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Abstract

Existing consensus protocols for synchronous 
distributed systems concentrate on the lower bound on the 

number of rounds required for achieving consensus. This 
paper proposes an approach to reduce the message 

complexity of some uniform consensus protocols 

significantly while achieving the same lower bound in 
which for any t-resilient consensus protocol only t + 1
processes engaging in sending messages in each round. 

1. Introduction 

Consensus is one of the fundamental problems in 
distributed computing. Assuming a distributed system with 
a set of n processes, {p1, p2, …, pn}, in the Consensus 
problem, each process pi initially proposes a value vi, and 
all non-faulty processes have to decide on one common 
value v which is equal to one of the proposed values. A 
process is faulty during an execution if its behavior 
deviates from that prescribed by its algorithm, otherwise it 
is correct. More precisely, the Consensus problem is 
defined by the following three properties:  

Termination: Every correct process eventually decides 
on a value.  

Validity: If a process decides on v, then v was proposed 
by some processes.  

Agreement: No two correct processes decide differently.  
The agreement property applies to only correct 

processes. Thus it is possible that a process decide on a 
distinct value just before crashing. The Uniform Consensus

prevents such a possibility and replace Agreement as: 
Uniform Agreement: No two processes (correct or not) 
decide differently.  
Consensus has been extensively studied over last two 

decades both in synchronous and asynchronous distributed 
systems. In a synchronous distributed system, message 
delays and relative processes’ speed are bounded and the 
bounds are known. In contrast, none of these bounds exist 

in an asynchronous distributed system. In [7], Fischer, etc. 
proved that consensus could not be solved 
deterministically in an asynchronous system that is subject 
to even a single crash failure. The impossibility result for 
consensus stems from the inherent difficulty of 
determining whether a process has actually crashed or is 
only very slow. One way to circumvent this impossibility 
is the unreliable failure detector concept proposed by 
Chandra and Toueg [3].  

Most consensus protocols that have been designed so 
far are based on the notion of round, such as the protocols 
proposed in [6, 10, 13] for synchronous systems and those 
in [3, 8, 11] for asynchronous systems with unreliable 

failure detectors. And these are designed to tolerate crash 
failures. When a process crashes in a round, it sends a 
subset of the messages that it intends to send in that round, 
and does not execute any subsequent rounds [10]. If a 
protocol allows processes to reach consensus in which at 
most t (t< n  1) processes can crash, the protocol is said to 
tolerate t faults or be t-resilient.

If a protocol can achieve consensus and stops before the 
t + 1 round when there are actually f (f t) faults, we call it 
an early-stopping protocol. In [6], the well-known lower 
bound, min(t + 1, f + 2), for early-stopping consensus 
protocols in synchronous distributed systems has been 
proved. If just consider the time at which processes decide, 
we call those protocols in which all processes decide 
before round t + 1 with actual f faults as early deciding
protocols. It has been proved that the lower bound of early 
deciding uniform consensus protocols is f + 2 rounds, 
where f < t  1 [1, 9]. For f = t  1, the uniform consensus 
only require f + 1 rounds [1]. The lower bound of early 
deciding consensus protocols is f + 1 rounds [1]. 

In this paper, we focus on message-efficient consensus 
protocols for synchronous systems, which still achieve the 
lower bound, min(t + 1, f + 2) rounds. The system model is 
as follows. In a synchronous distributed system, there is a 
set of n processes, ={p1, …, pn}, that communicate and 
synchronize with each other by sending and receiving 
messages. The underlying communication system is 
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assumed to be failure-free: there is no creation, alteration, 
loss or duplication of message.  

We introduce an approach, which use the Pigeon Hole 

Principle to design a uniform consensus protocol which 
achieves the lower bound but needs fewer messages than 
the existing protocol. Initially, t + 1 processes, called 
Coordinating Process (CP), are randomly chosen. Other 
processes are called non-CPs. Therefore there is at least 
one CP, which never crashes. At the first round, each 
process sends messages to coordinators. Thereafter, only 
coordinators will send messages to other processes. Non-
CPs just receive messages and make decision after they 
find every CP can make decision. We apply this method to 
an existing early-stopping uniform consensus protocol 
proposed in [13] which leads to reduction in message 
complexity. The message complexity is defined as the 
number of messages sent by all the participating processes 
in the worst case of the protocol.  

Compare to the Rotating Coordinator Paradigm [5, 2], 
another way to reduce the message complexity, in which 
only the coordinator impose a value as decision in each 
round, our proposed protocol with simple revision can 
solve many other applications in distributed systems such 
as the GDC problem [8, 4].  

The rest of this paper is organized as follows: Section 2 
presents the early-stopping uniform consensus protocol 
proposed in [13]. Section 3 presents our message efficient 
uniform consensus protocol and the correctness proof. 
Section 4 describes the Rotating Coordinator Paradigm and 
its restriction. Section 5 extends our message-efficient 
protocol to solve the GDC problem. Finally, Section 6 
concludes this paper. 

2. The uniform consensus protocol [13] 

Figure 1 presents the protocol, Protocol_RAY02, for 
synchronous systems proposed in [13]. The protocol is a 
variant of the well-known flood-set consensus protocol 
[10]. When considering early-stopping or early-deciding, 
each process must broadcast a message at each round, even 
if its content is the empty set [13]. In this paper, we 
consider early-stopping uniform consensus protocols. 

Protocol_RAY02 can tolerate up to t (t < n) crash 
failures. Each process pi has a unique identity (ID) i (1 i

n). Each process pi invokes the function Consensus(vi)
where vi is the value it proposes. It terminates with the 
invocation of the return() statement that provides it the 
decided value. Consensus() is made up of t + 1 rounds 
whose aim is to fill in an array Vi[1..n]. In such a way, Vi[j]
contains the value proposed by pj. The flood-set strategy 
used to attain this goal is particularly simple: it consists of 
a process to send new information it got during the 
previous round in each round. If a process finds no process 
crashes in a round, it can decide in the next round.  

Protocol_RAY02 can achieve uniform consensus. The 
proof is straightforward and can be found in [13]. The 
message complexity of Protocol_RAY02 is min(t + 1, f +
2) n2, because in each round all processes will broadcast 
messages. 

Figure 1. The uniform consensus protocol [13] 
Protocol_RAY02 only briefly mentioned that a flag is 

set to direct a process to decide at the end of the next round 
if it has learned all information that can be known. But it 
does not mention sending the decision flag or decision to 
other processes. A full version of Protocol_RAY02 can be 
found in [12] and flag transmitted by a variable called wi.

3. The Proposed Uniform Consensus Protocol 

The Pigeon Hole Principle is used to design the new 
message efficient uniform consensus protocol. Initially, t +
1 processes are randomly chosen as Coordinating 
Processes to achieve uniform consensus using the 
traditional protocol. Only Coordinators can send messages 
in the protocol after the first round. Other processes just 
send message in the first round and then wait for receiving 
messages and make decision after they find every 
Coordinating Process can make decision.  

3.1. The Protocol 

In this protocol, every process pi has a unique identity i.
Without losing generality, we choose the first t + 1 
processes, whose identities range from 0 to t, as CPs, CP

= {CPi 0 i t}. Other processes are called non-CPs, 
non-CP = CP.
The protocol is illustrated in Figure 2. It consists of two 

functions, Consensus() executed by CPs (Figure 2a) and 
Consensus2() executed by non-CPs (Figure 2b). Function 
Consensus() is adopted from Protocol_RAY02. Each CPi

invokes the function Consensus(vi) where vi is the value it 
proposes. It terminates with the invocation of the statement 
return() that provides the decided value. Comparing to 
Protocol_RAY02, at each round, CPi not only broadcast a 
message including Newi but also broadcast a Boolean 

Function Consensus(vi)
Vi  [ ,…,vi,…, ]; Newi  {(vi, i)}
r = 0; 
while r < t + 1 do 

r = r + 1; 
foreach j: send (Newi) to pj;
let Ri(r) = {process from which message have been received during r}
let rec_from[j] be the set received from pj during r (be if no 
message); 
Newi

foreach j  i: foreach (v, k) rec_from[j]:
if (Vi[k] = ) then Vi[k] = v; Newi Newi  {( v, k)} endif 

if (Ri(r) = Ri(r 1) r < t + 1) then  

set a flag to direct pi to decide at the end of r + 1 endif

end while 

let v = the first non-  value of Vi;
return (v)
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variable done in the message which indicates if CPi can 
make decision at the end of the round or not, done is true 
means CPi can do so. Ri(r), initiated as Ri(0) = CP {pi},
is a set of CPs from which CPi receives a message during 
round r. If it is the same as Ri(r  1), to the knowledge of 
CPi, there are no CP crashes during round r. Then it gets 
the full information on the votes initially proposed by all 
processes. To ensure the uniform agreement property, it 
can make decision at the end of next round because at that 
time every other CP may keep the same value set as it 
keeps.

At the first round both CPs and non-CPs send messages 
to CPs. So, in Consensus(), another set R i(r), initiated as 
R i(0) = {pi}, is used for CPs to judge whether it 
receives messages from all processes at the first round. If 
no crash occurs during the first round, every CP will set 
done to true at the end of the first round. The purpose of 
letting non-CPs to broadcast its value in the first round is 
to solve some problem such as the GDC problem. If a CP
finds the done of another CP is true in a round, it will set 
its done to true also. 

Function Consensus(vi)                   % Executed by CPs % 
Vi  [ , …, vi, …, ]; Newi  {(vi, i)}; Ri(0) = CP {pi};
R i(0) = {pi}; done = false;  
r = 0;             % r: round number % 
while r < t + 1 do

r = r + 1; 
foreach j  i: send (Newi, done) to pj;
if (r = 1) then

let R i(r) = {processes from which messages have been received 
during r};
let Ri(r) = {CPs from which messages have been received 
during r};
let rec_from[j] be the set received from pj during r (be  if no 
message); 
Newi ;
foreach j  i: foreach (v, k) rec_from[j]:

if (Vi[k] = ) then Vi[k] = v; Newi Newi  {(v, k)} endif;
if (R i(r) = R i(r  1)) then done = true endif;

else

let Ri(r) = {CPs from which messages have been received 
during r};
let rec_from[j] be the set received from CPj during r (be  if no 
message); 
if (done) then let v = first non-  value of Vi; return(v) endif;
let rec_done[j] be the Boolean value of done received from CPj

during r (be false if no message); 
Newi ;
foreach j  i: foreach (v, k) rec_from[j]:

if (Vi[k] = ) then Vi[k] = v; Newi Newi  {(v, k)} endif;
if ( 1 j t+1rec_done[j] = true) then done = true; endif;
if (Ri(r) = Ri(r  1)) then done = true endif;

endif

end while 

let v = first non-  value of Vi;
return(v)

Figure 2a. The protocol executed by CPs
In Consensus2(), each non-CP maintains a copy vector 

of each CP maintained in the previous round. If it receives 
a message from a CP and the CP s done is true, this means 
if the CP does not crash at end of this round, it must make 

decision. So if it finds all messages received in this round 
indicating all senders can make decision at the end of the 
round, the non-CP can make decision too. If this case does 
not occur, at the end of round t + 1, the non-CP will make 
decision based on its own vector. 

Function Consensus2(vi)              % Executed by non-CPs % 
Vi  [ , …, vi, …, ]; Newi  {(vi, i)}; Ri(0) = CP;
foreach CPj: Vi,j  [ , …, , …, ];
r = 0;                   % r: round number % 
while r < t + 1 do

r = r + 1; 
if (r = 1) then foreach CPj: send Newi to CPj endif;
let Ri(r) = {CPs from which messages have been received during 
r};
let rec_from[j] be the set received from CPj during r (be  if no 
message); 
let rec_done[j] be the Boolean value of done received from CPj

during r (be true if no message); 
foreach j: foreach (v, k) rec_from[j]:

if (Vi,j[k] = ) then Vi,j[k] = v; endif;
if (Vi[k] = ) then Vi[k] = v; endif;

if (Ri(r) = ) then Ri(r) = {all CPs in Ri(r 1) which indicates done

in previous round } endif;
if ( 1 j t+1rec_done[j] = true) then  

let v = first non-  value of Vi,j where CPj Ri(r); return(v)
endif;

end while 

let v = first non-  value of Vi;
return(v)

Figure 2b. The protocol executed by non-CPs

3.2. Correctness prove 

We need to prove the proposed protocol satisfy the three 
properties of uniform consensus. 
Lemma 1. At the end of round r, if a Coordinating 
Process CPi sets done to true, then it maintains all 
information that can be known.  
Proof. We need to prove that there does not exist a pair (v,
k), (v, k) CPj (j i) and CPj does not crash but (v, k)
CPi. According to the protocol, there are three cases for 
CPi to be set done to true at the end of round r:

Case 1. R i(r) = R i(r  1) where r = 1, R i(1) = R i(0). 
And we have R i(0) = {pi}. Then CPi receives messages 
from every other process in the round. CPi will set done to 
true and maintain all information that can be known.  

Case 2. Ri(r) = Ri(r  1) where r > 1. Assume the 
contrary, there exists a pair (v, k) CPj (j i) and CPj

does not crash but (v, k)  CPi. In this case, Ri(r) = Ri(r
1) at the end of round r (r > 1), CPi must receive a 
message from CPj. Because (v, k) is not included in the 
message according to the assumption, then CPj must know 
(v, k) before r  1 round. Anyway, according to the 
protocol it will send (v, k) to CPi before round r. Thus it is 
contradiction to (v, k)  CPi. Therefore CPi maintains all 
the information that can be known and set done to true by 
the end of round r. But it can not know if other CPs
maintain the same information. Hence, CPi proceeds to 
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round r + 1 (to send the new pairs), decide and terminate at 
end of round r + 1.

Case 3. CPi finds another CPj set done to true at round 
r  1. It set done to true at the end of round r. Because 
according to the protocol, it must contain every pair CPj

contains. According to the previous discussion, CPj

maintains all the information that can be known. Thus CPi

maintains all information that can be known.          
Lemma 2. If two CPs set done to true at the end of the 
same round, they maintain the same information. 
Proof. It is obviously true following Lemma 1.       
Lemma 3. If a CP, CPi, decides at the end of the round r,
all other CPs that does not decide in round r must maintain 
the same information as CPi.
Proof. By Lemma 1, CPi set done to true at the end of 
round r  1, it maintains all information that can be known. 
According to the protocol, all other CPs that does not 
decide in round r must get all information from CPi at the 
end of round r, they will maintain the same information as 
CPi and set done to true at the end of round r.        
Lemma 4. If a CP decides at the end of the round r, all 
other processes must make decision by the end of round r
+ 1. 
Proof. Suppose CPi decides at the end of round r.

If r = t + 1, according to the protocol, all processes that 
have not made decision will decide in this round.  

Now, consider r < t + 1. If there are some CP can not 
make decision in round r, CPi must set done to true at the 
end of round r  1 and inform others in round r, then those 
CPs that does not decide in round r will set done to true.
Then in round r + 1, those CPs will decide and all non-
CPs can find all CPs can decide and make decision also.  

Otherwise, if all other CPs make decision in round r or 
before round r, all non-CPs can find all CPs can decide 
and make decision in round r.             
Theorem 1. The protocol solves the Uniform Consensus 
problem in synchronous systems where up to t processes 
can crash. 
Proof. The Validity and Termination properties are 
obviously true.  

Now, we show the uniform agreement property is also 
achieved. We will show that any two processes maintain 
the same information before they decide, thus they decide 
on the same value. There are 3 cases of the relationships of 
each two processes: the first case is two CPs, the second 
case is a CP and a non-CP, and the third case is two non-
CPs.

Case 1 is proved by contradiction, assume the two CPs, 
CPi and CPj, decide on different values.  

Firstly assume they decide in the same round r.
If r < t + 1, CPi and CPj must set done to be true at the 
end of round r  1. By Lemma 2, both CPi and CPj

maintain the same information and can not make 
different decision, - a contradiction.  

Otherwise, r = t + 1.

o CPi and CPj set done to be true at the end of round 
r  1. A contradiction can be reached by Lemma 2.  

o Only one of them set done to be true at the end of 
round r  1. Without losing generality, assume CPi

does so, by Lemma 3, CPj will maintain the same 
information as CPi, it can not make a different 
decision, - a contradiction.  

o Both of them do not set done to be true at the end 
of round r  1. Because at most t processes can 
crash, there must exist a round r  (r t + 1), in 
which no process fails. Then in round r , all CPs
can set done to be true. Then, according to the 
assumption, CPi and CPj will set done to be true at 
the end of round r. By Lemma 2, both of them 
maintain the same information, - a contradiction. 

Secondly assume the two CPs, CPi and CPj, decide in 
different rounds, CPi decide in round r1 and CPj decides in 
round r2, without losing generality, assume r1 < r2. By 
Lemma 3, when CPi decides in round r1, CPj will maintain 
the same information with CPi, which is the full 
information. It can not make a different decision, - a 
contradiction. 

The case 1 ensures that each pair of CPs makes the 
same decision and they maintain the same information in 
their vector when they decide. 

Case 2 and case 3 can be proved that any non-CP
makes the same decision as a CP does. There are three 
cases for a non-CP to make decision.  

The first case is that the non-CP finds all non-crashed 
CPs can make decision. Then it make decision based on 
a copy vector of one non-crashed CP, which sent a 
message in the same round indicating that it decides in 
that round. By Lemma 2 and 3, in this case the non-CP

must make the same decision as the CP does. 
The second case is that the non-CP finds all non-crashed 
CPs can make decision, but it does not receive any 
message in the round. Then it makes decision based on 
a copy vector of a CP, which sent a message in the 
previous round indicating deciding in that round, (The 
CP must exist in this case. Otherwise, by Lemma 4, no 
CP can make decision, which is contrary to at most t
processes can crash among t + 1 CPs.). By Lemma 2 
and 3, in this case the non-CP must make the same 
decision as the CP does also. 

The third case is the non-CP makes decision based on its 
own vector at the end of round t + 1. According to the 
protocol, there must exist a crash in each of previous t
rounds, otherwise at least one round without failures all 
non-crashed CPs can set done to true before round t +
1. Thus, there is no failure in round t + 1. As proved 
previous, every CP maintains the full information in 
this case, and then any pair of CPs maintains the same 
vector. Thus, every non-CP must maintain the same 
information in their vector Vi as a CP does. 
Thus, the Theorem must be true.         
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Theorem 2. Every process that decides will do so at the 
end of a round r, where r  min(t + 1, f + 2). 
Proof. It is obvious that all non-CPs can make decision 
and terminate in a round r  min(t + 1, f + 2), if all CPs not 
crashed decide by the end of round r. So we just need 
prove every coordinating process that decides will do so at 
a round r  min(t + 1, f + 2). There will be two cases: 

Case 1. min(t + 1, f + 2) f + 2, which means t + 1< f +
2. Then CPi decides at the end of the round t + 1 and all 
other not-crashed processes will decide in this round. The 
Theorem is true in this case. 

Case 2. min(t + 1, f + 2) = f + 2. In the first f + 1 
rounds, there must be a round r in which no crash occur. 
So, that at least one CP set done to true by the end of round 
f or all CPs set done to true by the end of round f + 1 must 
be true. Both let all non-crashed CPs decide by the end of 
round f + 2.         

3.3. Cost of the protocol 

According to the protocol, during the first round, every CP

broadcast a message, and every non-CP only send 
messages to all CPs, then the message complexity in this 
round is: (t + 1)  (n  1) + (t + 1)  (n t  1). After the 
first round, only CPs broadcast a message during each 
round, non-CPs just receive messages. Then the message 
complexity in each of those round is: (t + 1)  (n  1). By 
Theorem 2, the protocol needs at most min(t + 1, f + 2) 
rounds, thus, the message complexity of our proposed 
protocol is:  

min(t + 1, f + 2)  (t + 1)  (n  1) + (t + 1)  (n t  1). 
Comparing to Protocol_RAY02, during the first round, 

our protocol send less messages because non-CPs just send 
messages to CPs, the number of messages decreases by (n

t  1)2. After that, non-CPs just receive messages from 
CPs. Then during each round, the number of messages 
decreases by (n t  1)(n  1). 

4. Rotating Coordinator Paradigm 

Another way to reduce message complexity is to use the 
rotating coordinator paradigm [5, 2], where in each round 
only the coordinator sends messages to other processes. 
Figure 3 presents a t-resilient consensus protocol for 
synchronous distributed systems. Consensus() is made up 
of t + 1 rounds. Each round r (1 r t + 1) is managed by 
a predetermined coordinator, pr. In each round r, pr will 
send vr to every process whose ID is bigger than r. When a 
process pj receives a value in this round, it will set vj to the 
value.  

The protocol described in Figure 3 solves the Uniform 
Consensus problem in synchronous systems where up to t
processes can crash. It is easy to prove the correctness. 
Because at most t processes can crash, there is at least one 
round of the t + 1 rounds in which the coordinators in 

those rounds do not crash. Assume r is the first round that 
the coordinator pr does not crash in its round. According to 
the protocol, every process whose ID is bigger than r will 
set its value to vr at the end of round r. And every process 
whose ID is smaller than r have crashed. Then after round 
r, all non-crashed processes maintain the same value.  

Function Consensus(vi)
r =0
while r < t + 1 do 
    r = r + 1; 
    if (i = r) then foreach j > i: send (vi) to pj;
    else let v be the value received from pr during the rth round; 
            vi = v;
    endif;
end while 

return (vi)

Figure 3. the rotating coordinator paradigm 
Cost. The time complexity is trivially t + 1 rounds. 

During each round r, the round coordinator sends n r
messages if not crash. Hence, the message complexity of 

the protocol is bounded by  = (t + 1)(n t/2 1). 
In existing non-rotating coordinator-based consensus 
protocols, every process needs broadcast messages in the 
first round, then the message cost in the first round is at 

least (n  1) n, which is more than . Thus, 
comparing to those protocols, the rotating coordinator 
protocol uses the minimum number of messages. 

One shortcoming of the protocol is that it is not an 
early-stopping one. Another shortcoming is due to the 
rotating coordinator based protocols: this protocol just 
allows the coordinator to impose a value as the decided 
value in each round. Thus, it cannot solve GDC problem.  

5. Extension to Solve the GDC Problem 

In a distributed computation, a Global Data is a vector 
with one entry being filled with an appropriate value 
proposed by the corresponding process. The problem of 
computing a global data and providing each process with a 
copy of it, defines the Global Data Computing problem. 

The distributed system consists of n processes,  = {p0,
…, pn 1}. Let GD[0 .. n 1] be a vector data with one entry 
per process and let vi denotes the value provided by pi to 
fill its entry of the global data. Let GDi denotes the local 
variable of pi intended to contain the local copy of GD.
The problem is formally specified by a set of four 
properties as following [8]. Let  be a default value that 
will be used instead of the value vj when the corresponding 
process pj crashes prematurely.  

Termination: Eventually, every correct process pi

decides a local vector GDi.
Validity: No spurious initial value. i: if pi decides GDi

then ( j: GDi[j] {vj, }). 
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Agreement: No two processes decide different Global 
Data. i,j: if pi decides GDi and pj decides GDj then 
( k: GDi[k]= GDj[k]). 
Obligation: If a process decides, its initial value belongs 
to the Global Data. i: if pi decides GDi then 
(GDi[i]=vi).
Now explain how to change the proposed protocol in 

Section 3 to solve the GDC problem: 
In Figure 2a, change the pseudocode 

“let v = first non-  value of Vi; return(v)”  
            
“return(Vi)”

In Figure 2b, change pseudocodes 
 “let v = first non-  value of Vi,j where CPj Ri(r); return(v)”  
                               
 “return(Vi,j), where CPj Ri(r)” 
“let v = first non-  value of Vi; return(v)”  
            
“return(Vi)”

It is easy to prove the correctness. We just need to show 
the Obligation Property is achieved. When a CP decides, 
its proposed value is in the vector initially.  

If a non-CP decides, there are two cases. First, the 
process decides based on its own vector, its value is in its 
vector initially. The second case, the process decides on a 
vector copy of a CP, because the non-CP does not crash, 
all non-crashed CPs in the first round must receive its 
value, the Obligation Property is achieved in this case also.                                                                                                                              

6. Discussion and Conclusion 

In this paper we extend an early-stopping uniform 
consensus protocol for synchronous systems with crash 
failures proposed in [13] to reduce message complexity but 
still achieving the min(t + 1, f + 2)-rounds lower bound. 
Moreover, it can solve other related problems such as the 
GDC problem with simple revision. 

The contribution of this paper is that the proposed 
protocol may be used in other uniform consensus protocols 
both for synchronous distributed systems or asynchronous 
systems. The extending condition is that before a process 
decides in a round, it must learn that it can do so in the 
previous round and broadcast the deciding flag in the 
current round. If the condition satisfied, the extended 
protocol just treat with t + 1 processes, the lower bound 
min(t + 1, f + 2) is still achieved. The rest processes can 
execute a procedure like Consensus2() in section 3, they 
just receive messages in each round and make decision 
when all CPs can make decision. The benefit of this 
method is that the message complexity is reduced while 
lower bound is still achieved. 
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