
An Approach to Achieve Message Efficient Early-Stopping

Uniform Consensus Protocols

Xianbing Wang1,2,3, Jiannong Cao4 and Yong Meng Teo1,2

1Department of Computer Science,

National University of Singapore, Singapore 117543
2Singapore-MIT Alliance, Singapore 117576

3College of Computer Science, Wuhan University, China
{wangxb, teoym}@comp.nus.edu.sg

4Internet and Mobile Computing Lab

Department of Computing,
Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
csjcao@comp.polyu.edu.hk

Abstract

Existing consensus protocols for synchronous
distributed systems concentrate on the lower bound on the

number of rounds required for achieving consensus. This
paper proposes an approach to reduce the message

complexity of some uniform consensus protocols

significantly while achieving the same lower bound in
which for any t-resilient consensus protocol only t + 1
processes engaging in sending messages in each round.

1. Introduction

Consensus is one of the fundamental problems in
distributed computing. Assuming a distributed system with
a set of n processes, {p1, p2, …, pn}, in the Consensus
problem, each process pi initially proposes a value vi, and
all non-faulty processes have to decide on one common
value v which is equal to one of the proposed values. A
process is faulty during an execution if its behavior
deviates from that prescribed by its algorithm, otherwise it
is correct. More precisely, the Consensus problem is
defined by the following three properties:

Termination: Every correct process eventually decides
on a value.

Validity: If a process decides on v, then v was proposed
by some processes.

Agreement: No two correct processes decide differently.
The agreement property applies to only correct

processes. Thus it is possible that a process decide on a
distinct value just before crashing. The Uniform Consensus

prevents such a possibility and replace Agreement as:
Uniform Agreement: No two processes (correct or not)
decide differently.
Consensus has been extensively studied over last two

decades both in synchronous and asynchronous distributed
systems. In a synchronous distributed system, message
delays and relative processes’ speed are bounded and the
bounds are known. In contrast, none of these bounds exist

in an asynchronous distributed system. In [7], Fischer, etc.
proved that consensus could not be solved
deterministically in an asynchronous system that is subject
to even a single crash failure. The impossibility result for
consensus stems from the inherent difficulty of
determining whether a process has actually crashed or is
only very slow. One way to circumvent this impossibility
is the unreliable failure detector concept proposed by
Chandra and Toueg [3].

Most consensus protocols that have been designed so
far are based on the notion of round, such as the protocols
proposed in [6, 10, 13] for synchronous systems and those
in [3, 8, 11] for asynchronous systems with unreliable

failure detectors. And these are designed to tolerate crash
failures. When a process crashes in a round, it sends a
subset of the messages that it intends to send in that round,
and does not execute any subsequent rounds [10]. If a
protocol allows processes to reach consensus in which at
most t (t< n 1) processes can crash, the protocol is said to
tolerate t faults or be t-resilient.

If a protocol can achieve consensus and stops before the
t + 1 round when there are actually f (f t) faults, we call it
an early-stopping protocol. In [6], the well-known lower
bound, min(t + 1, f + 2), for early-stopping consensus
protocols in synchronous distributed systems has been
proved. If just consider the time at which processes decide,
we call those protocols in which all processes decide
before round t + 1 with actual f faults as early deciding
protocols. It has been proved that the lower bound of early
deciding uniform consensus protocols is f + 2 rounds,
where f < t 1 [1, 9]. For f = t 1, the uniform consensus
only require f + 1 rounds [1]. The lower bound of early
deciding consensus protocols is f + 1 rounds [1].

In this paper, we focus on message-efficient consensus
protocols for synchronous systems, which still achieve the
lower bound, min(t + 1, f + 2) rounds. The system model is
as follows. In a synchronous distributed system, there is a
set of n processes, ={p1, …, pn}, that communicate and
synchronize with each other by sending and receiving
messages. The underlying communication system is

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

assumed to be failure-free: there is no creation, alteration,
loss or duplication of message.

We introduce an approach, which use the Pigeon Hole

Principle to design a uniform consensus protocol which
achieves the lower bound but needs fewer messages than
the existing protocol. Initially, t + 1 processes, called
Coordinating Process (CP), are randomly chosen. Other
processes are called non-CPs. Therefore there is at least
one CP, which never crashes. At the first round, each
process sends messages to coordinators. Thereafter, only
coordinators will send messages to other processes. Non-
CPs just receive messages and make decision after they
find every CP can make decision. We apply this method to
an existing early-stopping uniform consensus protocol
proposed in [13] which leads to reduction in message
complexity. The message complexity is defined as the
number of messages sent by all the participating processes
in the worst case of the protocol.

Compare to the Rotating Coordinator Paradigm [5, 2],
another way to reduce the message complexity, in which
only the coordinator impose a value as decision in each
round, our proposed protocol with simple revision can
solve many other applications in distributed systems such
as the GDC problem [8, 4].

The rest of this paper is organized as follows: Section 2
presents the early-stopping uniform consensus protocol
proposed in [13]. Section 3 presents our message efficient
uniform consensus protocol and the correctness proof.
Section 4 describes the Rotating Coordinator Paradigm and
its restriction. Section 5 extends our message-efficient
protocol to solve the GDC problem. Finally, Section 6
concludes this paper.

2. The uniform consensus protocol [13]

Figure 1 presents the protocol, Protocol_RAY02, for
synchronous systems proposed in [13]. The protocol is a
variant of the well-known flood-set consensus protocol
[10]. When considering early-stopping or early-deciding,
each process must broadcast a message at each round, even
if its content is the empty set [13]. In this paper, we
consider early-stopping uniform consensus protocols.

Protocol_RAY02 can tolerate up to t (t < n) crash
failures. Each process pi has a unique identity (ID) i (1 i

n). Each process pi invokes the function Consensus(vi)
where vi is the value it proposes. It terminates with the
invocation of the return() statement that provides it the
decided value. Consensus() is made up of t + 1 rounds
whose aim is to fill in an array Vi[1..n]. In such a way, Vi[j]
contains the value proposed by pj. The flood-set strategy
used to attain this goal is particularly simple: it consists of
a process to send new information it got during the
previous round in each round. If a process finds no process
crashes in a round, it can decide in the next round.

Protocol_RAY02 can achieve uniform consensus. The
proof is straightforward and can be found in [13]. The
message complexity of Protocol_RAY02 is min(t + 1, f +
2) n2, because in each round all processes will broadcast
messages.

Figure 1. The uniform consensus protocol [13]
Protocol_RAY02 only briefly mentioned that a flag is

set to direct a process to decide at the end of the next round
if it has learned all information that can be known. But it
does not mention sending the decision flag or decision to
other processes. A full version of Protocol_RAY02 can be
found in [12] and flag transmitted by a variable called wi.

3. The Proposed Uniform Consensus Protocol

The Pigeon Hole Principle is used to design the new
message efficient uniform consensus protocol. Initially, t +
1 processes are randomly chosen as Coordinating
Processes to achieve uniform consensus using the
traditional protocol. Only Coordinators can send messages
in the protocol after the first round. Other processes just
send message in the first round and then wait for receiving
messages and make decision after they find every
Coordinating Process can make decision.

3.1. The Protocol

In this protocol, every process pi has a unique identity i.
Without losing generality, we choose the first t + 1
processes, whose identities range from 0 to t, as CPs, CP

= {CPi 0 i t}. Other processes are called non-CPs,
non-CP = CP.
The protocol is illustrated in Figure 2. It consists of two

functions, Consensus() executed by CPs (Figure 2a) and
Consensus2() executed by non-CPs (Figure 2b). Function
Consensus() is adopted from Protocol_RAY02. Each CPi

invokes the function Consensus(vi) where vi is the value it
proposes. It terminates with the invocation of the statement
return() that provides the decided value. Comparing to
Protocol_RAY02, at each round, CPi not only broadcast a
message including Newi but also broadcast a Boolean

Function Consensus(vi)
Vi [,…,vi,…,]; Newi {(vi, i)}
r = 0;
while r < t + 1 do

r = r + 1;
foreach j: send (Newi) to pj;
let Ri(r) = {process from which message have been received during r}
let rec_from[j] be the set received from pj during r (be if no
message);
Newi

foreach j i: foreach (v, k) rec_from[j]:
if (Vi[k] =) then Vi[k] = v; Newi Newi {(v, k)} endif

if (Ri(r) = Ri(r 1) r < t + 1) then

set a flag to direct pi to decide at the end of r + 1 endif

end while

let v = the first non- value of Vi;
return (v)

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

variable done in the message which indicates if CPi can
make decision at the end of the round or not, done is true
means CPi can do so. Ri(r), initiated as Ri(0) = CP {pi},
is a set of CPs from which CPi receives a message during
round r. If it is the same as Ri(r 1), to the knowledge of
CPi, there are no CP crashes during round r. Then it gets
the full information on the votes initially proposed by all
processes. To ensure the uniform agreement property, it
can make decision at the end of next round because at that
time every other CP may keep the same value set as it
keeps.

At the first round both CPs and non-CPs send messages
to CPs. So, in Consensus(), another set R i(r), initiated as
R i(0) = {pi}, is used for CPs to judge whether it
receives messages from all processes at the first round. If
no crash occurs during the first round, every CP will set
done to true at the end of the first round. The purpose of
letting non-CPs to broadcast its value in the first round is
to solve some problem such as the GDC problem. If a CP
finds the done of another CP is true in a round, it will set
its done to true also.

Function Consensus(vi) % Executed by CPs %
Vi [, …, vi, …,]; Newi {(vi, i)}; Ri(0) = CP {pi};
R i(0) = {pi}; done = false;
r = 0; % r: round number %
while r < t + 1 do

r = r + 1;
foreach j i: send (Newi, done) to pj;
if (r = 1) then

let R i(r) = {processes from which messages have been received
during r};
let Ri(r) = {CPs from which messages have been received
during r};
let rec_from[j] be the set received from pj during r (be if no
message);
Newi ;
foreach j i: foreach (v, k) rec_from[j]:

if (Vi[k] =) then Vi[k] = v; Newi Newi {(v, k)} endif;
if (R i(r) = R i(r 1)) then done = true endif;

else

let Ri(r) = {CPs from which messages have been received
during r};
let rec_from[j] be the set received from CPj during r (be if no
message);
if (done) then let v = first non- value of Vi; return(v) endif;
let rec_done[j] be the Boolean value of done received from CPj

during r (be false if no message);
Newi ;
foreach j i: foreach (v, k) rec_from[j]:

if (Vi[k] =) then Vi[k] = v; Newi Newi {(v, k)} endif;
if (1 j t+1rec_done[j] = true) then done = true; endif;
if (Ri(r) = Ri(r 1)) then done = true endif;

endif

end while

let v = first non- value of Vi;
return(v)

Figure 2a. The protocol executed by CPs
In Consensus2(), each non-CP maintains a copy vector

of each CP maintained in the previous round. If it receives
a message from a CP and the CP s done is true, this means
if the CP does not crash at end of this round, it must make

decision. So if it finds all messages received in this round
indicating all senders can make decision at the end of the
round, the non-CP can make decision too. If this case does
not occur, at the end of round t + 1, the non-CP will make
decision based on its own vector.

Function Consensus2(vi) % Executed by non-CPs %
Vi [, …, vi, …,]; Newi {(vi, i)}; Ri(0) = CP;
foreach CPj: Vi,j [, …, , …,];
r = 0; % r: round number %
while r < t + 1 do

r = r + 1;
if (r = 1) then foreach CPj: send Newi to CPj endif;
let Ri(r) = {CPs from which messages have been received during
r};
let rec_from[j] be the set received from CPj during r (be if no
message);
let rec_done[j] be the Boolean value of done received from CPj

during r (be true if no message);
foreach j: foreach (v, k) rec_from[j]:

if (Vi,j[k] =) then Vi,j[k] = v; endif;
if (Vi[k] =) then Vi[k] = v; endif;

if (Ri(r) =) then Ri(r) = {all CPs in Ri(r 1) which indicates done

in previous round } endif;
if (1 j t+1rec_done[j] = true) then

let v = first non- value of Vi,j where CPj Ri(r); return(v)
endif;

end while

let v = first non- value of Vi;
return(v)

Figure 2b. The protocol executed by non-CPs

3.2. Correctness prove

We need to prove the proposed protocol satisfy the three
properties of uniform consensus.
Lemma 1. At the end of round r, if a Coordinating
Process CPi sets done to true, then it maintains all
information that can be known.
Proof. We need to prove that there does not exist a pair (v,
k), (v, k) CPj (j i) and CPj does not crash but (v, k)
CPi. According to the protocol, there are three cases for
CPi to be set done to true at the end of round r:

Case 1. R i(r) = R i(r 1) where r = 1, R i(1) = R i(0).
And we have R i(0) = {pi}. Then CPi receives messages
from every other process in the round. CPi will set done to
true and maintain all information that can be known.

Case 2. Ri(r) = Ri(r 1) where r > 1. Assume the
contrary, there exists a pair (v, k) CPj (j i) and CPj

does not crash but (v, k) CPi. In this case, Ri(r) = Ri(r
1) at the end of round r (r > 1), CPi must receive a
message from CPj. Because (v, k) is not included in the
message according to the assumption, then CPj must know
(v, k) before r 1 round. Anyway, according to the
protocol it will send (v, k) to CPi before round r. Thus it is
contradiction to (v, k) CPi. Therefore CPi maintains all
the information that can be known and set done to true by
the end of round r. But it can not know if other CPs
maintain the same information. Hence, CPi proceeds to

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

round r + 1 (to send the new pairs), decide and terminate at
end of round r + 1.

Case 3. CPi finds another CPj set done to true at round
r 1. It set done to true at the end of round r. Because
according to the protocol, it must contain every pair CPj

contains. According to the previous discussion, CPj

maintains all the information that can be known. Thus CPi

maintains all information that can be known.
Lemma 2. If two CPs set done to true at the end of the
same round, they maintain the same information.
Proof. It is obviously true following Lemma 1.
Lemma 3. If a CP, CPi, decides at the end of the round r,
all other CPs that does not decide in round r must maintain
the same information as CPi.
Proof. By Lemma 1, CPi set done to true at the end of
round r 1, it maintains all information that can be known.
According to the protocol, all other CPs that does not
decide in round r must get all information from CPi at the
end of round r, they will maintain the same information as
CPi and set done to true at the end of round r.
Lemma 4. If a CP decides at the end of the round r, all
other processes must make decision by the end of round r
+ 1.
Proof. Suppose CPi decides at the end of round r.

If r = t + 1, according to the protocol, all processes that
have not made decision will decide in this round.

Now, consider r < t + 1. If there are some CP can not
make decision in round r, CPi must set done to true at the
end of round r 1 and inform others in round r, then those
CPs that does not decide in round r will set done to true.
Then in round r + 1, those CPs will decide and all non-
CPs can find all CPs can decide and make decision also.

Otherwise, if all other CPs make decision in round r or
before round r, all non-CPs can find all CPs can decide
and make decision in round r.
Theorem 1. The protocol solves the Uniform Consensus
problem in synchronous systems where up to t processes
can crash.
Proof. The Validity and Termination properties are
obviously true.

Now, we show the uniform agreement property is also
achieved. We will show that any two processes maintain
the same information before they decide, thus they decide
on the same value. There are 3 cases of the relationships of
each two processes: the first case is two CPs, the second
case is a CP and a non-CP, and the third case is two non-
CPs.

Case 1 is proved by contradiction, assume the two CPs,
CPi and CPj, decide on different values.

Firstly assume they decide in the same round r.
If r < t + 1, CPi and CPj must set done to be true at the
end of round r 1. By Lemma 2, both CPi and CPj

maintain the same information and can not make
different decision, - a contradiction.

Otherwise, r = t + 1.

o CPi and CPj set done to be true at the end of round
r 1. A contradiction can be reached by Lemma 2.

o Only one of them set done to be true at the end of
round r 1. Without losing generality, assume CPi

does so, by Lemma 3, CPj will maintain the same
information as CPi, it can not make a different
decision, - a contradiction.

o Both of them do not set done to be true at the end
of round r 1. Because at most t processes can
crash, there must exist a round r (r t + 1), in
which no process fails. Then in round r , all CPs
can set done to be true. Then, according to the
assumption, CPi and CPj will set done to be true at
the end of round r. By Lemma 2, both of them
maintain the same information, - a contradiction.

Secondly assume the two CPs, CPi and CPj, decide in
different rounds, CPi decide in round r1 and CPj decides in
round r2, without losing generality, assume r1 < r2. By
Lemma 3, when CPi decides in round r1, CPj will maintain
the same information with CPi, which is the full
information. It can not make a different decision, - a
contradiction.

The case 1 ensures that each pair of CPs makes the
same decision and they maintain the same information in
their vector when they decide.

Case 2 and case 3 can be proved that any non-CP
makes the same decision as a CP does. There are three
cases for a non-CP to make decision.

The first case is that the non-CP finds all non-crashed
CPs can make decision. Then it make decision based on
a copy vector of one non-crashed CP, which sent a
message in the same round indicating that it decides in
that round. By Lemma 2 and 3, in this case the non-CP

must make the same decision as the CP does.
The second case is that the non-CP finds all non-crashed
CPs can make decision, but it does not receive any
message in the round. Then it makes decision based on
a copy vector of a CP, which sent a message in the
previous round indicating deciding in that round, (The
CP must exist in this case. Otherwise, by Lemma 4, no
CP can make decision, which is contrary to at most t
processes can crash among t + 1 CPs.). By Lemma 2
and 3, in this case the non-CP must make the same
decision as the CP does also.

The third case is the non-CP makes decision based on its
own vector at the end of round t + 1. According to the
protocol, there must exist a crash in each of previous t
rounds, otherwise at least one round without failures all
non-crashed CPs can set done to true before round t +
1. Thus, there is no failure in round t + 1. As proved
previous, every CP maintains the full information in
this case, and then any pair of CPs maintains the same
vector. Thus, every non-CP must maintain the same
information in their vector Vi as a CP does.
Thus, the Theorem must be true.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

Theorem 2. Every process that decides will do so at the
end of a round r, where r min(t + 1, f + 2).
Proof. It is obvious that all non-CPs can make decision
and terminate in a round r min(t + 1, f + 2), if all CPs not
crashed decide by the end of round r. So we just need
prove every coordinating process that decides will do so at
a round r min(t + 1, f + 2). There will be two cases:

Case 1. min(t + 1, f + 2) f + 2, which means t + 1< f +
2. Then CPi decides at the end of the round t + 1 and all
other not-crashed processes will decide in this round. The
Theorem is true in this case.

Case 2. min(t + 1, f + 2) = f + 2. In the first f + 1
rounds, there must be a round r in which no crash occur.
So, that at least one CP set done to true by the end of round
f or all CPs set done to true by the end of round f + 1 must
be true. Both let all non-crashed CPs decide by the end of
round f + 2.

3.3. Cost of the protocol

According to the protocol, during the first round, every CP

broadcast a message, and every non-CP only send
messages to all CPs, then the message complexity in this
round is: (t + 1) (n 1) + (t + 1) (n t 1). After the
first round, only CPs broadcast a message during each
round, non-CPs just receive messages. Then the message
complexity in each of those round is: (t + 1) (n 1). By
Theorem 2, the protocol needs at most min(t + 1, f + 2)
rounds, thus, the message complexity of our proposed
protocol is:

min(t + 1, f + 2) (t + 1) (n 1) + (t + 1) (n t 1).
Comparing to Protocol_RAY02, during the first round,

our protocol send less messages because non-CPs just send
messages to CPs, the number of messages decreases by (n

t 1)2. After that, non-CPs just receive messages from
CPs. Then during each round, the number of messages
decreases by (n t 1)(n 1).

4. Rotating Coordinator Paradigm

Another way to reduce message complexity is to use the
rotating coordinator paradigm [5, 2], where in each round
only the coordinator sends messages to other processes.
Figure 3 presents a t-resilient consensus protocol for
synchronous distributed systems. Consensus() is made up
of t + 1 rounds. Each round r (1 r t + 1) is managed by
a predetermined coordinator, pr. In each round r, pr will
send vr to every process whose ID is bigger than r. When a
process pj receives a value in this round, it will set vj to the
value.

The protocol described in Figure 3 solves the Uniform
Consensus problem in synchronous systems where up to t
processes can crash. It is easy to prove the correctness.
Because at most t processes can crash, there is at least one
round of the t + 1 rounds in which the coordinators in

those rounds do not crash. Assume r is the first round that
the coordinator pr does not crash in its round. According to
the protocol, every process whose ID is bigger than r will
set its value to vr at the end of round r. And every process
whose ID is smaller than r have crashed. Then after round
r, all non-crashed processes maintain the same value.

Function Consensus(vi)
r =0
while r < t + 1 do
 r = r + 1;
 if (i = r) then foreach j > i: send (vi) to pj;
 else let v be the value received from pr during the rth round;
 vi = v;
 endif;
end while

return (vi)

Figure 3. the rotating coordinator paradigm
Cost. The time complexity is trivially t + 1 rounds.

During each round r, the round coordinator sends n r
messages if not crash. Hence, the message complexity of

the protocol is bounded by = (t + 1)(n t/2 1).
In existing non-rotating coordinator-based consensus
protocols, every process needs broadcast messages in the
first round, then the message cost in the first round is at

least (n 1) n, which is more than . Thus,
comparing to those protocols, the rotating coordinator
protocol uses the minimum number of messages.

One shortcoming of the protocol is that it is not an
early-stopping one. Another shortcoming is due to the
rotating coordinator based protocols: this protocol just
allows the coordinator to impose a value as the decided
value in each round. Thus, it cannot solve GDC problem.

5. Extension to Solve the GDC Problem

In a distributed computation, a Global Data is a vector
with one entry being filled with an appropriate value
proposed by the corresponding process. The problem of
computing a global data and providing each process with a
copy of it, defines the Global Data Computing problem.

The distributed system consists of n processes, = {p0,
…, pn 1}. Let GD[0 .. n 1] be a vector data with one entry
per process and let vi denotes the value provided by pi to
fill its entry of the global data. Let GDi denotes the local
variable of pi intended to contain the local copy of GD.
The problem is formally specified by a set of four
properties as following [8]. Let be a default value that
will be used instead of the value vj when the corresponding
process pj crashes prematurely.

Termination: Eventually, every correct process pi

decides a local vector GDi.
Validity: No spurious initial value. i: if pi decides GDi

then (j: GDi[j] {vj, }).

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

Agreement: No two processes decide different Global
Data. i,j: if pi decides GDi and pj decides GDj then
(k: GDi[k]= GDj[k]).
Obligation: If a process decides, its initial value belongs
to the Global Data. i: if pi decides GDi then
(GDi[i]=vi).
Now explain how to change the proposed protocol in

Section 3 to solve the GDC problem:
In Figure 2a, change the pseudocode

“let v = first non- value of Vi; return(v)”

“return(Vi)”

In Figure 2b, change pseudocodes
 “let v = first non- value of Vi,j where CPj Ri(r); return(v)”

 “return(Vi,j), where CPj Ri(r)”
“let v = first non- value of Vi; return(v)”

“return(Vi)”

It is easy to prove the correctness. We just need to show
the Obligation Property is achieved. When a CP decides,
its proposed value is in the vector initially.

If a non-CP decides, there are two cases. First, the
process decides based on its own vector, its value is in its
vector initially. The second case, the process decides on a
vector copy of a CP, because the non-CP does not crash,
all non-crashed CPs in the first round must receive its
value, the Obligation Property is achieved in this case also.

6. Discussion and Conclusion

In this paper we extend an early-stopping uniform
consensus protocol for synchronous systems with crash
failures proposed in [13] to reduce message complexity but
still achieving the min(t + 1, f + 2)-rounds lower bound.
Moreover, it can solve other related problems such as the
GDC problem with simple revision.

The contribution of this paper is that the proposed
protocol may be used in other uniform consensus protocols
both for synchronous distributed systems or asynchronous
systems. The extending condition is that before a process
decides in a round, it must learn that it can do so in the
previous round and broadcast the deciding flag in the
current round. If the condition satisfied, the extended
protocol just treat with t + 1 processes, the lower bound
min(t + 1, f + 2) is still achieved. The rest processes can
execute a procedure like Consensus2() in section 3, they
just receive messages in each round and make decision
when all CPs can make decision. The benefit of this
method is that the message complexity is reduced while
lower bound is still achieved.

Acknowledgement

This work is partially supported by the University Grant
Council of Hong Kong under the CERG Grant B-Q518,

the Hong Kong Polytechnic University under HK PolyU
ICRG grant A-P202, and the National University of
Singapore, under Academic Research Fund R-252-000-
180-112.

References

[1] B. Charron-Bost, and A. Schiper, “Uniform consensus harder
than consensus”, Technical Report DSC/2000/028, École
Polytechnique Fédérale de Lausanne, Switzerland, May 2000.
[2] T. Chandra and S. Toueg, “Time and message efficient
reliable broadcasts”, Distributed Algorithms, 4th International
Workshop, WDAG 90, Bari, Italy, Sep. 1990, Proceedings.
Lecture Notes in Computer Science 486 Springer 1991, 289-303.
[3] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems”, J. ACM, vol. 43, no. 2, Mar.
1996, pp. 225-267.
[4] C. Delporte-Gallet, H. Fauconnier, J. Helary, and M. Raynal,
"Early-stopping in Global Data Computation", Technical paper,
IRISA, France, 2002.
[5] C. Dwork, N. Lynch and L. Stockmeyer, "Consensus in the
presence of partial synchrony". Journal of the ACM, vol. 35, no.
2, 1988, 288-323.
[6] D. Dolev, R. Reischuk, and R. Strong, “Early-stopping in
Byzantine Agreement”, J. ACM, vol. 37, no. 4, Apr. 1990, 720-
741.
[7] M. J. Fischer, N. Lynch, and M.S. Paterson, "Impossibility of
Distributed Consensus with One Faulty Process", J. ACM, vol.
32, no. 2, Apr. 1985, 374-382.
[8] J. Hélary, M. Hurfin, A. Mostéfaoui, M. Raynal, and F.
Tronel, "Computing Global Functions in Asynchronous
Distributed Systems with Perfect Failure Detectors". IEEE
Transactions on Parallel and Distributed Systems 11(9): 897-909
(2000)
[9] I. Keidar and S. Rajsbaum, "A Simple Proof of the Uniform
Consensus Synchronous Lower Bound", Information Processing
Letters, 85(1), 2003, 47-52.
[10] N. Lynch, "Distributed Algorithms", Morgan Kaufmann,
1996.
[11] A. Mostéfaoui, and M. Raynal, "Consensus Based on Failure
Detectors with a Perpetual Accuracy Property", in Proc 14th Int l
Parallel and Distributed Processing Symp. 2000.
[12] A. Mostéfaoui, S. Rajsbaum and M. Raynal, "Using
Condition to Expedite Consensus in Synchronous Distributed
Systems", Distributed Computing, Proceedings 17th International
Conference, DISC 2003, Sorrento, Italy, October 1-3, 2003.
[13] M. Raynal, "Consensus in Synchronous systems: A Concise
Guided Tour", Proceedings of PRDC-9: 2002 Pacific Rim
International Symposium on Dependable Computing, Tsukuba,
Japan, 2002.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 4, 2009 at 02:01 from IEEE Xplore. Restrictions apply.

