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Abstract:Mann–Whitney-type causal effects are clinically relevant, easy to interpret, and readily applicable
to a wide range of study settings. This article considers estimation of such effects when the outcome variable
is a survival time subject to right censoring. We derive and discuss several methods: an outcome regression
methodbased on a regressionmodel for the survival outcome, an inverse probabilityweightingmethodbased
on models for treatment assignment and censoring, and two doubly robust methods that involve both types
of models and that remain valid under correct specification of the outcome model or the other two models.
Themethods are compared in a simulation study and applied to an observational study of hospitalized pneu-
monia.
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1 Introduction

Comparative effectiveness research frequently involves comparing one treatment (a = 1) with another (a = 0)
with respect to a clinical outcome of interest. For a generic subject in the target population, let T(a), a ∈ {0, 1},
denote the potential outcome under treatment a [1]. The causal effect of a = 1 versus a = 0 is commonly
assessed by comparing the means of T(1) and T(0), if they are defined. Recently, there has been growing
interest in a class of Mann–Whitney-type effect measures defined as θ = E{h(Ti(1),Tj(0))}, where h(⋅, ⋅) is a
specified function and the subscripts i and j denote two independent subjects. A simple example of h is given
by

h(t1, t0) = I(t1 > t0) − I(t1 < t0), (1)

where I(⋅) is the indicator function; see, for example, Agresti [2, page 58]. Related definitions include h(t1, t0) =
I(t1 > t0) + 0.5I(t1 = t0), which forms the basis for the rank sum test [3] and the Mann–Whitney statistic [4].
For an ordered categorical outcome, which does not have a mean, the Mann–Whitney-type effect based on
(1) provides a natural overall effect measure. Such effect measures have been recommended for clinical trials
with arbitrary (ordinal or higher level) outcomes because of their clinical relevance and interpretability [e. g.,
5, 6, 7]. They are particularly useful in analyzing an ordinal composite outcome that combines a quantitative
outcome with death and possibly treatment discontinuation due to adverse events or lack of efficacy [8, 9].
As a possible drawback of such effect measures, Lumley [10] points out a lack of transitivity when θ based
on (1) is used to order multiple treatments. On the other hand, for comparing two treatments, θ does provide
unique insights that are not available from a comparison of means (if feasible at all).

In this article, we consider estimation of θ when the outcome of interest is a survival time subject to right
censoring, which has not been considered in previous studies of Mann–Whitney-type causal effects. If T is
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a survival time, θ remains well defined and is just as meaningful as it is for another continuous outcome.
In fact, the class of Mann–Whitney-type causal effects includes some well known and commonly used effect
measures for survival outcomes. For example, if h(t1, t0) = I(t1 ≤ t) − I(t0 ≤ t), then θ = F1(t) − F0(t), where
Fa(t) = P{T(a) ≤ t}, a = 0, 1. As another example, if h(t1, t0) = t1∧τ− t0∧τ, where ∧ denotesminimum and τ is
a positive constant chosen to ensure identifiability, then θ is the difference in mean restricted survival time.
A new effect measure for survival outcomes is obtained by taking h to be a truncated version of (1):

h(t1, t0) = I(t1 ∧ τ > t0 ∧ τ) − I(t1 ∧ τ < t0 ∧ τ), (2)

for which θ = P{Ti(1) ∧ τ > Tj(0) ∧ τ} − P{Ti(1) ∧ τ < Tj(0) ∧ τ} can be interpreted as a win-lose probability
difference in comparing the restricted survival times of two randomly chosen subjects who are randomly
assigned to treatments 1 and 0.

Estimation of θ for a fully observed outcome has been considered by Chen et al. [11], Vermeulen et al. [12]
and Zhang et al. [13], with focus on adjusting for confounders in observational studies and using auxiliary
information to improve efficiency in randomized clinical trials. These methods cannot be used to estimate θ
for a survival outcome subject to right censoring, which represents an additional challenge.We are not aware
of any existing method for estimating θ for a right-censored survival outcome, except in the aforementioned
special cases where θ is a difference in distribution function [14, 15, 16] or a difference in mean restricted
survival time [17, 18, 19]. In both of these special cases, h(t1, t0) is additive in the sense that it can be written
as a function of t1 minus a function of t0. Here, we consider estimation of θ for a general function h, such
as (2), that is not assumed to be additive. We derive and compare several methods: an outcome regression
(OR) method based on a regression model for the survival outcome, an inverse probability weighting (IPW)
method based onmodels for treatment assignment and censoring, and two doubly robust (DR) methods that
involve both types of models and that remain valid under correct specification of the outcome model or the
other twomodels. One of the DRmethods is a straightforward extension of Zhang and Schaubel [19], and the
other one is a new method based directly on the efficient influence function [20, 21] for estimating θ.

In the next section, we describe these methods and discuss their asymptotic behavior. In Section 3, we
report a simulation study andpresent a real application. Concluding remarks are given in Section 4. Technical
details are provided in appendices.

2 Methodology

2.1 Notation and assumptions

Let A denote the actual treatment received by an individual subject in a study, which may be a randomized
clinical trial or an observational study. Assuming consistency or stable unit treatment value, the actual sur-
vival time is then T = T(A) = AT(1)+(1−A)T(0). LetW be a vector of relevant covariatesmeasured at baseline
(before treatment). We assume that treatment assignment is ignorable [22] givenW in the sense that

P{A = 1|W ,T(0),T(1)} = P(A = 1|W) =: p(W). (3)

The ignorability assumption is trivially true in a randomized clinical trial. In an observational study, the as-
sumption requires thatW contain enough information to explain any association betweenA and the potential
outcomes. We also assume positivity:

0 < p(W) < 1 with probability 1, (4)

which is trivially true in a clinical trial but not trivial in an observational study.
The actual survival time T may be right-censored by a censoring time C. We assume independent censor-

ing:

C ⊥ T|(A,W), (5)
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where ⊥ denotes independence. The observed data for an individual subject can be represented as O =
(W ,A,X,Δ), where X = T ∧ C and Δ = I(T ≤ C). The observed data for the whole study will be conceptu-
alized as independent copies of O and denoted by Oi = (W i,Ai,Xi,Δi), i = 1, . . . , n.

Our goal is to use the observeddata to estimate θ for a general (specified) function h. For identifiability,we
assume that h(t1, t0) is determined by t1∧τ and t0∧τ for some τ > 0 such that P(C > τ|A,W) > 0 almost surely.
Accordingly, we will restrict attention to the interval (0, τ] in discussions of distribution, survival and hazard
functions. For theoretical reasons, we also assume that E{h(Ti(1),Tj(0))2} < ∞, which is satisfied by all ex-
amples mentioned earlier. The efficient influence function in this estimation problem is given in Appendix A.
In the rest of this section, we propose several estimators of θ, whose asymptotic properties are studied in
Appendix B. Asymptotic variance formulas can be derived but may be cumbersome to use in variance esti-
mation, depending on the specific forms of the workingmodels involved. For ease of implementation, we use
bootstrap standard errors and confidence intervals for inference.

2.2 Outcome regression (OR) estimator

The OR method is based on the fact that

θ = h(F1, F0) = E{h(F1(⋅|W i), F0(⋅|W j))},

where i ̸= j and Fa(t|W) = P{T(a) ≤ t|W} for a = 0, 1. Here and in the sequel, we write h(ν1, ν0) =
∬ h(t1, t0)dν1(t1)dν0(t0), h(ν1, t0) = ∫ h(t1, t0)dν1(t1) and h(t1, ν0) = ∫ h(t1, t0)dν0(t0) for any measures (ν1, ν0).
Assumption (3) implies that Fa(t|W) = P(T ≤ t|A = a,W), which, by assumptions (4) and (5), can be identified
from the observed data.

To deal with the curse of dimensionality, we will assume a parametric or semiparametric model for
Fa(t|W), say Fa(t|W ;α), where α may be finite- or infinite-dimensional. This will be referred to as the OR
model. A prominent example of a semiparametric model for Fa(t|W) is the proportional hazards model [23,
24]:

λ(t|A,W ;α) = λ0(t) exp(η
�V),

where λ(⋅|A,W ;α) is the conditional hazard function of T given (A,W), α = (η, λ0), λ0 is the baseline hazard
function, and V is a vector-valued function of (A,W). Under this model,

Fa(t|W) = 1 − exp{−Λ(t|a,W ;α)} = 1 − exp{−Λ0(t) exp(η
�V)},

where Λ and Λ0 are cumulative versions of λ and λ0, respectively.
Whether Fa(t|W ;α) is parametric or semiparametric, it is usually convenient toworkwith the correspond-

ing hazard function λ(t|A,W ;α). The likelihood for α based on the observed data may be written as

n
∏
i=1

λ(Xi|Ai,W i;α)
Δi exp{−Λ(Xi|Ai,W i;α)}.

At least for parametric models and the proportional hazards model, α can be estimated by maximizing the
above likelihood. Let α̂ be an estimate of α, which may be obtained by maximum likelihood or other means.
Then θ can be estimated by

θ̂or =
1

n(n − 1)
∑
i≠j
h(F1(⋅|W i; α̂), F0(⋅|W j; α̂)).

If the model Fa(t|W ;α) is correct and α̂ is consistent for α (in a suitable sense), then θ̂or is consistent for θ
under mild regularity conditions. In Appendix B, we show that√n(θ̂or − θ) converges to a zero-mean normal
distribution under general conditions. A key condition we assume is that α̂ is √n-consistent and asymptoti-
cally linear in a suitable sense.
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2.3 Inverse probability weighted (IPW) estimator

It follows from assumptions (3)–(5) and a conditioning argument that

θ = E [
Ai(1 − Aj)ΔiΔjh(Xi,Xj)

p(W i){1 − p(W j)}Sc(Xi|Ai,W i)Sc(Xj|Aj,W j)
] (i ̸= j),

where Sc(t|A,W) = P(C > t|A,W). If Sc(t|A,W) and p(W) are known, then the above identity suggests that θ
can be estimated by

1
n(n − 1)

∑
i ̸=j

Ai(1 − Aj)ΔiΔjh(Xi,Xj)
p(W i){1 − p(W j)}Sc(Xi|Ai,W i)Sc(Xj|Aj,W j)

.

In reality, although p(W) is known by design in a clinical trial, Sc(t|A,W) is generally unknown and
must be estimated. We assume a model for Sc(t|A,W), say Sc(t|A,W ;β), which may be parametric or semi-
parametric so β may be finite- or infinite-dimensional. The model Sc(t|A,W ;β) may be specified using the
same considerations for specifying Fa(t|W ;α) except that we are nowmodeling the censoring time instead of
the survival time. Let β̂ be an estimate of β, which may be obtained by maximizing the likelihood:

n
∏
i=1

λc(Xi|Ai,W i;β)
1−Δi exp{−Λc(Xi|Ai,W i;β)},

where λc(⋅|A,W ;β) is the conditional hazard function of C given (A,W) under the model Sc(t|A,W ;β), and
Λc(⋅|A,W ;β) is the cumulative version of λc(⋅|A,W ;β).

In anobservational study,wealsoneed to estimatep(W). In fact, even ifp(W) is known, using anestimate
of p(W) instead of the known value usually leads to better efficiency in the IPW approach [25]. Let p(W) be
modeled as p(W ; γ), where γ is a finite- or infinite-dimensional parameter. Because A is binary, a typical
choice for p(W ; γ)would be a logistic regression model. Let γ̂ be an estimate of γ, which may be obtained by
maximizing the likelihood:

n
∏
i=1

p(W i; γ)
Ai {1 − p(W i; γ)}

1−Ai .

Once β̂ and γ̂ are obtained, the IPW estimator of θ is readily available as a weighted average:

θ̂ipw =
∑i ̸=j

Ai(1−Aj)ΔiΔjh(Xi ,Xj)
p(W i ;γ̂){1−p(W j ;γ̂)}Sc(Xi|Ai ,W i ;β̂)Sc(Xj|Aj ,W j ;β̂)

∑i ̸=j
Ai(1−Aj)ΔiΔj

p(W i ;γ̂){1−p(W j ;γ̂)}Sc(Xi|Ai ,W i ;β̂)Sc(Xj|Aj ,W j ;β̂)

.

The denominator here serves to normalize the inverse probability weights. If the models Sc(t|A,W ;β) and
p(W ; γ) are correct and (β̂, γ̂) estimate (β, γ) consistently, then θ̂ipw is consistent for θ and asymptotically
linear under appropriate conditions (see Appendix B).

2.4 First doubly robust (DR1) estimator

The DR1 method is adapted from the DR method of Zhang and Schaubel [19] for estimating the difference in
mean restricted survival time. As an important by-product, Zhang and Schaubel [19] propose a DR estimator
of Fa(t), which can be described as follows. Let us define

Ni(t) = ΔiI(Xi ≤ t),
Yi(t) = I(Xi ≥ t),
Λ̂ai(t) = Λ(t|a,W i; α̂),
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Λ̂c
ai(t) = Λ

c(t|a,W i; β̂),

M̂c
ai(t) = I(Ai = a){(1 − Δi)I(Xi ≤ t) − Λ̂

c
ai(Xi ∧ t)},

Ĝai(t) = 1 −
t

∫
0

eΛ̂ai(u)+Λ̂c
ai(u)dM̂c

ai(u),

ωai = I(Ai = a)p(W i; γ̂)
−a{1 − p(W i; γ̂)}

a−1.

Then the Zhang-Schaubel estimator of Λa(t), the cumulative hazard function of T(a), is given by

Λ̂dr
a (t) =

t

∫
0

∑ni=1 [ωaieΛ̂
c
ai(u)dNi(u) + e−Λ̂ai(u)dΛ̂ai(u){1 − ωaiĜai(u)}]

∑ni=1 [ωaieΛ̂
c
ai(u)Yi(u) + e−Λ̂ai(u){1 − ωaiĜai(u)}]

,

and the corresponding estimator of Fa(t) is F̂dra (t) = 1−exp {− Λ̂
dr
a (t)}. The superscript “dr” in these estimators

indicates that the estimators are doubly robust in the sense of being consistent and asymptotically normal if
(i) Fa(t|W ;α) is correctly specified, (ii) Sc(t|A,W ;β) and p(W ; γ) are both correctly specified, or (iii) both (i)
and (ii) hold.

Now θ can be estimated by θ̂dr1 = h(F̂dr1 , F̂
dr
0 ), and it is easy to see that θ̂dr1 is doubly robust in the same

sense described above. Because the F̂dra (a = 0, 1) are not guaranteed to be probability measures, θ̂dr1 is not
guaranteed to lie in the range of h. When θ̂dr1 falls outside the range of h, it can be truncated into the range of
hwithout changing its consistency or asymptotic normality. It is not immediately clear whether θ̂dr1 is locally
efficient, that is, whether it attains the nonparametric information bound when all three working models
are correct. This is the main motivation for our developing a second DR estimator of θ based directly on the
efficient influence function for estimating θ.

2.5 Second doubly robust (DR2) estimator

In Appendix A, we show that the efficient influence function for estimating θ is

ϕeff(O) =
AΔh(X, F0)

p(W)Sc(X|A,W)
+
(1 − A)Δh(F1,X)
{1 − p(W)}Sc(X|A,W)

− 2θ

+ {A − p(W)}{h(F1, F0(⋅|W))
1 − p(W)

−
h(F1(⋅|W), F0)

p(W)
}

+ A
p(W)
∫
ℏ1(t, F0|W)
Sc(t|A,W)

dMc(t) + 1 − A
1 − p(W)

∫
ℏ0(F1, t|W)
Sc(t|A,W)

dMc(t),

(6)

where ℏ1(t, F0|W) = E{h(T , F0)|A = 1,W ,T ≥ t}, ℏ0(F1, t|W) = E{h(F1,T)|A = 0,W ,T ≥ t}, and Mc(t) =
(1 − Δ)I(X ≤ t) − Λc(X ∧ t|A,W). Motivated by this result, we propose to estimate θ by setting the sample
average of an empirical version of ϕeff(O) to 0. The resulting estimator is

θ̂dr2 =
1
2n

n
∑
i=1
[

AiΔih(Xi, F̂dr0 )
p(W i; γ̂)Sc(Xi|Ai,W i; β̂)

+
(1 − Ai)Δih(F̂dr1 ,Xi)

{1 − p(W i; γ̂)}Sc(Xi|Ai,W i; β̂)

+ {Ai − p(W i; γ̂)}{
h(F̂dr1 , F0(⋅|W i; α̂))

1 − p(W i; γ̂)
−
h(F1(⋅|W i; α̂), F̂dr0 )

p(W i; γ̂)
}

+
Ai

p(W i; γ̂)
∫
ℏ1(t, F̂dr0 |W i; α̂)
Sc(t|Ai,W i; β̂)

dM̂c
1i(t)

+
1 − Ai

1 − p(W i; γ̂)
∫
ℏ0(F̂dr1 , t|W i; α̂)
Sc(t|Ai,W i; β̂)

dM̂c
0i(t)],
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where

ℏ1(t, F̂
dr
0 |W i; α̂) =

∫∞t h(u, F̂dr0 )dF1(u|W i; α̂)
1 − F1(t|W i; α̂)

,

ℏ0(F̂
dr
1 , t|W i; α̂) =

∫∞t h(F̂dr0 , u)dF0(u|W i; α̂)
1 − F0(t|W i; α̂)

.

The use of F̂dra in θ̂dr2 to replace Fa in (6) is an attempt to provide maximal protection against model misspec-
ification. In Appendix B, we show that θ̂dr2 is indeed doubly robust and, furthermore, locally efficient. Like
θ̂dr1, θ̂dr2 may fall outside the range of h but can be truncated back into the range of h.

3 Numerical results

3.1 Simulation

Here we report a simulation study of the finite-sample performance of the methods described in Section 2.
Data are generated according to the following mechanism:

W = (W1,W2)
� ∼ N(0, I),

p(W) = expit(W1 −W2),

λ(t|A,W) = exp(ηAA −W1 +W2),

λc(t|A,W) = exp(W1 +W2),

where 0 = (0,0)�, I is the 2-by-2 identity matrix, expit(x) = 1/{1 + exp(−x)}, and ηA is either 0 (no treatment
effect) or −0.5 (protective treatment effect). The function h in the definition of θ is take to be (2) with τ = 2.
The true value of θ is 0 when ηA = 0 and approximately 0.15 when ηA = −0.5. We consider two sample sizes:
n = 200, 500. In each case, 1,000 replicate samples are generated.

Each simulated sample is analyzed using the four methods (OR, IPW, DR1 and DR2) described in Sec-
tion 2 as well as a naive method that ignores censoring and possible confounding and estimates θ with the
U-statistic

θ̂nv =
1

n0n1

n
∑
i=1

n
∑
j=1

Ai(1 − Aj)h(Xi,Xj),

where n1 = ∑
n
i=1 Ai and n0 = n − n1. The OR, IPW, DR1 and DR2 methods are implemented with correct and

incorrect working models. The correct models are:

λ(t|A = a,W ;αa) = λa0(t) exp ((W1,W2)ηa),
λc(t|A = a,W ;βa) = λ

c
a0(t) exp ((W1,W2)η

c
a),

p(W ; γ) = expit ((1,W1,W2)γ),

where αa = (ηa, λa0), βa = (η
c
a, λ

c
a0), and λa and λ

c
a are unspecified baseline hazard functions. The incorrect

models result from replacing (W1,W2) with (I(W1 > 0), I(W2 > 0)) in the correct models. All models are
estimated using the maximum likelihood approach.

Table 1 shows a summary of the simulation results: empirical bias and standard deviation for estimat-
ing θ. As expected, the naive method is severely biased. The OR estimator becomes biased when the model
λ(t|A,W ;α) is misspecified, as does the IPW estimator when the models λc(t|A,W ;β) and p(W ; γ) are mis-
specified. In contrast, the two DR estimators are nearly unbiased unless all models are misspecified, demon-
strating double robustness. Regardless of model (in)correctness, the estimators that adjust for confounding
and censoring generally follow the pattern OR < DR < IPW in terms of variability. The efficiency comparison
of the two DR estimators does not seem to follow a clear pattern. At n = 200, DR2 appears more efficient than
DR1 when all models are correct, but this difference appears to diminish with increasing sample size.
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Table 1: Simulation results: empirical bias and standard deviation (SD) for the naive, OR, IPW, DR1 and DR2 estimators with
correct and incorrect working models (see Section 3.1 for details).

Method Models θ = 0 θ ≈ 0.15
(T |A,W) (C|A,W) (A|W) Bias SD Bias SD

n = 200
naive 0.255 0.077 0.173 0.078
OR correct 0.001 0.080 −0.011 0.087
OR incorrect 0.157 0.097 0.141 0.103
IPW correct correct 0.048 0.174 0.014 0.177
IPW incorrect incorrect 0.180 0.190 0.142 0.197
DR1 correct correct correct 0.008 0.138 0.001 0.146
DR1 correct incorrect incorrect −0.004 0.100 −0.013 0.106
DR1 incorrect correct correct 0.017 0.143 0.010 0.136
DR1 incorrect incorrect incorrect 0.155 0.120 0.146 0.112
DR2 correct correct correct 0.008 0.118 −0.045 0.116
DR2 correct incorrect incorrect −0.018 0.105 −0.056 0.117
DR2 incorrect correct correct 0.014 0.120 −0.038 0.108
DR2 incorrect incorrect incorrect 0.138 0.122 0.096 0.121
n = 500
naive 0.256 0.050 0.172 0.048
OR correct 0.003 0.051 −0.009 0.055
OR incorrect 0.162 0.061 0.147 0.064
IPW correct correct 0.044 0.141 0.011 0.147
IPW incorrect incorrect 0.163 0.159 0.137 0.173
DR1 correct correct correct 0.014 0.082 0.002 0.104
DR1 correct incorrect incorrect −0.008 0.068 −0.019 0.077
DR1 incorrect correct correct 0.018 0.077 0.007 0.088
DR1 incorrect incorrect incorrect 0.157 0.080 0.146 0.078
DR2 correct correct correct 0.017 0.077 −0.032 0.107
DR2 correct incorrect incorrect −0.020 0.099 −0.046 0.140
DR2 incorrect correct correct 0.020 0.078 −0.028 0.091
DR2 incorrect incorrect incorrect 0.146 0.110 0.117 0.141

3.2 Application

We now apply the methods compared in Section 3.1 to a study of hospitalized pneumonia in young children,
described in Section 1.13 of Klein and Moeschberger [26]. The study is based on 3,470 newborn children from
the National Longitudinal Survey of Youth [27]. The research question is whether themother’s feeding choice
(breast feeding or not) protects the infant against hospitalized pneumonia in the first year of life. The outcome
variable of interest is the time to hospitalized pneumonia, which is restricted to one year and possibly cen-
sored before one year. The available baseline covariates are infant race (black, white or other), indicators of
normal birthweight (at least 5.5 pounds) and having at least one sibling, and somematernal and family char-
acteristics: age, years of schooling, alcohol use, cigarette use, region of the country (Northeast, Northcentral,
South and West), poverty, and urban environment.

We are interested in the causal effect of breast feeding on hospitalized pneumonia as measured by θwith
h defined by (2). This effect measure can be interpreted as a win-lose probability difference in a hypothetical
comparison of the restricted times to hospitalized pneumonia of two randomly chosen infants, who are ran-
domly assigned to breast feeding and no breast feeding as in a clinical trial. The propensity scoremodel in our
analysis is a logistic regressionmodel based onall infant characteristics aswell asmaternal age, cigarette use,
and years of schooling. The ORmodel is specified as a proportional hazardsmodel based on infant character-
istics, maternal cigarette use, and urban environment, with separate parameters for each treatment group.
The model for censoring is also a separate proportional hazards model for each treatment group, with infant
race and maternal age as covariates.
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Table 2: Analysis of pneumonia data: point estimates (PE) of θ and bootstrap standard errors (SE) obtained using different
methods (see Section 3.2 for details).

Method PE SE

naive −0.0098 0.0169
OR −0.0020 0.0015
IPW 0.1373 0.1902
DR1 −0.0028 0.0018
DR2 0.0076 0.0023

Table 2 shows the point estimates of θ obtained using the five methods compared in Section 3.1 together
with nonparametric bootstrap standard errors based on 1,000 bootstrap samples. The IPW method clearly
stands out with a large positive point estimate and a large standard error, both of which are likely due to the
large variability of the IPW estimator. Considering the large standard error, the IPW estimate of θmaywell be
due to random variation and does not establish a positive effect of breast feeding. The naive method, on the
other hand, has the smallest (i. e., most negative) point estimate and also a relatively large standard error.
The results are somewhat similar for the other three methods (OR, DR1 and DR2). DR2 is the only method that
reaches statistical significance (with or without adjusting for multiplicity); however, the estimated effect is
rather small in magnitude under the DR2 method. Taken together, the point estimates and standard errors in
Table 2 provide no clear evidence for a substantial effect of breast feeding on hospitalized pneumonia.

4 Discussion
Mann–Whitney-type causal effects are clinically relevant, easy to interpret, and readily applicable to a wide
range of study settings. This article considers estimation of such effects when the outcome variable is a sur-
vival time subject to right censoring. We have derived four methods for doing this and compared them theo-
retically and empirically. Among these methods, the OR and DR methods have unique advantages, and their
suitability to a given application will depend on the available information and the relative importance of bias
versus efficiency. If one is primarily concerned about bias, then the DR methods may be preferable. The OR
method is more efficient when the OR model is correctly specified. No clear advantage has been observed for
the IPWmethod.

The relationship between the two DR estimators remains an open question. The DR1 estimator adapted
from Zhang and Schaubel [19] is known to be doubly robust. The proposed DR2 estimator, based directly on
the efficient influence function for estimating θ, is doubly robust and locally efficient. In our simulation study,
the two estimators appear to perform similarly in large samples when all working models are correctly spec-
ified, which suggests that the DR1 estimator might be locally efficient as well. Further research is warranted
to clarify how the two DR estimators might relate to each other.

All of these methods assume that treatment assignment is ignorable in the sense of (3). The ignorability
assumption cannot be validated with observed data andmust be based on background knowledge. If there is
insufficient background knowledge to justify the ignorability assumption, it is important to assess the robust-
ness of study results in the presence of unmeasured confounders. Methods for conducting such a sensitivity
analysis have been developed for some causal effects [e. g., 28, 29] but not for the Mann–Whitney-type effects
considered here. Further research is needed to close this methodological gap.
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the Hong Kong Polytechnic University.
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Appendix A. Semiparametric theory
Here we derive the efficient influence function for estimating θ using the monotone coarsening argument of
Tsiatis [21]. Recall that the observed data for an individual subject is O = (W ,A,X,Δ), which is considered a
coarsened version of the “full data” Z = (W ,A,T). Unless otherwise stated, the distributions of Z and O are
restricted by assumptions (3)–(5) only. The full-data Hilbert spaceHF is the space of functions of Z with zero
mean and finite variance, equipped with the covariance inner product. The observed-data Hilbert spaceH is
the space of functions of O with zero mean and finite variance, equipped with the covariance inner product.

First, we characterize the influence function of any regular, asymptotically linear (RAL) estimator of θ
based on the full data. For argument’s sake, we assume for a moment that p(W) = P(A = 1|W) is known, as
in a randomized clinical trial. In this special case, a nonparametric RAL estimator of θ based on the full data
is given by

1
n(n − 1)

∑
i ̸=j

Ai(1 − Aj)h(Ti,Tj)
p(W i){1 − p(W j)}

.

Using the theory of U-statistics [e. g., 30, Chapter 12], it is easy to see that the above estimator is RAL with
influence function

ϕF
0(Z) =

Ah(T , F0)
p(W)

+
(1 − A)h(F1,T)

1 − p(W)
− 2θ.

With p(W) known, the orthogonal complement of the full-data tangent space is

Ψ1 = {{A − p(W)}b(W) : E{b(W)
2} <∞} ,

and the influence function of any full-data RAL estimator of θ takes the form

ϕF
b(Z) = ϕ

F
0(Z) + {A − p(W)}b(W)

for some function b such that E{b(W)2} < ∞. Now we remove the assumption that p(W) is known. An RAL
estimator of θ in this larger model is certainly an RAL estimator of θ in the smaller model with p(W) known.
Therefore, the influence function of an RAL estimator of θ in the larger model must also belong toϕF

0(Z)+Ψ1.
Next, we characterize the influence function of any RAL estimator of θ based on the observed data. Ac-

cording to Tsiatis [21, Chapter 9], such an influence function can be represented asϕb(O)+ψ(O), whereϕb(O)
satisfies

E{ϕb(O)|Z} = ϕ
F
b(Z) (A.1)

and ψ(O) is an element of Ψ2, the augmentation space for censoring. It is easy to verify that equation (A.1) is
satisfied by ϕb(O) = ϕ0(O) + {A − p(W)}b(W), where

ϕ0(O) =
AΔh(X, F0)

p(W)Sc(X|A,W)
+
(1 − A)Δh(F1,X)
{1 − p(W)}Sc(X|A,W)

− 2θ.

As shown in Tsiatis [21, page 217], the augmentation space Ψ2 consists of martingale integrals of the form

∫ q(t|A,W)
Sc(t|A,W)

dMc(t),

where q is an arbitrary function, Mc(t) = (1 − Δ)I(X ≤ t) − Λc(X ∧ t|A,W), and Sc(⋅|A,W) and Λc(⋅|A,W) are,
respectively, the conditional survival and cumulative hazard functions of C given (A,W). Thus, the influence
function of any RAL estimator of θ based on the observed data must be an element of ϕ0(O) +Ψ1 +Ψ2, which
can be written as

ϕb,q(O) = ϕ0(O) + {A − p(W)}b(W) + ∫
q(t|A,W)
Sc(t|A,W)

dMc(t)

for some functions b and q.
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To find the efficient influence function, the influence function with the smallest possible variance, we
need to minimize the variance of ϕb,q(O)with respect to b and q, which amounts to projecting ϕ0(O) into the
orthogonal complement of Ψ1 + Ψ2. To this end, we note that Ψ1 and Ψ2 are orthogonal to each other, so it
suffices to project ϕ0(O) into Ψ1 and Ψ2 separately. The projection of ϕ0(O) into Ψ1 is easily seen to be

Π(ϕ0(O)|Ψ1) = E (ϕ0(O)|A,W) − E (ϕ0(O)|W)

= {A − p(W)}{h(F1(⋅|W), F0)
p(W)

−
h(F1, F0(⋅|W))
1 − p(W)

}.

Section 10.4 of Tsiatis [21] indicates that the projection of ϕ0(O) into Ψ2 is

Π(ϕ0(O)|Ψ2) = −
A

p(W)
∫
E{h(T , F0)|A,W ,T ≥ t}

Sc(t|A,W)
dMc(t)

− 1 − A
1 − p(W)

∫
E{h(F1,T)|A,W ,T ≥ t}

Sc(t|A,W)
dMc(t).

The efficient influence function is therefore

ϕeff(O) = ϕ0(O) − Π(ϕ0(O)|Ψ1) − Π(ϕ0(O)|Ψ2),

which is equivalent to equation (6) in the main paper.

Appendix B. Asymptotic theory
Standard regularity conditions in the M-estimation theory [e. g., 30, Chapter 5] are assumed. These include
identifiability and smoothness (in parameters) of working models, existence of integrable envelopes that
permit useof thedominated convergence theorem, andcertainDonskerproperties that helpdealwith random
functions. Techniques for verifying the Donsker property can be found in van der Vaart and Wellner [31].

Let ℙ0 denote the true distribution of O = (W ,A,X,Δ), and let ℙn denote the empirical distribution of
Oi = (W i,Ai,Xi,Δi), i = 1, . . . , n. WriteGn = √n(ℙn −ℙ0) for the empirical processes. For any measures (ν1, ν0),
we write

h(ν1, y0) = ∫ h(y1, y0)dν1(y1),

h(y1, ν0) = ∫ h(y1, y0)dν0(y0),

h(ν1, ν0) =∬ h(y1, y0)dν1(y1)dν0(y0).

B.1 Asymptotics for θ̂or
Here we assume that the model λ(t|A,W ;α) is correct and that α and α̂ take values in a suitable Banach space
with

√n(α̂ − α) = Gnϕα(O) + op(1).

For any a in the space for α, we define

kor(W i,W j;a) = {h(F1(⋅|W i;a), F0(⋅|W j;a)) + h(F1(⋅|W j;a), F0(⋅|W i;a))}/2,

Uor(a) =
2

n(n − 1)
∑
i<j
kor(W i,W j;a),

uor(a) = E{Uor(a)} = E{kor(W i,W j;a)}, i ̸= j.
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Then θ̂or = Uor(α̂), θ = uor(α), and

√n(θ̂or − θ) = √n{Uor(α̂) − uor(α)} = √n{Uor(α̂) − uor(α̂)} +√n{uor(α̂) − uor(α)}. (B.1)

It follows from the theory of U-statistics [e. g., 30, Theorem 12.3] that, for any fixed a,

√n{Uor(a) − uor(a)} = Gn{2k
�
or(W ;a) − 2θ} + op(1), (B.2)

where k�or(w;a) = E{kor(w,W ;a)}. It can be argued as in Nolan and Pollard [32, proof of Theorem 5] that the
op(1) term in (B.2) is uniformly negligible for a in a neighborhood of α. This, together with Theorem 19.24 of
van der Vaart [30], implies that

√n{Uor(α̂) − uor(α̂)} = Gn{2k
�
or(W ; α̂) − 2θ} + op(1) = Gn{2k

�
or(W ;α) − 2θ} + op(1). (B.3)

We assume that the map a Ü→ uor(a) is differentiable at α with derivative Dor
α . By the delta method,

√n{uor(α̂) − uor(α)} = D
or
α Gnϕα(O) + op(1). (B.4)

Substituting (B.3) and (B.4) into (B.1) yields

√n(θ̂or − θ) = Gn {2k
�
or(W ;α) − 2θ + D

or
α ϕα(O)} + op(1).

B.2 Asymptotics for θ̂ipw
Here we assume that the models λc(t|W ;β) and p(W ; γ) are correct and that β and γ take values in suitable
Banach spaces with

√n(β̂ − β) = Gnϕβ(O) + op(1),
√n(γ̂ − γ) = Gnϕγ(O) + op(1).

Let us define

k†1 (Oi,Oj;b, g) =
Ai(1 − Aj)ΔiΔjh(Xi,Xj)

p(W i; g){1 − p(W j; g)}Sc(Xi|Ai,W i;b)Sc(Xj|Aj,W j;b)
,

k†2 (Oi,Oj;b, g) =
Ai(1 − Aj)ΔiΔj

p(W i; g){1 − p(W j; g)}Sc(Xi|Ai,W i;b)Sc(Xj|Aj,W j;b)
,

and, for r = 1, 2,

kr(Oi,Oj;b, g) = {k
†
r (Oi,Oj;b, g) + k

†
r (Oj,Oi;b, g)}/2,

Ur(b, g) =
2

n(n − 1)
∑
i<j
kr(Oi,Oj;b, g),

ur(b, g) = E{Ur(b, g)} = E{kr(Oi,Oj;b, g)}, i ̸= j.

Then θ̂ipw = U1(β̂, γ̂)/U2(β̂, γ̂), u1(β, γ) = θ, and u2(β, γ) = 1. For r = 1, 2, it can be argued as before that

√n{Ur(β̂, γ̂) − ur(β, γ)} = √n{Ur(β̂, γ̂) − ur(β̂, γ̂)} +√n{ur(β̂, γ̂) − ur(β, γ)}

= √n{Ur(β, γ) − ur(β, γ)} +√n{ur(β̂, γ̂) − ur(β, γ)} + op(1)

= Gnk
�
r(O;β, γ) +√n{ur(β̂, γ̂) − ur(β, γ)} + op(1),

where k�r(o;b, g) = E{kr(o,O;b, g)}. It is straightforward to see that

k�1(O;β, γ) =
Δ

Sc(X|A,W ;β)
{
Ah(X, F0)
p(W ; γ)

+
(1 − A)h(F1,X)
1 − p(W ; γ)

},

k�2(O;β, γ) =
Δ

Sc(X|A,W ;β)
{ A
p(W ; γ)

+ 1 − A
1 − p(W ; γ)

}.
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For r = 1, 2, we assume that the map (b, g) Ü→ ur(b, g) is differentiable at (β, γ) with derivative Dipw
r =

(Dipw
r,β ,D

ipw
r,γ ), and use the delta method to deduce that

√n{ur(β̂, γ̂) − ur(β, γ)} = D
ipw
r,β Gnϕβ(O) + D

ipw
r,γ Gnϕγ(O) + op(1),

which implies that

√n{Ur(β̂, γ̂) − ur(β, γ)} = Gn{k
�
r(O;β, γ) + D

ipw
r,β ϕβ(O) + D

ipw
r,γ ϕγ(O)} + op(1).

Applying the delta method once again to θ̂ipw = U1(β̂, γ̂)/U2(β̂, γ̂), we see that

√n(θ̂ipw − θ)

= Gn[k
�
1(O;β, γ) − θk

�
2(O;β, γ) + (D

ipw
1,β − θD

ipw
2,β )ϕβ(O) + (D

ipw
1,γ − θD

ipw
2,γ )ϕγ(O)] + op(1).

B.3 Asymptotics for θ̂dr1
Here we outline a general approach to the analysis of θ̂dr1 = h(F̂dr1 , F̂

dr
0 ) using the functional delta method. We

identify F1, F0 and their estimates as elements of BV , the space of real-valued functions of bounded variation
equipped with the total variation norm. Assuming that h(t1, t0) is bounded, we have

h(F1 + δF1, F0 + δF0) − h(F1, F0) = h(δF1, F0) + h(F1, δF0) + h(δF1, δF0)
= h(δF1, F0) + h(F1, δF0) + o(‖δF1‖ + ‖δF0‖).

Therefore, the mapping of (ν1, ν0) ∈ BV2 to h(ν1, ν0) ∈ ℝ is Frechet-differentiable at (F1, F0) with derivative

(δF1, δF0) Ü→ h(δF1, F0) + h(F1, δF0).

For specific working models, Zhang and Schaubel [19] show that F̂dra (t) (a = 0, 1) converges in probability
to Fa(t) uniformly in t ∈ (0, τ] if (i) λ(t|A,W ;α) is correctly specified, (ii) λc(t|A,W ;β) and p(W ; γ) are both
correctly specified, or (iii) both (i) and (ii) hold. For general working models that satisfy (i) or (ii), we assume
that√n(F̂dra − Fa) converges weakly to a random element in BV with

√n(F̂dra − Fa)(t) = Gnϕa(O, t) + op(1)

for some influence function ϕa(O, t). This is generally true for parametric working models. With λ(t|A,W ;α)
and λc(t|A,W ;β) specified as semiparametric proportional hazardsmodels, an explicit expression forϕa(O, t)
is given in Zhang and Schaubel [19, Web-Based Supplementary Materials]. Now it follows from Theorem 20.8
of van der Vaart [30] and simple algebra that

√n(θ̂ − θ) = Gn{h(ϕ1(O, ⋅), F0) + h(F1,ϕ0(O, ⋅))} + op(1).

B.4 Asymptotics for θ̂dr2
Herewe assume that (i) λ(t|A,W ;α) is correctly specified, (ii) λc(t|A,W ;β) and p(W ; γ) are both correctly spec-
ified, or (iii) both (i) and (ii) hold. With possibly misspecified models, we assume that (α̂, β̂, γ̂) converges in
probability to some (α∗,β∗, γ∗) with

√n(α̂ − α∗) = Gnϕα(O) + op(1),
√n(β̂ − β∗) = Gnϕβ(O) + op(1),
√n(γ̂ − γ∗) = Gnϕγ(O) + op(1).
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We first demonstrate the consistency of θ̂dr2 under condition (i) or (ii). Write F̂dra = F
dr
a (⋅; α̂, β̂, γ̂). Under

mild regularity conditions, θ̂dr2 converges in probability to ϑ(α∗,β
∗, γ∗), where

ϑ(a,b, g) = 1
2
E[

AΔh(X, Fdr0 (⋅;a,b, g))
p(W ; g)Sc(X|A,W ;b)

+
(1 − A)Δh(Fdr1 (⋅;a,b, g),X)
{1 − p(W ; g)}Sc(X|A,W ;b)

+ {A − p(W ; g)}{
h(Fdr1 (⋅;a,b, g), F0(⋅|W ;a))

1 − p(W ; g)
−
h(F1(⋅|W ;a), F0)

p(W ; g)
}

+ A
p(W ; g)

∫
ℏ1(t, Fdr0 (⋅;a,b, g)|W ;a)

Sc(t|A,W ;b)
dMc(t;b)

+ 1 − A
1 − p(W ; g)

∫
ℏ0(Fdr1 (⋅;a,b, g), t|W ;a)

Sc(t|A,W ;b)
dMc(t;b)],

withMc(t;b) = (1−Δ)I(X ≤ t)−Λc(X ∧ t|A,W ;b). Zhang and Schaubel [19] have shown that Fdra (⋅;α
∗,β∗, γ∗) =

Fa under condition (i) or (ii). Under condition (ii), (β∗, γ∗) = (β, γ), p(W ; γ∗) = p(W), Sc(X|A,W ;β∗) =
Sc(X|A,W),Mc(t;β∗) = Mc(t), and θ̂dr2 converges to

ϑ(α∗,β, γ) = 1
2
E [ AΔh(X, F0)

p(W)Sc(X|A,W)
+
(1 − A)Δh(F1,X)
{1 − p(W)}Sc(X|A,W)

] (B.5)

+ 1
2
E [{A − p(W)}{h(F1, F0(⋅|W ;α

∗))
1 − p(W)

}] (B.6)

− 1
2
E [{A − p(W)}{h(F1(⋅|W ;α

∗), F0)
p(W)

}] (B.7)

+ 1
2
E [ A

p(W)
∫
ℏ1(t, F0|W ;α∗)
Sc(t|A,W)

dMc(t)] (B.8)

+ 1
2
E [ 1 − A

1 − p(W)
∫
ℏ0(F1, t|W ;α∗)
Sc(t|A,W)

dMc(t)], (B.9)

It follows from a conditioning argument that term (B.5) is equal to θ. Terms (B.6) and (B.7) are 0 because
A − p(W) times any function ofW alone has mean 0. Terms (B.8) and (B.9) are 0 becauseMc is a martingale.
Thus, θ̂dr2 is consistent under condition (ii). Next, suppose condition (i) holds, so that α∗ = α, Fa(⋅|W ;α∗) =
Fa(⋅|W) (a = 0, 1), ℏ1(t, F0|W ;α∗) = ℏ1(t, F0|W), ℏ0(F1, t|W ;α∗) = ℏ0(F1, t|W), and θ̂dr2 converges to

ϑ(α,β∗, γ∗) = 1
2
E[ AΔh(X, F0)

p(W ; γ∗)Sc(X|A,W ;β∗)
+

(1 − A)Δh(F1,X)
{1 − p(W ; γ∗)}Sc(X|A,W ;β∗)

−
Ah(F1(⋅|W), F0)

p(W ; γ∗)
−
(1 − A)h(F1, F0(⋅|W))

1 − p(W ; γ∗)
+ h(F1(⋅|W), F0) + h(F1, F0(⋅|W))

+ A
p(W ; γ∗)

∫
ℏ1(t, F0|W)

Sc(t|A,W ;β∗)
dMc(t;β∗)

+ 1 − A
1 − p(W ; γ∗)

∫
ℏ0(F1, t|W)

Sc(t|A,W ;β∗)
dMc(t;β∗)].

(B.10)

Note that

E{h(F1(⋅|W), F0)} = E{h(F1, F0(⋅|W))} = θ. (B.11)

It follows from Tsiatis [21, Section 9.3 and Lemma 10.4] that

Δ
Sc(X|A,W ;β∗)

= 1 − ∫ dMc(t;β∗)
Sc(t|A,W ;β∗)

. (B.12)
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Substituting (B.11) and (B.12) into (B.10) leads to

ϑ(α,β∗, γ∗) − θ = 1
2
E [A{h(X, F0) − h(F1(⋅|W), F0)}

p(W ; γ∗)
] (B.13)

+ 1
2
E [ (1 − A){h(F1,X) − h(F1, F0(⋅|W))}

1 − p(W ; γ∗)
] (B.14)

+ 1
2
E [ A

p(W ; γ∗)
∫
ℏ1(t, F0|W) − h(X, F0)

Sc(t|A,W ;β∗)
dMc(t;β∗)] (B.15)

+ 1
2
E [ 1 − A

1 − p(W ; γ∗)
∫
ℏ0(F1, t|W) − h(F1,X)

Sc(t|A,W ;β∗)
dMc(t;β∗)]. (B.16)

It follows from a conditioning argument that terms (B.13) and (B.14) are 0. Terms (B.15) and (B.16) can be
shown to be 0 using the arguments of Zhang and Schaubel [19, Web-Based Supplementary Materials]. Thus,
θ̂dr2 is consistent under condition (i).

Next, we show that θ̂dr2 is asymptotically normal. Define

φ(O;a,b, g) = 1
2
[
AΔh(X, Fdr0 (⋅;a,b, g))
p(W ; g)Sc(X|A,W ;b)

+
(1 − A)Δh(Fdr1 (⋅;a,b, g),X)
{1 − p(W ; g)}Sc(X|A,W ;b)

+ {A − p(W ; g)}{
h(Fdr1 (⋅;a,b, g), F0(⋅|W ;a))

1 − p(W ; g)
−
h(F1(⋅|W ;a), Fdr0 (⋅;a,b, g))

p(W ; g)
}

+ A
p(W ; g)

∫
ℏ1(t, F0|W ;a)
Sc(t|A,W ;b)

dMc(t;b)

+ 1 − A
1 − p(W ; g)

∫
ℏ0(F1, t|W ;a)
Sc(t|A,W ;b)

dMc(t;b)].

Then θ̂dr2 = ℙnφ(O; α̂, β̂, γ̂), θ = ℙ0φ(O;α∗,β
∗, γ∗), and it can be argued as before that

√n(θ̂dr2 − θ) = Gnφ(O; α̂, β̂, γ̂) +√n{ℙ0φ(O; α̂, β̂, γ̂) − ℙ0φ(O;α
∗,β∗, γ∗)}

= Gnφ(O;α
∗,β∗, γ∗) +√n{ϑ(α̂, β̂, γ̂) − ϑ(α∗,β∗, γ∗)} + op(1).

We assume that ϑ is differentiable at (α∗,β∗, γ∗) with derivative Ddr2 = (Ddr2
α ,D

dr2
β ,D

dr2
γ ), which implies that

√n{ϑ(α̂, β̂, γ̂) − ϑ(α∗,β∗, γ∗)} = Ddr2√n(α̂ − α∗, β̂ − β∗, γ̂ − γ∗) + op(1)

= Gn{D
dr2
α ϕα(O) + D

dr2
β ϕβ(O) + D

dr2
γ ϕγ(O)} + op(1).

It follows that

√n(θ̂dr2 − θ) = Gn{φ(O;α
∗,β∗, γ∗) + Ddr2

α ϕα(O) + D
dr2
β ϕβ(O) + D

dr2
γ ϕγ(O)} + op(1). (B.17)

Finally, we show that θ̂dr2 is locally efficient, that is, the influence function of θ̂dr2 is equal to ϕeff(O) =
φ(O;α,β, γ) when all three models are correct. We do so by showing that Ddr2 = 0 under conditions (i) and
(ii). Under condition (ii), ϑ(a,β, γ) = θ for any a, and its partial derivative, Ddr2

α , must be zero. Similarly, we
can show that Ddr2

β and Ddr2
γ are both zero under condition (i). Therefore, when all three models are correct,

Ddr2 = 0 and

√n(θ̂dr2 − θ) = Gnφ(O;α,β, γ) + op(1) = Gnϕeff(O) + op(1).
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