic
term in Eq. (23), α/2ρ1∆

3
0Ω

2, which represents the ratio of
the surface tension force to the inertial force, is usually on the
order of 10 or larger.8,35,47 Moreover, the forcing displacement
amplitude ∆0 is typically much smaller than the droplet radius
in these experiments and hence q3 = 2∆0/r0 is significantly
smaller than unity. Therefore, the cubic curve (23) for most
practical experimental conditions originates from a small value
on the q-axis and grows steeply over q (as shown in Fig. 5),
and the q-values of interest for the unstable tongues of low
orders are typically small.

For given values of ∆0/r0 and α/ρ1∆
3
0Ω

2, all the parame-
ter pairs (λ, q) corresponding to the possibly excited spherical
modes (l ≥ 1) are located along this curve and to the right of
q3 (q = 2l∆0/r0 ≥ 2∆0/r0 = q3). The droplet is unstable to the
disturbance of the spherical mode l only if its corresponding
parameter pair on this curve is inside the unstable tongues.
Generally, the forcing displacement amplitude is far smaller
than the radius of the droplet (∆0 � r0), which gives rise to
a quite small value of q3 close to the origin. This results in
the excited spherical harmonics of relatively small modes (l)
being located inside the first subharmonic unstable tongue.

C. Influence of surrounding fluid density

By comparing Eq. (17) with Eq. (22), we can see that
the density of the surrounding fluid affects the parameter pair
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FIG. 3. Dependences of (a) λ̂ and (b)
q̂ on the spherical mode l for different
density ratios ρ̂.

(λ, q) and in turn the possibly excited spherical modes for the
same forcing condition (∆0, Ω) and fluid properties. We define
the ratios of Eqs. (17)–(22) as

λ̂ =
l + 1

(l + 1) + ρ̂l
and q̂ =

(1 − ρ̂)(l + 1)
(l + 1) + ρ̂l

, where ρ̂ = ρ2/ρ1,

(24)
to measure the effects of ρ2 on the parameter pair (λ, q). In
the present study, the density ratio ρ̂ ranges from 0 to 1.

Figures 3(a) and 3(b) show the dependence of λ̂ and q̂ on
the spherical mode l for different ρ̂. As l increases, both λ̂ and
q̂ monotonically decrease to constant limits

λ̂ →
1

1 + ρ̂
and q̂ →

1 − ρ̂
1 + ρ̂

. (25)

It is also noted that λ̂ and q̂ are sensitive to the variation of l only
when l is small, say, l < 2. Thus, λ̂ and q̂ can be approximately
treated as functions of ρ̂ in the asymptotic form of Eq. (25) in
the present study.

To study the effects of ρ̂ on the possibly excited spheri-
cal modes, the parametric curves of λ and q, similar to that
of Eq. (23), are drawn on the instability diagram for ρ̂ = 0,
ρ̂ = 0.4, and ρ̂ = 0.8, as shown in Fig. 4. It is seen that, with
increasing ρ̂, the rapidly ascending parameter curve intersects
with the q-axis at a smaller value and the line segments that
are located in the unstable tongues shrink. This indicates that,
for given fluid properties of the droplet and a specified forcing

FIG. 4. Parametric curves for the cases of ρ̂ = 0 (solid curve), ρ̂ = 0.4 (dashed
curve), and ρ̂ = 0.8 (dashed-dotted curve) with the same forcing condition
and fluid properties inside the droplet on the instability diagram. Solid circles
represent the points where the parametric curves intersect with the boundaries
of unstable tongues.

condition, increasing the density of the surrounding fluid tends
to narrow and stabilize the possibly excited spherical modes
due to Faraday instability.

IV. FARADAY INSTABILITY ON A VISCOUS DROPLET
A. Instability diagram

Considering the viscous effects of the droplet, Eq. (14)
can be rewritten in the dimensionless form of

q(ηn−1 + ηn+1) =
(
4ζ̂2

n + cζ̂n + λ
)
ηn (26)

with the definitions of

c = 8
µ1

Ω

l2 − 1[
ρ1(l + 1) + ρ2l

]
r2

0

(2l + 1)x − 2l(l + 2)Ql+1/2(x)

x − 2Ql+1/2(x)
,

(27)
in which the function Q can be simplified by considering the
asymptotic expansion of the Bessel function Jl(x) at l� 1,48

Jl(x) =
el

(
1
2 x

) l

(2πl)1/2ll

[
1 + O

(
l−1

)]
. (28)

Inserting Eq. (28) into the definition of Ql(x) = Jl+1(x)/Jl(x)
leads to

Ql(x) '
el+1

(
1
2 x

)v+1

[2π(l + 1)]1/2(l + 1)v+1

/ el
(

1
2 x

) l

(2πl)1/2ll

=
ex
2l

√
l

l + 1

(
l

l + 1

) l+1

≈
x
2l

, (29)

with which the parameter c defined by Eq. (27) can be
approximated as

c '
8µ1

(ρ1 + ρ2)Ω

(
l

r0

)2

(30)

at l� 1. For typical experiments associated with the wave pat-
tern or atomization on a water drop surface caused by Faraday
instability,35,37,49 the magnitude of c is on the order of 0.1–1.

Following the same procedure to obtain the neutral insta-
bility boundaries for the inviscid case, we first set β = 0 and
Eq. (26) reduces to

qηn−1 +
[
4(γ̂ + n)2 − c(γ̂ + n)i

]
ηn + qηn+1

= ληn, n = 0, 1, 2, . . . . (31)
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FIG. 5. Boundaries of the first three unstable tongues (k = 1, 2, 3) for c = 0
(black solid line), c = 0.1 (red dashed line), c = 0.3 (green dotted line), c
= 0.5 (blue dashed-dotted line), and c = 0.7 (purple dashed-dotted-dotted
line). The cubic curve is λ = 10q(q + 0.4)(q − 0.2), representing one practical
experimental condition in which α/2ρ1∆

3
0Ω

2 = 10 and ∆0/r0 = 0.1.

Consequently, for each given value of q, λ are the real positive
eigenvalues of the coefficient matrix of the form

M =

*............
,

0 0 2q 0 0 0 ...
0 0 0 0 0 0 ...
q 0 4 c q 0 ...
0 q −c 4 0 q ...
0 0 q 0 16 2c ...
0 0 0 q −2c 16 ...
...

...
...

...
...

... ...

+////////////
-

(32)

for the subharmonic instability and

M =

*............
,

1 + q c/2 q 0 0 0 ...
−c/2 1 − q 0 q 0 0 ...

q 0 9 3c/2 q 0 ...
0 q −3c/2 9 0 q ...
0 0 q 0 25 5c/2 ...
0 0 0 q −5c/2 25 ...
...

...
...

...
...

... ...

+////////////
-

(33)

for the harmonic instability. Solving the eigenvalue problem of
Eqs. (32) and (33) gives the instability boundaries for different
c-values in the q-λ plane as shown in Fig. 5.

B. Movement of unstable boundaries

As shown in Fig. 5, different from the inviscid case where
the unstable tongues attach to the λ-axis at k2, the unstable

TABLE I. Computed qk-values by Eq. (31) with c = 0.1, 0.3, 0.5, and 0.7
(corresponding to the red dashed line, green dotted line, blue dashed-dotted
line, and purple dashed-dotted-dotted line, respectively, in Fig. 5) for the first
four unstable tongues (k = 1, 2, 3, 4).

c = 0.1 c = 0.3 c = 0.5 c = 0.7

k = 1 0.1 0.2 0.3 0.4
k = 2 0.7 1.2 1.5 1.8
k = 3 2.2 3.3 3.9 4.5
k = 4 4.8 6.5 7.5 8.3

tongues for the viscous condition detach from the λ-axis.50–52

With the increase of the c-value, the vertex of the unstable
tongue moves away from the λ-axis while the area of the unsta-
ble tongue shrinks. In the present study focusing on the forcing
vibration system, the q-value at the vertex of the kth unstable
tongue, qk , signifies the minimum forcing displacement ampli-
tude (or forcing strength) required to cause instability. Thus,
the outward displacement of qk away from the λ-axis with the
increase of c indicates that the threshold of forcing strength
to destabilize the system is enhanced as the effect of viscosity
rises.

Table I shows the qk-values computed numerically by
Eq. (31) for the first four unstable tongues. Again, one can
see that the unstable tongues of higher order k move further
away (larger qk-value) from the λ-axis for the same c-value.
This means that it requires much larger forcing acceleration to
excite the spherical modes located in the unstable tongues of
higher orders. This is the reason why the subharmonic insta-
bility (k = 1) is always observed in most experiments since the
first unstable tongue moves least from the λ-axis.

Another interesting behavior of the viscous case is that
λ at the vertex of unstable tongues also varies with k and c.
We define the λ-value at the vertex of the kth unstable tongue
as k2 + λk , where λk is tabulated in Table II for the first four
unstable tongues with c = 0.1, 0.3, 0.5, and 0.7. λk physically
represents the deviation of the resonant forcing frequency from
the inviscid resonance condition (20) due to the viscous effect.
The viscous resonance condition can hence be written as

Ω(k, c) =
2√

k2 + λk

Ω0, k = 1, 2, 3, . . . . (34)

From Fig. 5 and Table II, it can be seen that the magnitude of
λk increases with c and k. Except the first unstable tongue,
in which the resonant frequency is slightly larger than the

TABLE II. Computed λk-values by Eq. (31) with c = 0.1, 0.3, 0.5, and 0.7
(corresponding to the red dashed line, green dotted line, blue dashed-dotted
line, and purple dashed-dotted-dotted line, respectively, in Fig. 5) for the first
four unstable tongues (k = 1, 2, 3, 4).

c = 0.1 c = 0.3 c = 0.5 c = 0.7

k = 1 �0.002 �0.005 �0.011 �0.020
k = 2 0.076 0.195 0.277 0.358
k = 3 0.309 0.680 0.917 1.162
k = 4 0.802 1.485 1.955 2.347
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inviscid one, the resonant forcing frequency for the other
unstable tongues decreases as the viscous effect increases.

C. Instability modes influenced by damping

The unstable tongues for the inviscid (undamped) case, as
shown in Fig. 2, are fixed on the λ-q plane. All the possibly
excited spherical modes for a given experimental condition
are located on the line segments between the points where the
parameter curves intersect with the boundaries of the same
unstable tongues. In the phenomenological model21 for the
viscous case, in which the development of the surface dis-
placement is governed by a damped Mathieu equation with a
constant coefficient of the damping term, the unstable tongues
are also fixed on the λ-q plane for a specified experimental
condition and the unstable modes are determined similar to the
undamped case. However, the rigorous analysis in the present
study is more complicated for the viscous case because the
unstable tongues are dependent on the parameter c, which is
in turn a function of the spherical mode number. As a result, the
ranges of unstable tongues are variable even for a predefined
condition.

To study the effects of viscous damping on the unstable
modes excited in the spherical Faraday instability for a spec-
ified forcing condition, two scenarios to vary the c-value are
discussed as follows.

First, the droplet viscosity is varied and the spherical mode
number is fixed. For a specified spherical mode l whose corre-
sponding parameter pair (λ, q) on the parameter curve is inside
an unstable tongue, increasing the droplet viscosity (or c-
value) contracts the unstable tongue (as shown in Fig. 5) so that
the parameter pair (λ, q) may be moved outside the unstable
tongue when the viscosity exceeds a certain value. This sce-
nario characterizes that increasing the viscosity could stabilize
the spherical mode that is unstable for lower viscosities.

Second, the spherical mode number is varied. For a spec-
ified forcing condition, c-value is also variable depending on
the spherical mode number l besides the liquid viscosity. In
this case, to determine the droplet stability and the possibly
excitable spherical modes under a given experimental condi-
tion, we need to first calculate (λ, q) and c by Eqs. (17) and
(27) for each spherical mode and viscosity and then depict
the unstable tongues for the c-value corresponding to the con-
cerned mode and viscosity on the λ-q plane. If (λ, q) for the
mode is located within one of the unstable tongues, the droplet
is unstable for this particular mode. This process is repeated
for different mode numbers and viscosities until all the excited

spherical modes can be identified for this experimental con-
dition. As discussed above, since the unstable tongues are
contracted more severely for higher orders (i.e., higher k-
values), the spherical modes with higher orders are less likely
to be excited.

V. MOST UNSTABLE MODE AND ITS IMPLICATIONS
FOR DROPLET ATOMIZATION

If the external forcing is sufficiently strong, the most-
unstable surface waves on the droplet would dominate over
other unstable waves and increase their amplitudes until their
tips break up. This type of breakup has been employed in many
industrial applications to realize liquid atomization,11,13,53 in
which the atomized children droplets are usually much smaller
than the parent droplet. This indicates that the most-unstable
spherical modes (with the largest growth rate) are substantially
larger than unity. Consequently, it is of practical interest to ana-
lytically determine the most-unstable mode and its growth rate
for a given experimental condition. It is noted that although the
most-unstable mode is obtained in the frame of the linear the-
ory which is valid only for the small surface deformation, the
mode is still supposed to continue to lead in growth when the
surface deformation becomes large.54

Figures 6(a) and 6(b) show the contour curves of different
dimensionless growth rates β̂ in the λ-q diagram for the invis-
cid fluids. These curves were obtained by numerically solving
the eigenvalue problem (16) with different β̂-values. From
Fig. 6(a), we can see that the same dimensionless growth rate
can exist in different orders of unstable tongues; however, the
unstable tongues of higher order contain more contour curves
of larger growth rates. The neutral unstable tongues (black
curves) are in a shape of protruding to the left. With the increase
of β̂-value, the area of the unstable tongues shrinks and the
left-most boundary is smoothed and retracts rightwards. The
retraction distance for the same growth rate increases with the
order of unstable tongues.

As discussed in Secs. II–IV, each realization of a spe-
cific experiment condition on the Faraday instability can be
depicted as a cubic curve in the λ-q diagram depending on
the dimensionless parameter α̂ = α/ρ1∆

3
0Ω

2. Figures 6(a)
and 6(b) show these cubic curves for different α̂-values larger
than O(1), which are typical conditions adopted in the experi-
ments on the surface pattern selection and atomization induced
by Faraday instability.6,35,37,47 It can be seen that the cubic
curves for the typical experimental condition are steep. Due to

FIG. 6. Contour curves for different
dimensionless growth rates β̂. Each
cubic curve represents one experimen-
tal realization with a specified value
of α̂ = α/ρ1∆

3
0Ω

2. Panel (b) is the
enlargement of the gray region near the
origin of panel (a).
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more retraction for the unstable tongues of the same growth
rate in the higher order, the largest growth rate that the cubic
curve passes through in the unstable tongues of the first order
is larger than those of higher orders within the typical range
of α̂-values in experiment. As a result, even for the inviscid
case, the most-unstable modes are usually located in the first
subharmonic region.

Figure 6(a) also shows a hypothetical case of α̂ = 0.01,
which is hardly realized in experiment. It is clear that the over-
all largest growth rate is located in the harmonic region (the
unstable tongue of the second order), which indicates that the
harmonic oscillation of the excited surface waves is realizable
if the forcing acceleration is large enough. In other words, there
exists a threshold value of α̂ for the transition of the excited
surface waves from the subharmonic response to harmonic
response.

It is well known that the leading size of the atomized
droplets is proportional to the predominant surface wave-
length.47 In the study on the characteristics of atomization
of a liquid layer under vertical vibration with the frequency in
the ultrasonic range, Lang13 found that the leading diameter
of the atomized droplets decreases as the forcing frequency
increases, which can be described by the so-called Lang’s
equation

dc = (0.35 ± 0.03)Λc = (0.35 ± 0.03) · 2π

(
α

ρ1

)1/3 ( 2
Ω

)2/3

.

(35)
Although this equation has been validated by many subsequent
experiments on both planar and spherical situations,11,35,44 its
physical explanation is unclear. In most of the previous studies,
the second equality in Eq. (35), Λc = 2π(α/ρ1)1/3(2/Ω)2/3,
was explained as Kelvin’s expression for the wavelength of
the “forcing-free” surface wave oscillating at a frequency of
Ω/2,55 which should be generally different from the predomi-
nant wavelength excited by vibration in the Faraday instability.
Based on the present theoretical work, we can alternatively
explain Eq. (35) as follows.

Recalling that the most-unstable mode occurs in the first
subharmonic unstable region during most of the experimental
range with α̂ > O(1), we show in Fig. 6(b) the enlarge-
ment of the region near the origin of Fig. 6(a). The most-
unstable mode for each experimental realization is the point
on the corresponding cubic curve that is tangent to one con-
tour curve. Typically, this point is located around the left-
protruding peak of the contour curves of the growth rate,
whose ordinates λ are hardly varied from unity throughout
most of the experimental conditions. Hence, by definition of
Λ = 2πr0/l for the wavelength on a spherical surface, the pre-
dominant surface wavelength can be approximately expressed
as

Λc = 2πr0/lc = 2π(α/ρ1)1/3(2/Ω)2/3 (36)

if l� 1. Equation (36) coincides with Kelvin’s expression
and has clear physical meaning. In fact, if the forcing is
further enhanced, the ordinate corresponding to the most-
unstable mode may depart greatly from the straight line
λ = 1, and thus Eq. (36) and Lang’s equation (35) are no longer
valid.

In our previous experimental study on the droplet atom-
ization subject to a vertical vibration at a fixed frequency
of 1.35 kHz with the voltage of the vibration signal ranging
from 0 to 70 V,38 the experimentally observed wavelength on
the droplet surface is about 1.01 mm. Based on the present
theory, the cubic curves for the cases studied in the exper-
iments, whose corresponding α̂-values are on the order of
O(10)–O(100), intersect with their largest growth rate curves
near the points (1, q) (as shown in Fig. 6). Using the definition
of λ = 4α(l − 1)l(l + 2)/ρ1r3

0Ω
2 = 1, we can calculate that the

predominant surface wavelength is about 2πr0/l = 1.05 mm,
which agrees well with the experimental result.

It should be noted that, different from the continuous
nature of the normal modes in the planar case, the mode num-
bers in the spherical Faraday instability are positive integers
and hence discrete. However, the analysis shown above does
not guarantee that the most-unstable spherical mode number lc
is an integer. Consequently, there may exist multiple discrete
mode numbers having the same growth rate.34

VI. CONCLUDING REMARKS

In the present study, we have conducted a linear Faraday
instability analysis on a viscous spherical droplet immersed in
another inviscid fluid and subjected to a time-periodic radial
acceleration. This analysis extends and supplements the pre-
vious studies by considering the effects of the density of
the surrounding fluid and the practical implications of the
most-unstable modes in liquid droplet atomization.

With the spherical harmonic decomposition in the θ and
ϕ directions and with the Floquet decomposition in time,
the linearized governing equations and corresponding bound-
ary conditions constitute an eigenvalue problem. A difference
equation is derived to give the dispersion relation between the
Floquet exponent and the spherical modes.

For the inviscid case, solving the positive eigenvalues of
the coefficient matrix M of the difference equation gives the
neutral stable boundaries which subdivide the λ-q plane into
discrete regions. The inviscid spherical Faraday instability can
also be reduced to the Mathieu equation in the standard form.
All the spherical modes in a specified forcing condition can
be depicted as a cubic curve on this parameter plane. Only
the modes on the line segments between the points where
the cubic curve intersects with the boundaries of the unstable
tongues are possibly excited. Furthermore, increasing the den-
sity of the fluid surrounding the droplet would narrow the range
of possibly excited spherical modes. Therefore, the density
of the surrounding fluid plays a stabilizing effect in Faraday
instability.

The fluid viscosity causes an additional parameter c into
the difference equation, which results in a different coefficient
matrix from its inviscid counterpart. Solving the eigenvalues
of the matrix gives unstable tongues for different c-values in
the λ-q diagram. The viscous damping effect smoothens the
unstable tongues while moving them away from the λ-axis.
With the increase of the c-value, the unstable tongues contract
their areas and retract farther from the λ-axis. This retraction is
more deteriorated for the unstable tongues of higher order. As
a result, the surface waves of large mode numbers become
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stable and therefore a larger forcing amplitude is required
to trigger instability of more viscous droplets. Moreover, the
resonant forcing frequencies for the unstable tongues of orders
larger than unity are decreased with increasing the viscous
effect.

Motivated by identifying the most-unstable mode respon-
sible for the leading size of atomized children droplets, we
plotted contour curves for different growth rates in the λ-q dia-
gram. We found that the most-unstable modes during common
experimental conditions approximately satisfy the condition
λ = 1, which coincides with Kelvin’s expression, consequently
reinterpreting Lang’s equation. We found that once the exter-
nal forcing is further enhanced beyond the common experi-
ment condition, Lang’s equation may become invalid and the
most-unstable mode may be shifted to the harmonic unstable
region.
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APPENDIX A: LINEARIZATION OF GOVERNING
EQUATIONS

To conduct a linear analysis on the Faraday instabil-
ity, we first linearize the governing equations described in
Sec. II A about the state of rest (i.e., the unperturbed spherical
droplet and the surrounding fluid are initially at rest with zero
velocity), which leads to

∇ · u1 = 0, (A1)

∂u1

∂t
= −

1
ρ1
∇p1 + ν1∇

2u1 + A (A2)

and
∇ · u2 = 0, (A3)

∂u2

∂t
= −

1
ρ2
∇p2 + A. (A4)

In such a context, ui and pi represent the perturbation velocity
and pressure, respectively.

Correspondingly, the kinematic condition Eq. (8) is lin-
earized to

∂η

∂t
= u1r |r=r0 + η = u2r |r=r0 + η . (A5)

For the dynamic boundary condition in the normal direc-
tion, substituting Eq. (10) into Eq. (9) leads to

p1 |r=r0 + η − p2 |r=r0 + η = α

(
1

Ra
+

1
Rb

)
+ 2µ1

∂u1r

∂r

�����r=r0 + η
,

(A6)
in which the principle radii of curvature satisfy

1
Ra

+
1

Rb
=

2
r0
−

1

r2
0

(
2η + ∇2

Hη
)
, (A7)

up to the first order in η,46 where

∇2
H ≡

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
(A8)

is the horizontal spherical Laplacian operator. Substituting
Eq. (A7) into Eq. (A6), we have the following linearized form
of the pressure jump condition across the interface:

p1 |r=r0 + η − p2 |r=r0 + η

=
2α
r0
−
α

r2
0

(
2η + ∇2

Hη
)

+ 2µ1
∂u1r

∂r

�����r=r0 + η
. (A9)

Because of the inviscid assumption of the fluid outside
the droplet (µ2 = 0), the tangential stress balance equation
Eq. (11) can be simplified as

σrθ = µ1

(
1
r
∂u1r

∂θ
−

u1θ

r
+
∂u1θ

∂r

)
= 0 (A10)

and

σrϕ = µ1

(
1

r sin θ
∂u1r

∂ϕ
−

u1ϕ

r
+
∂u1ϕ

∂r

)
= 0. (A11)

The displacement disturbance on the droplet surface
η(θ, ϕ, t) is expanded in series of spherical harmonics
Ym

l (θ, ϕ) = Pm
l (cos θ)eimϕ as

η(θ, ϕ, t) =
+∞∑
l=1

l∑
m=−l

ηm
l (t)Ym

l (θ, ϕ), (A12)

with the time-dependent coefficient written in the Floquet
form,22,23

ηm
l (t) = e(β+iγ)t

∑
n

ηn(l, m)einΩt =
∑

n

ηn(l, m)eζnt , (A13)

where β + iγ is the Floquet exponent, ηn is the coefficient of
Fourier mode n, and the real part of ζn ≡ β+i(γ + nΩ), namely,
β, can be considered as the growth rate. Equations (A1)–(A5)
and (A9)–(A13) constitute the present eigenvalue problem to
be solved in Appendix B.

APPENDIX B: SOLUTIONS TO THE LINEARIZED
PROBLEM

With the identity ∇ × ∇ × u1 = ∇(∇ · u1) − ∇2u1 and the
continuity equation (A1), Eq. (A2) can be rewritten as

∂u1

∂t
= −

1
ρ1
∇p1 − ν1∇

2 × u1 + A. (B1)

We decompose the velocity vector u1 into the irrotational com-
ponent∇φ1 and the rotational componentψ1 as u1 = ∇φ1+ψ1,
which satisfy

∇2φ1 = 0, (B2)

p1 = −ρ1
∂φ1

∂t
+ ρ1A0 cos(Ωt)r + C1(t), (B3)

∇ · ψ1 = 0, (B4)

∂ψ1

∂t
+ ν1∇

2 × ψ1 = 0, (B5)
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where C1(t) is an integral constant as a function of t. It can
readily be shown by using tensor identities and integration that
Eqs. (B2)–(B5) are equivalent to Eq. (B1) and the continuity
equation.

For a given spherical harmonic Ym
l (θ, ϕ), considering that

φ1 is finite at r = 0, the general solution to Eq. (B2) is

φ1(r, θ, ϕ, t) =
∑

n

BneζntrlYm
l (θ, ϕ), (B6)

where Bn is to be determined by applying the boundary condi-
tions. Note that the indices (l, m) and corresponding sums for
φ1 and other similar quantities are omitted for mathematical
conciseness. Equations (B4) and (B5) are solved by following
the methodology proposed by Chandrasekhar33 and the three
components of ψ1 are

ψ1r(r, θ, ϕ, t) =
∑
n

l(l + 1)

r2
Ψ1(r)Ym

l (θ, ϕ)eζnt

ψ1θ (r, θ, ϕ, t) =
∑
n

1
r

dΨ1(r)
dr

∂Ym
l (θ, ϕ)

∂θ
eζnt

ψ1ϕ(r, θ, ϕ, t) =
∑
n

1
r sin θ

dΨ1(r)
dr

∂Ym
l (θ, ϕ)

∂ϕ
eζnt




, (B7)

with
Ψ1(r) = Dnr1/2Jl+1/2(isnr), (B8)

where Jl+1/2 is the spherical Bessel function of order l + 1/2
and sn =

√
ζn/ν1.

The coefficients Bn and Dn are determined by substituting
Eqs. (B6) and (B7) into the kinematic boundary condition (A5)
and the tangential stress balance condition (A10) and (A11),

Bn =
ηnζn

lrl−1
0


1 +

2
(
l2 − 1

)
2xQl+1/2(x) − x2


Dn = −

2(l − 1)ηnζnr3/2
0

l
[
2xJl+3/2(x) − x2Jl+1/2(x)

]



, (B9)

where Ql+1/2(x) = Jl+3/2(x)/Jl+1/2(x) and x = isnr0.
It is noticeable that the presence of the time-dependent

term cos(Ωt) in Eq. (B3) makes the equation inhomogeneous
in time and couples the different Fourier modes n considering
the Floquet form of the surface disturbance η as Eqs. (A12)
and (A13), which leads to

cos(Ωt)ηm
l (t) =

eiΩt + e−iΩt

2

∑
n

ηne[β+i(γ+nΩ)]t

=
1
2

∑
n

(ηn−1 + ηn+1)eζnt . (B10)

Substituting Eqs. (B6) and (B9) into Eq. (B3) and with the
recurrence relation (B10), we obtain the pressure on the
interface on the inner side of the droplet

p1 |r=r0 + η = −

+∞∑
l=0

l∑
m=0

+∞∑
n=0

ρ1ηnζ
2
n r0

l


1 +

2
(
l2 − 1

)
2xQl+1/2(x) − x2


eζntYm

l

+
1
2
ρ1A0

+∞∑
l=0

l∑
m=0

+∞∑
n=0

(ηn−1 + ηn+1)eζntYm
l + ρ1A0 cos(Ωt)r0 + C1. (B11)

If the inviscid fluid outside the droplet is initially irro-
tational, it will remain so. Consequently, a velocity potential
φ2 satisfying u2 = ∇φ2 can be introduced to the continuity
equation (A3), yielding

∇2φ2 = 0. (B12)

Integrating Eq. (A4) over the radial direction leads to

p2 = −ρ2
∂φ2

∂t
+ ρ2A0 cos(Ωt)r + C2(t), (B13)

where C2(t) is another integral constant as a function of t.
Considering the natural boundary condition that the veloc-

ity is finite at r =∞ and the kinematic boundary condition (A5),
we have the solution to Eq. (B12) as

φ2 = −
∑

n

ηn
ζnr0

l + 1

(
r
r0

)−(l+1)

eζntYm
l (B14)

for a given spherical harmonic Ym
l (θ, ϕ). Substituting

Eq. (B14) into Eq. (B13) and with the recurrence relation

(B10), we have the pressure on the interface at the outer side
of the droplet

p2 |r=r0 + η =

+∞∑
l=0

l∑
m=0

+∞∑
n=0

ρ2ηnζ
2
n r0

l + 1
eζntYm

l

+
1
2
ρ2A0

+∞∑
l=0

l∑
m=0

+∞∑
n=0

(ηn−1 + ηn+1)eζntYm
l

+ ρ2A0 cos(Ωt)r0 + C2. (B15)
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