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Abstract

In this paper, we proposed a new algorithm, the Sparse AUC maximizing support vector machine, to get more
sparse features and higher AUC than standard SVM. By applying p-norm where 0 < p < 1 to the weight w of the
separating hyperplane (w · x) + b = 0, the new algorithm can delete less important features corresponding to smaller
|w|. Besides, by applying the AUC maximizing objective function, the algorithm can get higher AUC which make the
decision function have higher prediction ability. Experiments demonstrate the new algorithm’s effectiveness. Some
contributions as follows: (1) the algorithm optimizes AUC instead of accuracy; (2) incorporating feature selection
into the classification process; (3) conduct experiments to demonstrate the performance.
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1. Introduction

Support vector machine (SVM) [1, 2] has been a promising tool in machine learning [3, 4]. However, its success
depends upon the tuning of several parameters which affect generalization error. These parameters include such as
kernels, penalty parameters, the number of features and etc. For example, when given a training set, a practitioner
must first select a subset of features which contribute most to the problem, and then choose those parameters in SVM
algorithms leading to good generalization performance. An effective approach is to estimate the generalization error
and then search for parameters so that this estimator is minimized. In other words, we should give out an estimation
of a generalization error or some other related measures [5, 6] and then evaluate a learned model. This requires that
the estimators are both effective and computationally efficient.
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Nowadays the area under the receiver operating characteristics (ROC) curve, which corresponds to the Wilcoxon-
Mann-Whitney test statistic, is increasingly used as a performance measure for classification systems, especially
when one often has to deal with imbalanced class priors or misclassification costs[7, 8]. The ROC curve details the
rate of true positives against false positives over the range of possible threshold values. The area of that curve is
the probability that a randomly drawn positive example has a higher decision function value than a random negative
example; it is called the AUC (area under ROC curve). [9] established formal criteria ( consistency and discriminancy)
for comparing AUC and accuracy for learning algorithms and show theoretically and empirically that AUC is a better
measure than accuracy, therefore we should use learning algorithms to optimize AUC instead of accuracy.

When the goal of a learning problem is to find a decision function with high AUC value, then it is natural to use
a learning algorithm that directly maximizes this criterion. Over the last years, AUC maximizing versions of several
learning algorithms have been developed[10]-[16].

However, recent AUC maximizing algorithms does not directly obtain the feature importance. The benefit of
feature selection is twofold. It leads to parsimonious models that are often preferred in many scientific problems,
and it is also crucial for achieving good classification accuracy in the presence of redundant features[17, 18]. We can
combine SVM with various feature selection strategies, Some of them are ”filters”: general feature selection methods
independent of SVM. That is, these methods select important features first and then SVM is applied for classification.
On the other hand, some are wrapper-type methods: modifications of SVM which choose important features as well
as conduct training/testing. In the machine learning literature, there are several proposals for feature selection to
accomplish the goal of automatic feature selection in the SVM[18]-[23], in some of which they applied the l0-norm,
l1-norm or l∞-norm SVM and got competitive performance. The interesting one is l1-norm SVM, where the 2-norm
vector w of the objective function is replaced by 1-norm in the standard SVM model. Furthermore, we observe that
lp-norm SVM leads to more sparse solution when p norm is reduced from 2-norm to 1-norm and the more spare
solutions when p (0 < p < 1) is decreased further[24, 25].

Therefore, in this paper we will combine AUC maximizing SVM with feature selection via lp(0 < p < 1)-norm.
Section 2 will introduce the AUC maximizing SVM and Sparse AUC maximizing SVM is proposed in Section 3,
Numerical experiments are conducted in Section 4, Section 5 gives out the conclusions.

2. AUC maximizing SVM

2.1. ROC curve and AUC
For a classification problem, the training set is given by

T = {(x+1 , 1), ..., (x+l+ , 1), (x−1 ,−1), · · · , (x−l− ,−1)} ∈ (Rn × {−1, 1})l, (1)

where l = l+ + l−. Consider the decision function is on the form y = sgn( f (x)) = sgn((w · x) + b), where y = 1 if
f (x) ≥ 0, or y = −1 else.

ROC curve is a two-dimensional measure of classification performance f (x). It plots the number of true positives
on the y-axis against the number of false positives on the x-axis. One of the most interesting point of ROC curve is
that if error costs or class distributions are unknown, classifier performance can still be characterized and optimized.
Figure 1 [15] depicts an example of the ROC curve of a given classifier. The diagonal line corresponds to the ROC
curve of a classifier that predicts the class at random and the performance improves the further the curve is near to the
upper left corner of the plot.

The area under the curve, commonly denoted as AUC, is the most frequently used performance measure extracted
from the ROC curve. AUC equals to the probability that f (x) assigns a higher value to a randomly drawn positive
input x+ than to a randomly drawn negative input x−,

AUC( f ) = Pr( f (x+) > f (x−)). (2)

When AUC is equal to 1, the classifier achieves perfect accuracy if the threshold is correctly chosen, and a classifier
that predicts the class at random has an associated AUC of 0.5. The AUC refers to the true distributions of positive
and negative points, but it can be estimated using the training set T

AUC =

∑l+
i=1
∑l−

i=1 1( f (x+i )> f (x−i ))

l+l−
, (3)



Yingjie Tian et al. / Procedia Computer Science 4 (2011) 1691–1698 1693

Figure 1: Example of ROC curve . The diagonal line denotes the ROC curve of a random classifier.

where 1π is defined to be 1 if the predicate π holds and 0 otherwise. Maximizing the AUC is therefore equivalent to
maximizing the number of pairs satisfying f (x+i ) > f (x−i ).

2.2. AUC maximizing SVM

For the linear decision function with the form f (x) = (w · x) + b, AUC turns to

AUC =

∑l+
i=1
∑l−

i=1 1(w·(x+i −x−i ))>0

l+l−
, (4)

if we denote ξi j = (w · (x+i − x−i )), then initial AUC Maximizing problem should be [15]

max
w,ξ

g(ξ) =
l+∑

i=1

l−∑

i=1

Θ(ξi j), (5)

s.t. (w · (x+i − x−j )) = ξi j, i = 1, · · · , l+, j = 1, · · · , l−, (6)

where Θ(x) is the step function defined as Θ(x) = 1x>0. It is equivalent to

min
w,ξ

g̃(ξ) =
l+∑

i=1

l−∑

i=1

Θ̃(ξi j), (7)

s.t. (w · (x+i − x−j )) = −ξi j, i = 1, · · · , l+, j = 1, · · · , l−, (8)

where Θ̃(x) is defined as Θ̃(x) = 1x≥0. First of all, problem (7)∼(8) is ill-posed since solutions of the problem may not
be unique, another issue is that the objective function is not differentiable over the range of ξi j. Thus in order to make
it well-posed and tractable, a regularization term can be added to the objective function and Θ(ξi j) can be relaxed to
a linear or convex function. The choice of the regularization term is arbitrary and we can select variant norms of w,
such as lp(p ≥ 0)-norm

‖w‖p = (
n∑

i=1

|wi|p)
1
p , (9)

in the sense

‖w‖0 = lim
p→0
‖w‖pp = lim

p→0
(

n∑

i=1

|wi|p) = �{i|wi � 0}, (10)
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and

‖w‖1 = lim
p→1
‖w‖pp = lim

p→1
(

n∑

i=1

|wi|p). (11)

In [16] l2-norm of w was selected thus a convex programming was constructed as

min
w,ξ,ρ

1
2
‖w‖22 +C

l+∑

i=1

l−∑

j=1

ξi j, (12)

s.t. (w · (x+i − x−j )) ≥ ρ − ξi j, i = 1, · · · , l+, j = 1, · · · , l−, (13)
ξi j ≥ 0, i = 1, · · · , l+, j = 1, · · · , l−, (14)

where ρ > 0 is a parameter to be chosen prior. Model (12)∼(14) is called the AUC maximizing SVM[12]. Of course,
we can apply different lp-norm of w to derive various models, when p = 1 is selected problem (12)∼(14) turns to be
a linear programming[13], and p = 0 provides a very simple and easily grasped notion of sparsity, it is in general
NP-hard [26, 27] and not really the right notion for empirical work.

3. AUC maximizing SVM with feature selection

3.1. lp-norm AUC maximizing SVM
In this section, we consider relaxing l0-norm of w to lp(0 < p < 1)-norm in order to get more sparse solution

than l1-norm, and at the same time achieving more practical applications than l0-norm, which results in the following
problem

min
w,ξ

‖w‖pp +C
l+∑

i=1

l−∑

i=1

ξi j, (15)

s.t. (w · (x+i − x−j )) ≥ 1 − ξi j, i = 1, · · · , l+, j = 1, · · · , l−, (16)
ξi j ≥ 0, i = 1, · · · , l+, j = 1, · · · , l−. (17)

Figure 1 presents the behavior of the scalar function |w|p for various values of p, showing that as p goes to zero,
this measure becomes a count of the nonzeros in w.

Figure 2: The behavior of |w|p for various values of p. As p tends to zero, |w|p approaches the indicator function, which is 0 for w = 0 and 1
elsewhere.

3.2. Multi-stage convex relaxation technique
Because of nonconvexity of ‖w‖pp, it is still difficult for problem (15)∼(17) to efficiently find the global optimal

solution, so we apply multi-stage convex relaxation technique in [28] to solve it. In fact, iteratively reweighted l1
minimization proposed in [29] is a special case of multi-stage convex relaxation technique. The algorithm is as
follows:

Algorithm 1 (Multi-stage convex relaxation procedure for AUC maximizing SVM)
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(1) Set the iteration count K to zero, α(0)
i = 1, i = 1, · · · , n;

(2) Solve the weighted AUC Maximizing SVM problem

min
w,ξ

n∑

i=1

α(K)
i |wi|2 +C

l+∑

j=1

l1∑

k=1

ξi j, (18)

s.t. (w · (x+j − x−k )) ≥ 1 − ξ jk, j = 1, · · · , l+, k = 1, · · · , l−, (19)
ξ jk ≥ 0, j = 1, · · · , l+, k = 1, · · · , l−. (20)

and get the solution (w(K), ξ(K));
(3) Update the weights: for each i = 1, · · · , n,

α(K+1)
i =

p
2

(|w(K)
i | + ε)

p−1|w(K)
i |−1 (21)

here ε is positive to ensure that the algorithm is well-defined;
(4) Terminate on convergence or where K attains a specified maximum number of iteration Kmax. Otherwise,

increment K and go to step (2).

3.3. Large Scale Problems
Relaxed problems in step (2) of the above algorithm has the serious drawback that the number of constraints is

quadratic in the number of training points, so they become very large even for small training set. To cope with this,
different strategies are constructed [12, 14, 13].

In this section we will apply a modified technique in [12] because it deal with the reduced problem by one-class
svm[30], here we directly solve the relaxed problem in step (2).

Algorithm 2( Approximate relaxed AUC Maximizing SVM)

(1) Given l+ positive and l− negative training points, choose appropriate parameter C and integer M;
(2) Generate all z jk = x+j − x−k , j = 1, · · · , l+, k = 1, · · · , l−, this results in l+l− vectors;
(3) Apply Fast and Exact k-Means (FEKM) these l+l− vectors to find M cluster centers;
(4) Solve the problem in step (2) of Algorithm 3 using the M cluster centers.

4. Numerical experiments

In this section, our aim is to provide some empirical analysis of our sparse AUC maximizing Support Vector
Machine behavior in two ways: sparse features and higher AUC compared with standard linear C-SVC[1, 2], AUC
SVM[16], and lpS V M[25]. The data sets we used are classical benchmark data sets and a simulation data set.

4.1. Simulation data set
The simulation dataset is generated by the following steps:
(1) Independently generate 100 stochastic vectors xi ∈ R20, i = 1, 2, ..., 100 as the inputs according to N(0, 1) the

normal distribution.
(2) The outputs are determined by the hyperplane g(x) = [x]1+2[x]2+3[x]3−2 = 0, which means that the output

of an input xi is ”+1” if g(xi) ≥ 0 and is ”-1” if g(xi) < 0.
Note that, in Algorithm 1, the performance depends on the parameters C and p. Therefore, C and p should be

adjusted properly. In our experiments, the best value of C and p, q is chosen by 5-fold cross validation. 10 experiments
are conducted for this dataset, and the average results are recorded illustrated in Table 1, where the best results are
given by the bold form.

Obviously, our sparse AUC maximizing SVM performs well in two ways among four methods. In Table 1, the
data in 3th column shows the percentage of the number of the right features over the number of the selected features,
which means the bigger the value the better the result. The AUC and Accuracy are computed by averaging the test
errors among 10 experiments. From table 1, it is easy to see that sparse AUC maximizing SVM selects more sparse
features than C-SVC or AUC-SVM and get higher AUC value than lp-SVM or not bad than AUC-SVM.
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Table 1: Simulation datasets

No. o f selected f eatures Percentage o f relevent f eatures AUC ACC

C − S VC \ \ 0.97 0.98

lp − S V M 3.8 78% 0.91 0.93

AUC − S V M \ \ 0.96 0.94

S parse AUC S V M 4.2 77% 0.96 0.93

4.2. Real datasets

To test our method on real-world data, three datasets (”heart”, ”Australian”, ”german”) in UCI are used. According
to Algorithm 1, the 5-fold cross validations on 3 datasets are conducted to choose the optimal parameters C and p,
then the optimal parameters are applied to train the whole training set to select features. Therefore Algorithm 1 and
standard linear C-SVC are performed on the new training set constructed by selected features. Compard results are
listed in Table 2-Table 4 and Figure 3-Figure 5, where the best results are given by the bold form. We can see that
spare AUC SVM is effective in both spares features and higher AUC values than standard linear C-SVC.

Table 2: Compared results on heart

p No. o f selected f eatures AUC ACC

S parse AUC S V M 0.8 4 0.8437 0.8

C − S VC \ \ 0.8266 0.74
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Figure 3: ROC curves

Table 3: Compared results on German

p No. o f selected f eatures AUC ACC

S parse AUC S V M 0.9 24 0.7546 0.73

C − S VC \ \ 0.7358 0.57
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Figure 4: ROC curves

Table 4: Compared results on Australian

p No. o f selected f eatures AUC ACC

S parse AUC S V M 0.9 14 0.9028 0.91

C − S VC \ \ 0.8917 0.88
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Figure 5: ROC curves

5. Conclusions

In this paper, we proposed a new algorithm – Sparse AUC maximizing SVM which can realize two objectives at
the same time: get more sparse features and higher AUC than standard SVM.Some contributions as follows: (1) the
algorithm optimizes AUC instead of accuracy; (2) incorporating feature selection into the classification process; (3)
conduct experiments to demonstrate the performance.

By changing the 2-norm of w of the separating hyperplane (w·x)+b = 0 to p-norm where 0 < p < 1, This algorithm
can delete the less important features corresponding to smaller |w|, and by applying the AUC maximizing objective
function we can get higher AUC which make the decision function have higher prediction ability. Experiments results
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proved our algorithm effective and efficient. However, the number of constraints in the programming of this new
algorithm is quadratic in the number of training points, so they become very large even for small training set. More
efficient methods need to be considered to cope with this problem.
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