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A B S T R A C T

Premature failure of bridge expansion joints has been increasingly observed in recent years, and nowadays it
becomes a major concern of bridge owners. A better understanding of their performance in service is highly
desired. Deterministic linear regression models between bridge temperature and expansion joint displacement
have widely been adopted to characterize the in-service performance of bridge expansion joints. When such a
regression pattern is elicited using real-time monitoring data, the deterministic models fail to account for un-
certainty inherent in the monitoring data and interpret the model error. In this study, a probabilistic approach
for characterization of the regression pattern between bridge temperature and expansion joint displacement by
use of Structural Health Monitoring (SHM) data and for SHM-based condition assessment and damage alarm of
bridge expansion joints is developed in the Bayesian context. The proposed approach enables to account for the
uncertainty contained in the monitoring data and quantify the model error and the prediction uncertainty. By
combining the Bayesian regression model and reliability theory, an anomaly index is formulated to evaluate the
health condition of the expansion joint when newly collected monitoring data are available and to provide
damage alarm once the probability of damage exceeds a certain threshold. In the case study, real-world mon-
itoring data acquired from a cable-stayed bridge are used to illustrate the proposed approach, including ex-
amining the appropriateness of the design values of expansion joint displacements under extreme temperatures
in serviceability limit state.

1. Introduction

Expansion joints are important components in bridge structures,
which are designed to accommodate the relative movement between
bridge deck and abutments, ensuring the serviceability of bridges [1].
Due to the direct and repetitive impact of vehicle loads, expansion
joints often become the weakest part of bridges, especially for long-span
bridges where premature failures of the expansion joints have been
increasingly observed, resulting in considerable repair and maintenance
costs [2–4]. Several surveys have indicated that the service life of ex-
pansion joints is frequently much lower than expected. For instance, the
Akashi-Kaikyo Bridge, the world’s longest suspension bridge with a
main span of 1991 m, experienced fatigue cracks in the connection pin
of the expansion joints only three years after the bridge was opened to
traffic [5]. The suspension Runyang Bridge with a main span of 1490 m
suffered the need for the expansion joints to be repaired after three-year
service [6]. The suspension Jiangyin Bridge with a main span of 1385 m
suffered excessive wear and transversal shear failure of bearings in
expansion joints after only four years since operation [4]. The

expansion joints in the Martinus Nijhoff Bridge have been repaired
several times in recent years [7].

Apparently, an understanding of the real performance of bridge
expansion joints during in-service operation is highly desired in regard
to their safety and maintenance. Traditional manual inspection
methods are typically expensive, inefficient, and incapable of offering a
timely alarm on possible deterioration or malfunctioning of expansion
joints. In contrast, Structural Health Monitoring (SHM) technology
provides a sensor-based quantitative and objective means to con-
tinuously gain authentic information about the in-situ performance of
expansion joints, which enables potential failure to be foreseen at an
early stage. Research efforts have been made towards this direction. Ni
et al. [8] proposed a procedure for design verification and condition
assessment of expansion joints using the long-term monitoring data. A
normal temperature-displacement pattern was established through
linear regression analysis, with which the maximum displacement
range and cumulative movement were evaluated. Ding and Li [9] in-
vestigated the effects of temperature, traffic and wind on the dis-
placement of expansion joints. After removing the effect of
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environmental conditions on expansion joint displacement, potential
damage in expansion joints was detected by using statistical process
control. Making use of SHM monitoring data, Guo et al. [4] analyzed
the expansion joint displacement of a long-span steel bridge equipped
with viscous dampers, with an emphasis on the influence of the dam-
pers on the displacement. Sun and Zhang [6] clarified the failure me-
chanism of the expansion joints in a suspension bridge through both
field tests and numerical study, and finally put forward suggestions to
improve expansion joint performance. Huang et al. [10] proposed the
use of representative temperature to establish the Displacement-Tem-
perature Relationship (DTR) model for expansion joints. By con-
structing a mean value control chart for the error of the baseline model,
a performance-alarm approach was proposed for the assessment of
expansion joints.

While confirming a linearly proportional relationship, all the pre-
vious studies adopted deterministic (linear) regression models to
characterize the DTR for bridge expansion joints. However, un-
certainties inevitably exist in the monitoring data due to environmental
variability and measurement noise. The deterministic models fail to
account for the uncertainties inherent in the monitoring data and to
interpret the model error, and as a result they might not reflect the
authentic performance of expansion joints and lead to inaccurate di-
agnostic and prognostic results in the presence of various uncertainties.
In this regard, probabilistic regression models are preferable in char-
acterizing the DTR of expansion joints and evaluating the probability of
potential damage. Being a powerful analytic tool as regards quantifying
uncertainty, Bayesian inference has been growingly applied for model
updating, system identification and damage detection [11–22]. To the
best of the authors’ knowledge, however, no investigation has been
devoted to addressing the condition assessment and damage detection
of bridge expansion joints in the context of Bayesian inference.

In this study, a novel approach which enables probabilistic condi-
tion assessment and damage alarm of bridge expansion joints will be
developed in the context of Bayesian inference. Making use of long-
term SHM data, a Bayesian (linear) regression model is first formulated
to characterize the correlation pattern between the thermal movement
of expansion joints and the effective temperature of bridge deck.
Different from the traditional deterministic regression models, the for-
mulated model explicitly interprets uncertainties arising from mea-
surement and model errors and enables to quantify prediction un-
certainty when newly collected data are presented. By combining the
Bayesian regression model and reliability theory, an anomaly index is
formulated to quantitatively evaluate the probability of failure of ex-
pansion joints. More importantly, the anomaly index can be evolutio-
narily evaluated and refined along with successively collected mon-
itoring data, enabling to foresee the possible failure of expansion joints
at an early stage. The ability of this fully date-driven method for pre-
diction, uncertainty qualification, condition assessment and damage
alarm of bridge expansion joints will be verified by using real-world
monitoring data from a cable-stayed bridge.

This paper is organized as follows. Section 1 briefly reviews the
problem and reports on premature failure of bridge expansion joints,
and the state-of-the-art research on evaluating the performance of
bridge expansion joints in service. In Section 2, the Bayesian DTR model
characterizing the normal pattern of bridge expansion joints is for-
mulated, and an anomaly index quantitatively evaluating the prob-
ability of failure is developed. In Section 3, the proposed method for
probabilistic condition assessment and damage alarm of bridge ex-
pansion joints is verified with the use of real-world monitoring data
acquired from a long-span cable-stayed bridge. Conclusions are drawn
in Section 4.

2. Formulation of Bayesian DTR model and anomaly index

As stated above, the longitudinal displacement of bridge expansion
joints is primarily induced by temperature fluctuations. Of interest is an

obvious linear relationship between displacement and temperature
which is the normal pattern of bridge expansion joints. To formulate the
DTR model, multi-channel temperature monitoring data are usually
required to characterize the bridge temperature field. In this study, the
effective temperature of bridge deck cross-section is employed to ac-
count for the correlation between bridge expansion joint displacement
and temperature variation. Making use of the formulated Bayesian DTR
model and reliability theory, an anomaly index is elicited for condition
assessment and damage alarm of bridge expansion joints.

2.1. Extraction of effective temperature

For a long-span bridge equipped with an SHM system, there is often
a dense array of temperature sensors deployed at various locations of
the bridge to monitor the temperature variation at different structural
portions. As a result, a considerable amount of temperature data from
different measurement points are available, and some of them might be
highly correlated. In practice, only certain representative temperatures
extracted from massive monitoring data are necessary to formulate the
DTR model. There are three typical representative temperatures which
are commonly used in practice, i.e., mean temperature, effective tem-
perature, and principal components of temperature [10,23]. The mean
temperature, a simple version of the representative temperature, re-
presents an average of all measured temperatures; while the principal
components of temperatures are computed by the Principal Component
Analysis (PCA) to reflect the major temperature fluctuations. Both the
mean temperature and principal components of temperature don’t have
an explicit relationship with the thermal movement of expansion joints.
In principle, temperature distribution over a bridge deck cross-section
can be divided into two parts: the effective temperature that contributes
to the bridge longitudinal movements and the differential temperature
that contributes to the bridge bending deformations. In this regard, the
effective temperature, which accounts for thermal movements along
the bridge longitudinal direction, is a physically interpretative quantity
in explicit relation to the displacement of expansion joints [23]. Ac-
cording to the definition, the effective temperature of a cross-section
can be expressed as

∬=T
A

T x y dxdy1 ¯ ( , )
A (1)

where =A area of the cross-section; and =T x y¯ ( , ) two-dimensional tem-
perature over the cross-section. With the monitoring data from tem-
perature sensors located at a number of discrete locations, it is difficult
to calculate the effective temperature directly by Eq. (1). In practice,
the effective temperature can be estimated using the monitoring data
acquired from a bridge deck cross-section with the most temperature
sensors deployed, by

∑=
=

T A
A

T̄
i

k
i

i
1 (2)

where =A ithi subarea; =A the gross area of the cross-section;
=T̄i measured temperature at the ith subarea; and =k number of subareas

divided for the cross-section. The above approximation assumes that
the temperature at each subarea is identical, and the effective tem-
perature is obtained by a weighted average of temperatures measured
from all subareas (the material properties in subareas might be dif-
ferent, e.g., steel, concrete, asphalt).

2.2. Bayesian modelling

Bayesian regression differs from traditional regression in that the
model parameters are treated more as random variables than fixed
constants. As the model parameters are random variables, more in-
formation can be incorporated into the model by construction of a
probability distribution that describes the uncertainty involved in the
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model parameters. In addition, it gives rise to the (posterior) distribu-
tion of the prediction, which greatly facilitates the reliability-based
assessment of structural condition.

Suppose we have n sets of independent observations
= ⋯xy α n{( ); 1, 2, , },α α, where y 'sα are random response variables (e.g.,

displacement of expansion joints) and x 'sα are vectors of k-dimensional
explanatory variables (e.g., effective temperatures). The linear regres-
sion model of the relationship between the response variables and the
explanatory variables can be generally written as

= + + ⋯+ + = ⋯y β x β x β x ε α n1, ,α α α k αk α1 1 2 2 , (3)

where the errors εα’s are independently, normally distributed random
variables with mean zero and variance σ2. Eq. (3) can be expressed
compactly in matrix form as

= +y Xβ ε ε IN σ~, (0, )2 (4)
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and I represents the unit matrix of dimension n. It is common to set the
first column of X to a constant value of 1 so that β1 is an intercept term.
Using the definition of multivariate normal distribution, the likelihood
function can be written as

= ⎡
⎣⎢

− − − ⎤
⎦⎥

y X β y Xβ y Xβf σ
πσ σ

( , , ) 1
(2 )

exp ( ) ( )
2n

T
2

2 2 2 (5)

In Eq. (5), the likelihood function is expressed as the joint prob-
ability density function for all data conditional on the unknown para-
meters β and σ2. To facilitate the Bayesian inference of the regression
model, it is commonly assumed that β σ( , )2 has the Normal Inverted-
Gamma prior which is the natural conjugate prior for linear regression
[24–26]

=β βf σ f σ f σ( , ) ( ) ( )2 2 2 (6)
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where ∑0 is a symmetric positive definite matrix of size ×k k.
According to the Bayes’ theorem, the posterior distribution

β y Xf σ( , , )2 is proportional to the likelihood function y X βf σ( , , )2

multiplied by the prior distribution βf σ( , )2
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Combining the density functions and the joint posterior yields
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After some manipulations, Eq. (8) can be further expressed as
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Note that Eq. (9) is again the kernel Normal Inverted-Gamma dis-
tribution. It can be factored as the conditional posterior distribution β
multiplied by the marginal posterior distribution of σ2

= ×β y X β y X yf σ f σ f σ( , , ) ( , , ) ( )2 2 2 (10)

where
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Since the posterior distribution of the unknown parameters has been
analytically elicited, we can easily delineate the characteristics of the
posterior distribution, such as posterior mean, posterior median, pos-
terior credible intervals and so on.

For the unknown model parameters β, their marginal posterior
distribution can be obtained by integrating the variance parameter σ2

out of the joint posterior, that is
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. By doing so, the marginal posterior distribution of β be-
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where the density function of u is Gamma function
= −−f u u λ λu( ) exp( )α
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Thus, Eq. (12) can be expressed as
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which is the kernel for the density of a multivariate Student-t dis-
tribution [25,27]. Thus, the marginal posterior distribution of β is
Student-t distribution with

 ∑
−

∗

∗
∗

β b
a

Mean: Covariance:
2

Given new measurements X , the prediction distribution for the
future observation y satisfies

  ̂= +y X β ε (14)

which can be represented as  y X βf σ( , , )2 . By integrating it with re-
spect to the parameters β σand 2, the posterior predictive distribution
for the future observation y turns out to be the following multivariate
Student-t distribution [28,29]
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where  = ∗μ X β , and   ∑ = + ∑∗−∗
∗ X XI( )

b
a

T1
.

2.3. Gibbs sampler for Bayesian inference

With the assumption of natural conjugate prior, analytical expres-
sions of joint posterior and marginal posterior distribution for the un-
known parameters have been elicited in the previous section. However,
when more general prior distributions and complex models with a
larger set of unknown parameters are concerned, analytical solutions
become impossible or computationally intractable. In such circum-
stances, Markov chain Monte Carlo (MCMC) algorithms offer a pro-
mising means regardless of prior distributions or complexity of the
model. Gibbs sampler, one of MCMC algorithms, has been extensively
used since its advent in the late 1990s [30]. As a special case of the
more general Metropolis-Hasting algorithm, Gibbs sampler is preferable
when sampling from a multivariate posterior is not feasible, but rather
sampling from the conditional distributions for each variable is feasible
[31]. The idea behind Gibbs sampler is to generate a sample from the
distribution of each variable in turn, conditional on the current values
of other variables. It is shown that the sample sequences constitute a
Markov chain, and the stationary distribution of this Markov chain is
just the sought-after posterior distribution of the variable. The iterative
process of Gibbs sampler for generating the samples of β and σ2 are as
follows:

(1) Initialize the parameters β σ{ , }(0) 2(0) and let k = 1;

(2) Sample β k( ) from the conditional distribution
−β y Xf σ( , , )k2( 1) ;

(3) Sample σ k2( ) from the conditional distribution y X βf σ( , , )k2 ( ) ;
(4) Let = +k k 1, go back to (2) and (3) and repeat until L

samples = ⋯β σ k L{ , : 1, , }k k( ) 2( ) are obtained.

As the number of Gibbs iterations increases to infinity, the draws from
the conditional distributions converge to the joint posterior distribution

β y Xf σ( , , )2 . In practice, after a large number of iterations, the mar-
ginal distributions of β and σ2 can be approximated by the empirical
distributions of samplers. More specifically, one repeats the Gibbs
iterations L times (large enough for convergence) and saves the last H
samplers of = − ⋯β σ k L H Land ( , , )k k( ) 2( ) to estimate the marginal
distributions of β and σ2. Similarly, the posterior means, the standard
errors and the 95% confidence intervals of β and σ2 can be calculated
by using the last H samplers. The 95% confidence interval is estimated
by using 2.5% and 97.5% of the posterior samples. Note that the con-
vergence of iteration must be judged before using the samples obtained

from Gibbs sampler to make inference, because it directly affects the
accuracy of the statistical results. A concept of burn-in period (refers to
L-H) is introduced to confirm the time period required for the draws to
reach their stationary state. In practice, both visual inspection and
Raftery-Lewis diagnostic [32,33] can be adopted to determine the
length of the burn-in period.

With the posterior samples = ⋯β σ k H L{ , : , , }k k( ) 2( ) , the predictive
density of future value y given X , can be approximated as [25]

∫
∑
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≈
− =
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f f σ f σ d dσ

L H
f σ

(^ ^ ) (^ ^ , , ) ( , , )
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k H

L
k k

2 2 2

( ) 2( )

(16)

2.4. Damage alarming using anomaly index

The Bayesian regression model formulated above, which char-
acterizes the correlation between expansion joint displacement and
effective temperature, contains the uncertain parameters β and σ2 with
their distributions identified from monitoring data. As a result, the
predicted expansion joint displacement at any given temperature from
this model is not a deterministic value but rather a probability dis-
tribution. In practice, we are mainly concerned with the probability of
failure when a new set of measurements is obtained. A performance
indicator, named anomaly index, is defined herein to evaluate the
failure probability of the expansion joint in the light of new measure-
ment data. For any structural component, the probability of failure is
defined as the probability of violating any of its limit states [34,35]. A
limit-state function can be written as

= −g R S (17)

where R is the capacity of displacement of the expansion joint under a
certainty temperature, and S is the actual (measured) displacement
response at the same temperature. The above function returns a nega-
tive value under failure conditions (i.e., <g 0) and a positive value
when the system is healthy (i.e., >g 0); the limit state (i.e., =g 0) se-
parates the safe region from the failure region. With the limit-state
function, the probability of failure can be expressed as

∫= < = − < =
−∞

P P g P R S F x f x dx( 0) ( 0) ( ) ( )f R S
0

(18)

where F x( )R is the cumulative distribution function (CDF) of the ca-
pacity and f x( )S is the probability density function (PDF) of the mea-
sured displacement. If R and S are independent normal variates, the
failure probability can be determined as

=
⎛

⎝
⎜−

−

+

⎞

⎠
⎟P

μ μ

σ σ
Φf

R S

R S
2 2

(19)

where Φ(·) is a standard normal probability function; μR and μS are the
means of R and S; and σR

2 and σS
2 are the standard variances of R and S.

Akin to the safety index in reliability analysis, the anomaly index is
defined as

= =
−

+
−λ P

μ μ

σ σ
|Φ ( )|

| |
f

R S

R S

1
2 2 (20)

where −Φ (·)1 is the inverse of the standard normal cumulative dis-
tribution function. When new monitoring data are collected succes-
sively (e.g., month-by-month or year-by-year), the anomaly index can
be evolutionarily evaluated by repeatedly using Eqs. (19) and (20).

3. Application to a long-span cable-stayed bridge

3.1. Ting Kau Bridge

The Ting Kau Bridge (TKB) in Hong Kong (Fig. 1) is a three-tower
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cable-stayed bridge with two main spans of 448 m and 475 m respec-
tively, and two side spans of 127 m each [36]. The bridge deck is se-
parated into two carriageways with a width of 18.8 m each, between
them being three slender single-leg towers with respective heights of
170 m, 194 m, and 158 m. The deck is supported by 384 stay cables in
four cable planes. A long-term SHM system comprising more than 230
sensors permanently installed on the TKB has been implemented by the

Hong Kong SAR Government Highways Department after completion of
the bridge construction in 1999 [37,38]. The sensors deployed on the
bridge include accelerometers, strain gauges, displacement transducers,
anemometers, temperature sensors, GPS, and weigh-in-motion sensors
[39,40]. Two displacement transducers (denoted as DSGAW01 and
DSGPW01 in Fig. 1) have been used for the measurement of long-
itudinal movements of the expansion joints at both ends of the

(a) 

(b)

475m448m127m 127m

Displacement Transducer
Temperature Sensor

Ting Kau
Abutment

Ting Kau 
Tower

Central Tower Tsing Yi Tower Tsing Yi 
Abutment

DSGAW01 DSGPW01

CH 12217.5

Fig. 1. Ting Kau Bridge: (a) elevation; (b) deck cross-section.
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Fig. 2. Layout of sensors on Ting Kau Bridge: (a) displacement transducer at Tsing Yi abutment; (b) temperature sensors on deck cross-section.
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continuous bridge deck. For the measurement of temperature in steel,
concrete, asphalt and atmosphere, a total of 83 temperature sensors
have been installed, of which 51 are deployed at one deck cross-section
(i.e., CH 12217.5). The sampling rates of displacement transducers and
temperature sensors are 2.56 Hz and 0.07 Hz, respectively. Fig. 2 il-
lustrates the deployment of a displacement transducer at the Tsing Yi
abutment (i.e., DSGPW01) and the temperature sensors on the heavily
instrumented deck cross-section (i.e., CH12217.5).

3.2. Monitoring data of displacement and temperature

One-year continuous monitoring data of the TKB in its intact stage,
including the displacements at two expansion joints (DSGAW01 and
DSGPW01) and the temperatures on the heavily instrumented deck
cross-section (CH12217.5), are employed to formulate the Bayesian
DTR model. The measured temperatures from 39 sensors on the cross-
section, including 15 in steel and 24 in concrete, are used to calculate
the effective temperature. By dividing the cross section into 39 sub-
areas, the effective temperature is estimated by Eq. (2) making use of
the measured temperatures from the 39 sensors. The hourly-average
displacements and effective temperatures are utilized as the target
quantities. Before embarking on Bayesian regression modelling, the
one-year monitoring data were carefully screened to identify outliers
and eliminate any unrealistic values, e.g., abnormal data caused by
malfunctioning of the acquisition equipment. A total of 3511 h of data
were finally selected for the regression modelling, in which the first
2891-hour data representing the healthy state of the expansion joints
were chosen as the training dataset in Bayesian DTR modelling, while
the remaining 720-hour (corresponding to one month) data re-
presenting unknown state of the expansion joints were used as testing
dataset for model validation. Fig. 3 shows the data sequence of the
hourly-average effective temperature and expansion joint displace-
ments measured in one year.

After obtaining the effective temperature and displacement, a check
on the relationship between the displacement of expansion joints and
the effective temperature of bridge deck was made. Fig. 4 shows the
effective temperature and expansion joint displacements at the Ting
Kau and Tsing Yi abutments for a duration of 48 h, where DSGAW01
denotes the displacement at the Ting Kau abutment and DSGPW01
denotes the displacement at the Tsing Yi abutment. It is seen that the
variation of displacements coincides well with effective temperature
fluctuation.

3.3. Formulation of Bayesian DTR model

Since only one covariate (i.e., effective temperature) is considered
in the Bayesian DTR modelling, the regression model reduces to

= + + = ⋯y β x β x ε α n, 1, ,α α α α1 1 2 2 (21)

where yα represents the hourly-average displacement of an expansion
joint; xα1 is implicitly set to 1 to allow for an intercept; xα2 denotes the
hourly-average effective temperature; and εα is the regression error.

3.3.1. Selection of prior distribution
To implement the Bayesian inference to regression analysis, prior

distribution for each model parameters should be specified. In this
study, the Normal Inverse-Gamma prior is adopted to depict the con-
jugate prior of the model parameters, which is expressed as

∑= × = × ⎛
⎝

⎞
⎠( )β βf σ f σ f σ N σ IG a b( , ) ( ) ( ) 0,

2
,

2
2 2 2 2

0 (22)

The level of (un)certainty in a prior is manipulated through the
specified features of the prior distribution, and these features are called
hyperparameters in the Bayesian context. For example, a normal dis-
tribution is defined through a mean and a variance, so the amount of
knowledge incorporated into normal distribution is directly controlled
by the mean and variance hyperparameters. Fig. 5 shows four normal
distributions having different values of the variance hyperparameter. It
can be seen that the distributions with small variance (1 and 10) il-
lustrate much more certainty about the possible values of the parameter
because the spread of these distributions covers a much smaller range of
possible values than those plots with large variance. In other words, the
distributions with large variance (100 and 1000) bear very little cer-
tainty about the possible values of the parameter because there are
much larger spreads of possible values.

Akin to normal distributions, inverse-gamma distributions with
different parameter values are also manipulated as shown in Fig. 6. In
general, the parameters a and b dictate the possible range of values for
the corresponding parameters being estimated. The smaller the values
of a and b, the larger the spread of the possible values.
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Because of the very little certainty of the parameters, we chose the
prior distribution parameters enabling to cover a wide range of the
possible values. Herein, we set ∑ = × I10000 2 (I2 is two-dimensional
unit matrix), and = =a b 0.001, which makes the prior distribution
highly diffuse.

3.3.2. Estimation of model parameters
Both analytical solution and Gibbs sampler are applied to elicit the

posterior distributions of β (i.e., β1 and β2) and σ2. It is necessary to
check that the generated posterior samples are resulting from a sta-
tionary distribution to ensure the accuracy of the results. Both trace plot
and convergence diagnostic are used here to examine the convergence
of Gibbs iterations. The total number of iterations was chosen as
25,000, of which the first 20,000 iterations were discarded while the
last 5,000 posterior samples left for parameter estimation after con-
vergence checking.

The left panels in Fig. 7 show the sample paths of the retained 5,000
draws for Model 1 (the expansion joint at Ting Kau abutment). As il-
lustrated, there is no evidence of a lack of convergence from the trace
plots. The values of convergence diagnostic for the estimated model
parameters are all close to zero (between −0.029 and 0.025), in-
dicating that the posterior samples meet the convergence requirement.
The right panels in Fig. 7 show the posterior distributions of the model
parameters with 95% confidence interval (the blue area). Similarly, the
sample paths and posterior densities of the model parameters for Model
2 (the expansion joint at Tsing Yi abutment) are presented in Fig. 8.

Due to the statistical nature of the Bayesian approach, more detailed
information about the model parameters, such as posterior mean,
Standard Deviation (SD), 95% posterior confidence interval, skewness
and kurtosis, can all be obtained from the retained 5,000 samples, as

illustrated in Table 1. The results from both analytical solution and
Gibbs sampler are given. It is found that the approximate results are
pretty much the same as the analytical results, verifying the accuracy of
the Gibbs sampler method. The SD is a measure that quantifies the
uncertainty of each parameter. In both Models 1 and 2, β2 has the
lowest SD value (0.03 for both), β1 comes second (0.75 and 0.72), and
model error σ2 owns the largest SD value (2.24 and 2.03), which implies
the model error σ2 has a higher uncertainty than β βand1 2. As shown in
the table, the values of skewness are nearly zero and kurtosis are close
to 3, indicating that the estimated posterior densities are approximately
normal distribution.

The mean slopes of the Bayesian DTR models are 7.93 and
6.88 mm/°C for the expansion joints at the Ting Kau abutment and the
Tsing Yi abutment, respectively. As the expansion lengths for spans on
the left and right sides of the central tower are 575 m and 602 m, the
thermal expansion coefficients can be estimated to be 13.79 × 10-6 per
°C and 11.43 × 10-6 per °C, which are close to the design value of
12.0 × 10-6 per°C. For the purpose of comparison, the conventional
deterministic linear regression models are also formulated by using the
same set of data. It is obtained that the slopes of the deterministic linear
regression models are 8.04 mm/°C for the Ting Kau abutment and
7.07 mm/°C for the Tsing Yi abutment. Hence the corresponding ex-
pansion coefficients are calculated to be 13.98 × 10-6 per °C and
11.74 × 10-6 per °C, respectively, which are close to the results esti-
mated by the Bayesian DTR models.

Fig. 9 shows the correlation between the expansion joint displace-
ment and effective temperature for both expansion joints. As mentioned
before, the estimated correlation model is in distribution form. For il-
lustration, five probability distributions of the displacement as regards
five specific temperatures (10 °C, 15 °C, 20 °C, 25 °C and 30 °C) are
provided. Also plotted is the mean of the estimated displacements (red
line), which agrees well with the measurements. Compared to the tra-
ditional regression modelling, an appealing advantage of the Bayesian
regression modelling is that the model error can be quantitatively es-
timated in conjunction with model parameters, making the model in-
terpretation more reasonable. From Table 1, it is seen that Model 2 has
a smaller model error than Model 1, which indicates that Model 2 is
relatively more accurate under the assumption that the monitoring data
from the two expansion joints contain the same level of contaminated
noise in statistical sense.

3.3.3. Evaluation of prediction capability
The prediction capability of the formulated Bayesian DTR models is

then evaluated using the testing dataset. By transforming the raw
temperature data into hourly-average effective temperature, the dis-
placements of expansion joints DSGAW01 and DSGPW01 are estimated
from their corresponding Bayesian DTR models by inputting the effec-
tive temperatures. The forecast mean displacements with 95% con-
fidence interval generated by the Bayesian DTR models are shown in
Fig. 10, where the measured counterparts are also presented for com-
parison. It is seen that the predicted displacements coincide well with
the measurements in both training and testing phases. The prediction
errors are provided in Fig. 11. It is observed that there is almost no
deviation in prediction errors between the training and testing phases.
To quantify the discrimination and forecast capability, two perfor-
mance metrics, Root Mean Squared Error (RMSE) and Mean Likelihood
(ML), are calculated. They are defined as

∑= −
=n

y μRMSE 1 ( )
i

n

i yi
1

2

(23)

∑=
=

( )
n

p y μ σML 1 ,
i

n

i yi y
1

2
i (24)

where yi is the measured displacement; μyi and σy
2
i are predictive mean

and variance of displacement, respectively. The RMSE quantifies the
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overall accuracy of forecasts, whereas the ML measures the probability
of the measurements that are reproduced by the forecasts. The lower
the value of RMSE and the higher the magnitude of ML, the more
precise the results generated by the model [41]. The results of RMSE
and ML for the training and testing phases are provided in Fig. 12. It is
evident that for both performance metrics there is no significant dis-
tinction between the training and testing phases. It proves once again
that the formulated models are competent to characterize and predict
the displacement-temperature relationship.

The results of the RMSE metric for the Bayesian DTR models and the
deterministic linear regression models are listed in Table 2. By com-
paring the two sets of data, it can be found that the forecasting per-
formance of the Bayesian DTR models is superior to that of the de-
terministic linear regression models in both training and testing phases.

3.3.4. Prediction of extreme displacement
One general objective of SHM is to verify or validate design para-

meters with the use of real-world monitoring data. According to the
design documents of the TKB, the maximum and minimum design

temperatures are 40 °C and −2°C, respectively [42]. Substituting the
design values into the formulated Bayesian DTR models, the corre-
sponding predictive distributions about the maximum and minimum
displacements are obtained as shown in Figs. 13 and 14.

The means, SDs and 95% posterior confidence intervals of the pre-
dicted displacements at the maximum and minimum design tempera-
tures are summarized in Table 3. According to the predicted mean

Table 1
Summary of model parameters.

Expansion joint Mean SD 95% confidence interval Skewness Kurtosis

Analytical Gibbs Analytical Gibbs

Ting Kau abutment β1 −186.88 −186.94 0.75 0.75 [−188.40, −185.43] −0.01 2.98

β2 7.92 7.93 0.03 0.03 [7.87, 8.00] −0.005 2.97

σ2 93.69 93.70 2.24 2.26 [89.46, 98.33] 0.15 2.97

Tsing Yi abutment β1 −152.83 −152.65 0.72 0.73 [−154.05, −151.23] 0.04 2.92

β2 6.88 6.88 0.03 0.03 [6.82, 6.93] −0.03 2.93

σ2 84.03 84.18 2.03 2.03 [80.30, 88.36] 0.13 3.06

Fig. 9. Formulated Bayesian DTR models: (a) DSGAW01; (b) DSGPW01.

(a) 

(b)

Training phase Testing phase

Training phase Testing phase

Fig. 10. Comparison between measured and estimated displacements of ex-
pansion joints for training dataset and testing dataset: (a) DSGAW01; (b)
DSGPW01.

(a)

(b)

Fig. 11. Estimation error for training dataset and testing dataset: DSGAW01;
(b) DSGPW01.
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displacements at the maximum and minimum temperatures, the mean
displacement ranges (difference between the predicted mean displace-
ments at the maximum and minimum temperatures) are 332.68 mm at
the Ting Kau abutment and 290.19 mm at the Tsing Yi abutment, re-
spectively, which are very close to the design values of 339 mm and
297 mm [8]. The discrepancy between the predicted and design values
is smaller than the SD. However, the displacement ranges with 95%
confidence interval are [298.52, 371.37] at the Ting Kau abutment and
[252.99, 325.26] at the Tsing Yi abutment, whose upper bounds exceed
the design criterion. It would be considered in the future renovation of
the expansion joints.

Similarly, by substituting the design temperature values into the
deterministic linear regression models, the displacement range of the
expansion joints, due to temperature variation, is obtained to be
336.29 mm at the Ting Kau abutment and 293.14 mm at the Tsing Yi
abutment, respectively. Both are in coincidence with the results elicited
from the Bayesian DTR models.

3.3.5. Verification for anomaly detection
The Bayesian DTR models formulated under the intact state of ex-

pansion joints can be used to represent a normal correlation pattern,
which will break down if the performance of the expansion joints de-
grades. With the established correlation pattern, anomaly alarms will
be issued if the future longitudinal displacement disobeys the normal
pattern. According to the literature [1,43], the common joint defects
which affect the longitudinal displacement include: (i) restriction of
freedom of joint movement; (ii) impact of rotation, tilting, or settle-
ment; (iii) accumulation of debris and incompressible materials in the
seals; and (iv) loose, rusted, cracked, missing, or damaged steel plates
and so forth. Making use of the longitudinal displacement monitoring

data, the proposed anomaly index for damage alarm is examined.
To illustrate how the proposed method performs condition assess-

ment and damage alarm under different perturbations, the expansion
joint displacements at the temperature of 30 °C is considered as an
example. The predictive distributions in expansion joint displacements
are obtained by substituting the temperature 30 °C into the Bayesian
DTR models, where the means of the predicted displacements are
51.46 mm for DSGAW01 and 53.84 mm for DSGPW01. To simulate
different degrees of damage, the measured displacements at 30 °C are
assumed to be 10, 20, 30, 40, 50, 60, 70, 80 and 90 mm for both ex-
pansion joints. Then the anomaly index characterizing the deviation of
the measured displacements from the model predictions is evaluated
according to Eq. (20). As illustrated in Fig. 15, the more the measured
displacement deviates from the predicted displacement (red penta-
gram), the bigger the anomaly index, which means the higher prob-
ability of failure on expansion joint. Thus, the degree of failure can be
graded in terms of the value of anomaly index. The 95% confidence
level (red dotted line) can be considered as a threshold for quick
anomaly detection. The expansion joint will be flagged as abnormal
once the anomaly index exceeds the threshold.

To verify the efficacy of the proposed method for damage alarm,
four degradation cases in terms of different drifts are considered for
both expansion joints DSGAW01 and DSGPW01. The degradation se-
verities in the four cases are shown in Table 3, where Case 1 represents
the intact state and the other three cases (with an offset of 10, 20 and
30 mm from the original measured displacements in testing phase, re-
spectively) represent three different degradation conditions. The cor-
responding degradation rates are respectively 0%, 2.9%, 5.9% and
8.8% for the expansion joint DSGAW01, and 0%, 3.3%, 6.7% and
10.1% for the expansion joint DSGPW01. The capability of damage
alarm, using 95% confidence level as control limits, is evaluated in
terms of alarm rate, which is defined as the percentage of the number of
alarms relative to the total number of testing data. One advantage of
using the alarm rate is that it helps avoid false-positive alarm caused by
spikes in the monitoring data, since the percentage of spikes/outliers is
often too low to generate a large alarm rate. The results obtained by the
proposed method in relation to different degrees of degradation are
provided in Table 4. It is observed that damage alarm is triggered more
frequently as degradation is incrementally aggravated. More specifi-
cally, only a few samples trigger alarm (the alarm rate is less than 8%)
in Case 1 (no drift), whereas nearly all the samples trigger alarm (the
alarm rate is nearly 100%) in Case 4 (a drift of 30 mm). Fig. 16 illus-
trates the values of anomaly index in the training and testing phases for
Case 1. It is seen that almost no deviation occurs in the anomaly index
between the training and testing phases, implying that the condition of
the expansion joints in the testing phase is healthy. However, for Case 4
as shown in Fig. 17, the values of anomaly index in the testing phase
deviate apparently from those in the training phase and are remarkably
higher than the threshold. As a result, the proposed method performs
favorably in assessing the performance and health condition of expan-
sion joints.

It is worth mentioning that this study assumes that the longitudinal
displacement of the expansion joints is mainly due to temperature
variations without considering other factors. In reality, strong winds

Fig. 12. Comparison of prediction performance for training dataset and testing
dataset.

Table 2
Comparison of Bayesian DTR models and deterministic linear regression models
in terms of forecasting performance.

DSGAW01 DSGPW01

Training
phase

Testing
phase

Training
phase

Testing
phase

Bayesian DRT models 8.50 9.04 7.69 7.20
Deterministic linear

regression models
9.15 9.13 8.41 7.34

(b)(a)
-240 -220 -200 -180 -160

0

0.01

0.02

0.03

0.04

-221.81 -184.04

95%

Displacement (mm)

p.
d.
f

100 120 140 160
0

0.01

0.02

0.03

0.04

111.48 149.56

95%

Displacement (mm)

p.
d.
f

Fig. 13. Predictive distribution of expansion joint displacement (DSGAW01) at the maximum and minimum design temperatures: (a) −2°C; (b) 40 °C.
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and heavy traffic may also induce changes of the longitudinal dis-
placement to some extent. However, the wind- and traffic-induced
longitudinal displacement is merely a second-order effect and short-
lived, and the longitudinal displacement will return to normal after the
loads are removed. An advantage of the Bayesian DTR model is that it
can account for various uncertainties including the effect of wind and
traffic loads.

(b)(a)
-200 -180 -160 -140

0

0.02

0.04

-184.92 -148.25

95%

Displacement (mm)
p.
d.
f

100 120 140 160
0

0.02

0.04

104.74 140.34

95%

Displacement (mm)

p.
d.
f

Fig. 14. Predictive distribution of expansion joint displacement (DSGPW01) at the maximum and minimum design temperatures: (a) −2°C; (b) 40 °C.

Table 3
Predicted displacements at the maximum and minimum design temperatures.

Expansion joint T (°C) Mean (mm) SD 95% confidence interval (mm) Mean range (mm)

Analytical Gibbs Analytical Gibbs

DSGAW01 −2 −202.66 −202.78 9.84 9.76 [−221.81, −184.04] 332.68
40 130.02 130.24 9.82 9.81 [114.48, 149.56]

DSGPW01 −2 −167.42 −166.50 9.08 9.31 [−184.92, −148.25] 290.19
40 122.77 122.38 9.06 9.12 [104.74, 140.34]

)b()a(
Fig. 15. Anomaly index for different abnormal cases: (a) DSGAW01; (b) DSGPW01.

Table 4
Damage alarm in different degradation cases.

Case Degradation
severity (mm)

DSGAW01 DSGAW01

Number of
alarms

Alarm
rate (%)

Number of
alarms

Alarm rate
(%)

1 0 56 7.78 44 6.11
2 10 350 48.61 452 62.78
3 20 633 87.92 690 95.83
4 30 717 99.58 720 100

 (a) 

(b)

Fig. 16. Anomaly index in training and testing phases for Case 1: DSGAW01;
(b) DSGPW01.

(a)

(b)

Fig. 17. Anomaly index in training and testing phases for Case 4: (a)
DSGAW01; (b) DSGPW01.

Y.Q. Ni, et al. Engineering Structures 212 (2020) 110520

11



4. Summary and conclusions

In this study, a probabilistic method in the context of Bayesian in-
ference is proposed for SHM-based condition assessment and damage
alarm of bridge expansion joints. In the formulated Bayesian DTR
model, the model parameters are considered as random variables with
their distributions identified from monitoring data, and thus the model
can explicitly account for uncertainties arising from measurement
noise, environmental variability and model error. Moreover, the pro-
posed method enables to quantify the prediction uncertainty in fore-
seeing the future observation with newly collected monitoring data.
The formulated model in the Bayesian context is seamlessly in com-
pliance with the anomaly index elicited in the context of reliability
theory. To facilitate general Bayesian inference, both analytical solution
for natural conjugate prior and Gibbs sampler algorithm for non-con-
jugate prior are provided.

The proposed method has been verified by use of long-term mon-
itoring data acquired from a long-span cable-stayed bridge. The case
study comes to the following observations: (i) The formulated Bayesian
DTR models characterize well the correlation between the displacement
of expansion joints and the effective temperature of bridge deck, with
the uncertainties duly reflected in the random model parameters and
error parameter. The estimated posterior densities of the model para-
meters and error are approximately normal distributions; (ii) The for-
mulated Bayesian DTR models perform as good in prediction (testing
phase) as in reproduction (training phase), with the forecasting cap-
ability validated in terms of both RMSE and ML. The predicted extreme
displacements of the two expansion joints by the Bayesian DTR models
at the maximum and minimum design temperatures are highly coin-
cident with the design values, validating the design assumptions; and
(iii) The proposed anomaly index is capable to evaluate the probability
of failure of expansion joints when new measurement is available. The
bigger the anomaly index, the higher the probability of failure of the
expansion joints. When the degradation due to draft exceeds a certain
value (e.g., 10 mm), the alarm rate resulting from the anomaly index is
significantly increased, signaling the occurrence of potential damage.
Also, using the alarm rate helps to avoid the false-positive alarm caused
by spikes in the monitoring data.
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