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An Improved PSO Method With Application
to Multimodal Functions of Inverse Problems
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Improvements that use new formulas and strategies for updating the particles’ velocity and position, craziness, adaptive velocity ad-
justment scheme, and the use of a simple refinement searching scheme and so on are proposed on particle swarm optimization (PSO)
methods to enhance their performances. Numerical results are given to validate the feasibility and to demonstrate the merits of the pro-

posed method.

Index Terms—Design optimization, evolutionary algorithm, global optimal method, particle swarm optimization (PSO) method.

I. INTRODUCTION

OST of the inverse problems in electrical engineering in-
Mvolve optimizations of a multimodal objective function.
Due to the inability of deterministic methods to find the global
solutions for these kinds of problems, a lot of efforts have been
devoted to the study of stochastic and heuristic algorithms in the
last couple of decades. Correspondingly, a wealth of stochastic
optimal methods including, among others, simulated annealing
(SA) method, evolutionary algorithms (EA) such as genetic al-
gorithm (GA), and tabu search method have been proposed and
used successfully to solve typical electromagnetic design prob-
lems. However, hitherto there is no universal stochastic algo-
rithm which can be applied successfully to all problems and one
has to use available stochastic optimal methods instead.

The particle swarm optimization (PSO) method is a new en-
trant to the family of EA. It was developed by Kenney and Eber-
hart based on a metaphor of the social behavior of birds flocking
and fish schooling in their search for food [1], [2]. Thus, the PSO
is similar to an EA in that it works with a population, where
the population is called a swarm and each individual is called a
particle. In a typical PSO, each particle “flies” over the search
space to look for promising regions according to the experi-
ences of both its own and those of the group’s. Thus the social
sharing of information takes place and individuals profit from
the discoveries and previous experiences of all other particles in
a wide landscape during their search process around the better
solutions.

Considering a D-dimensional optimal problem, the time evo-
lution of a swarm of Npopsize particles can be r¢presented by
those of a position vector, z; = (x7,2%,---,2), and a ve-
locity vector, v; = (v}, vh,---,v%). Atiteration step k + 1, the
position and velocity of particle ¢ are updated by using

v (k+1)=vi(k) + ciri(py—xh(k))+cora (gh — 2y (K)) (1)

v(k+1)- 0™
|vi(k+1)] (if

oh(k+1) =2 (k) 4+ (k+1) 3)

vg(k+1)=
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where p; = (pi, pb,--- ; piD.) is the best position that particle
has ever found, g; = (¢%,4%,- -, g%) is the group’s best posi-
tion that the neighborhood particles of the 7** particle have ever
found, ¢; and ¢ are two positive constants, r; and ry are two
random parameters chosen uniformly within the interval [0,1],
vy is a parameter that limits the velocity of the particle in the
d* coordinate direction.

Obviously, the PSO method is very simple in concept and can
be implemented in a few lines of computer codes. Since its dis-
covery, the PSO algorithm has attracted the attention of many
researchers in different disciplines and has indeed been used
successfully to solve a wide range of engineering design prob-
lems. However, as a newly emerging optimal method, the PSO
algorithm is still in its development infancy, when compared to
its well developed counterparts such as SA and GA, and there
are still many problems or issues that require further study. For
example, the original PSO algorithm has difficulties in striking a
balance between exploration (global investigation of the param-
eter space) and exploitation (the refinement of searches around
a local optimum) [3]. Also, the algorithm cannot adaptively ad-
just its parameters according to the characteristics of the objec-
tive function to be optimized during the optimization process.
In this regard, this paper is proposing some improvements on
available PSO algorithms to enable them to become a topical
and robust global optimizers.

II. A NEw PSO ALGORITHM

For the convenience of explanation of a PSO algorithm, one
defines, on the right hand of (1), the second term as the cogni-
tive part where the particle changes its velocity based on its own
thinking and memory, and the third term is the social part where
the particle modifies its velocity based on the social-psycholog-
ical adaptation of knowledge.

A. Velocity and Position Updating

Original PSO algorithm has, as mentioned earlier, difficul-
ties in controlling the balance between exploration and exploita-
tion. Consequently, a second random parameter is proposed to
modify the velocity updating formula of (1) as

va(k+1) = r3vg(k) +ciry (py — wg(k)) +cara (g5 — wa (k)
“
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Fig. 1. Two specific moving patterns of the i‘*®

position updating using (5) and (3) sequentially.

particle for the velocity and

where 73 is arandom parameter which is uniformly chosen from
within the interval [0,1].

While the updated formula of (4) is effective in many opti-
mization problems, it does not work in some numerical exam-
ples according to the numerical experimentation experiences of
the authors. For notional simplicity, one rewrites (4) and con-
siders only the group’s best position as follows:

v(}(k +1)= rgvfi(k‘) + coro (g(} — :L'fi(k)) . 5

Assume there is a two-decision parameter (z,y) optimal
problem with the position of the i*? particle at time step k + 1
following the moving patterns as shown in Fig. 1. The velocity
and position of that particle are updated using (5) and (3)
sequentially. Here the moving pattern (a) is dominated by the
inertia of a flying bird, and the moving pattern (b) is due to
mis-matching of the algorithm parameters. For both moving
patterns, in the step that follows, the direction of its velocity
is in the opposite direction of that of its exact one to allow the
bird to fly back into the possible promising regions. Modeling
this fact into the improved PSO algorithm, one amends (4) to

va(k +1) = (2rs = Dvy(k) + err1 (py — (k)
+caro (gfl — mzl(k)) . (6)

On the other hand, the utilization parameters, say r; and 72,
for both the personal and group’s knowledge in (6), are gen-
erated independently and randomly. Therefore, there will be
cases in which the two random parameters are both too large
or too small. In the former cases, both the personal and social
experiences accumulated so far are over used, resulting in the
particle being trapped quickly onto a local optimal point. In
the latter case, both the personnel and social experiences are
under-used when guiding the search toward an optimal point,
thereby slowing down the convergence speed of the algorithm.
To optimize the use of cognitive knowledge of a particle and the
social experience of its neighbors, the reasoning ability of an in-
telligent community is modeled in the proposed algorithm using
one random parameter that combines the cognitive knowledge
of the particle as well as the group’s experiences.

In addition, the inferior limits are also proposed in the im-
proved PSO algorithm to avoid the generation of meaningless
or trivial particles.
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After taking into consideration of all the aforementioned im-
provement aspects, and re-arranging the numbers of the sub-
scripts of the random parameters, the new formulas for velocity
updating in the proposed algorithm are

viy(k4+1) = (2ry— 1)) (k)
+ry ey (pg—ag(k))
+ea(1—-71) (g5 —a(k))] ()
va(k+1)-vf™

vd(k+1): |’U(Zl(]€+1) (Zf |vd(k+1)| > 4 )
i/, _ /U(Li(k_i_]‘)v(llnln - 11, min
vdk+1y_—TEREITﬂ— (if |vg(k+1)| <vi™). ®)

One can balance exploration and exploitation by exploiting
the position updating strategy and thus (3) becomes

xfi(k +1)= 7"4:l:fi(k) + (1 - 7‘4)’03(]6 +1). 9)

B. Memory and Utilization of the Worst Solution

To utilize fully the latest information accumulated from
the searched history to guide the subsequent search towards
promising solutions, the position of the particle which gives the
worst objective function value in the current iterative swarm
is used in the proposed algorithm in order to shift the new
particles away from the particle in issue. On the other hand,
in the advance stage of a search, the difference between the
best and worst particles will diminish, therefore the moving
away from the worst particle could be counterproductive, as
such move will also shift the search away from the best one.
Therefore, an updating formula for velocity using the worst
particles is proposed as

vi(k+1)
Ué(k—l— 1) (Lf p;vorst_
\vh(k+1)+cara [wQ —(ph) Wmt] (otherwise)

best|
bi

<e)

(10)

; is the position of the particles that gives the worst
objective function for the current iterative swarm; p%’eSt = p;
or g;; cg is a positive constant; 4 is a random parameter which
is chosen uniformly from the interval [0,1]; € is a precision pa-

rameter defined by the user.

worst,

where p}

C. Craziness

In birds flocking or fish schooling, a bird or a fish often change
directions suddenly. This ‘craziness’ of a bird or fish is modeled
in the primary algorithm using a craziness variable [2]. How-
ever, this operator is eliminated in algorithms subsequently de-
veloped by the introduction of a cornfield vector. To maintain
the diversity of the particles, it is however necessary to retain
the craziness variable in the PSO algorithm. Hence a simple
craziness operator is re-introduced to assure that the particle has
a predefined probability of craziness to maintain the diversity
of the particles in the proposed algorithm. To this end, before
updating position using (7)—(10), the velocity of the particle is
crazed by

”Zi(k +1)(rs < Per)

va(k +1) = {Randd(v“5)(r5 > P.,) an
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where 75 is a random parameter which is taken uniformly from
within the interval [0,1], Randy(e) is a function which is used
to randomly generate the d*" component of the velocity of the
particle ¢, P,, is a predefined probability of craziness.

D. Adaptive Regulation of Velocity

Although the initial particles are generated in such a way that
they are confined in the allowable space for a boundedly con-
strained optimal problem, it is very common for new particles
to move out of the boundaries of the feasible space during the
search process. Traditionally, this problem is tackled by either
taking the bounds as the corresponding coordinates of the new
particles, or keeping the coordinates of the particle unchanged
but to assign that particle with an extremely poor objective func-
tion value. However, both treatments will reduce the diversity of
the particles in the search process, thereby reducing the global
search ability of the algorithm correspondingly. In the improved
PSO algorithm, an adaptive regulation scheme is proposed that
adjusts the velocity of every particle, according to the number of
moves which are outside the feasible spaces in some specified
iteration cycles, in order to prevent the particles to migrate to
areas outside the boundaries. Mathematically, assume that the
number of moves that are outside the boundary in the d-coor-
dinate direction since the last velocity adjustment is N3, and
the number of iterative cycles between velocity adjustment is
N, the velocity of particle 7 can be adjusted automatically, after
every N successive iterations, using

va(k +1) = (1 + B)vy(k)
va(k)
(1+Ng"/Nr)”

(if Ng™ < 1) (12)

vi(k+1) = (if Ng™ >1)  (13)

where «, (3, and -y are positive constants.

A useful byproduct of this velocity adjustment scheme is that
it will increase the diversity of particles to prevent them from
being trapped onto a local optimum. For example, when a par-
ticle is confined in a local optimal point which is in the feasible
space, the velocities of the particle in the successive searches
that follow will eventually reach their maximum values if they
are updated using (12), (13), which will equip the particle with
an enhanced ability to move away from the specific local op-
timal point.

E. Exploitation Search

To enable the algorithm to refine searches around a new
searched best solution in an attempt to find improved solutions,
after a particle is being identified as a new best solution, an
intensifying search around the newly identified particle is
activated. The intensifying search proposed in this paper has
characteristics that are reminiscent of a tabu search method
in that a limited number, V},, of new particles are generated
randomly in the small neighborhood of the best solution.
The objective function values of these neighborhood particles
together with that of the normally generated ones are then eval-
uated, and the best one is selected as the new current particle,
regardless of whether its objective function value is better or
worse than that of the current particle, to maintain the ‘climb
up’ property of the proposed algorithm.
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT OPTIMAL METHODS
ON THE TEST FUNCTION FOR 100 INDEPENDENT RUNS

No. of averaged No. of runs finding the

Algorithms

iterations global solutions
Original PSO 1248 1
Proposed PSO 1464 100
Utabu 1629 100
CS 13478 100

III. NUMERICAL EXAMPLES

A. Benchmark Experiment

To validate the proposed improved PSO algorithm and to
compare its performances with the original PSO method, nu-
merical experiments have been done on many well designed
mathematical functions, and only the results on a typical one
are reported here, due to space limitation, to highlight the global
search ability enhancement of the proposed algorithm. Essen-
tially, the function being studied is

n—1
f(:E) =ks3 {sin2 ((7Tk’4£171) + Z(.’L‘L — k’5)2
=1
X [1 + kg sin2(7rk4:vi+1)]

+(@ — k5)? [1 + kg sin®(wkr,,)] }

+ " u(w;,5,100,4)
=1

X={z€eR|-5<z;<5,(i=1,2,---,5)}

ks =01,ky =3,ks = kg = 1,k; =2 (14)
where w is a penalty function defined as
k(y—a)™,  (Yy>a)
w(y,a,k,m)=¢ 0, V—a<y<a) (15
E(—y —a)™ My <a).

This function has roughly 15° local optima, and the global
one is at X,nin = (1,1,1,1,1) and fope = O.

In the numerical experiments, the parameters used by both
the proposed and the original PSO algorithms (if applicable)
are: ¢1 = ¢ = 2, ¢3 = 1 Npopsive = 16, 07 = (bg —
ad)/Z, Nh = 3, ’U(Tin = (bd - ad)/IOOO(d = 1,2,~- /D)
(aq and by are, respectively, the inferior and superior bounds
for the d*" variable), P., = 0.02, & = [ = v = 1.01. For this
test function, every algorithm is independently run 100 times,
and the performance comparison results are given in Table I. In
order to demonstrate the merits of the proposed algorithm, this
test function is also solved by using a combined strategy (CS)
of the SA and GA [4] and a universal tabu search (Utabu) [5].

From these numerical results, it is obvious that:

1) in terms of global search ability, the proposed one is ex-
tremely superior when compared to its precursor, since
even for a difficult function having nearly infinite (15°)
local optima, the 100 independent runs of the proposed im-
proved PSO algorithm can always find the global optimal
solution;
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2) in terms of convergence speed, the proposed one is mar-

ginally inefficient compared with its original counterpart;

3) however, the proposed improved PSO algorithm is the most

efficient one among the three algorithms, i.e., the CS, the
Utabu search method and the proposed one, which can find
the global solution with a 100% probability.

It should also be pointed out that when the population size
is set to 8, the smallest number, i.e., a total of 884 iterations,
is observed for the proposed improved PSO algorithm, yet the
proposed algorithm can still find the global optimal solution of
the test function.

B. Application

The geometry optimization of the multisectional arcs of the
pole shoe of a large salient pole hydro-generator [5] is solved,
using the proposed PSO algorithm, to elucidate its viability in
the study of practical inverse problems. The problem is formu-
lated as

max By (X)

s.t ev—evggo, THF—THF(]SO

SCR—SCRy >0, X, — X}, <0  (16)
where By; is the amplitude of the fundamental component of
the flux density in the air gap; e, is the distortion factor of the
sinusoidal voltage of the machine on no-load; T H F' is the tele-
phone harmonic factor; X cll is the direct axis transient reactance
of the generator; SC'R is the short circuit ratio.

The decision parameters are the center positions and radii of
the multisectional arcs of the pole shoes as shown in Fig. 2. In
the numerical implementation, By is directly computed from
the finite element solution of the no-load electromagnetic field
of the machine, and other performances of (16) are derived
based on these finite element solutions. This problem is solved
using, respectively, the proposed improved PSO algorithm and
an universal tabu search method [5]. The parameters used in
this application for the proposed PSO algorithm is the same
as those used in the previous section of the benchmark exper-
iment. For the universal tabu search method, the parameters
used are the same as those reported in [5]. Table II lists the
final searched optimal solutions as well as the performance
comparison results of different optimal methods for a 300 MW
hydro-generator. The objective function value and the number
of function evaluations for the proposed algorithm are, respec-
tively, 1.10 (relative value) and 1742; which are compared,
respectively, to 1.10 and 1768 of the tabu search method. Again,
these numerical results confirm that the proposed improved
PSO algorithm can virtually find the same optimal solution as
that found by a well designed tabu search method.

IV. CONCLUSION

In the search for a robust global optimizer for computation-
ally heavy inverse problems, an improved PSO method based on
a comprehensive simulation of birds flocking or fish schooling
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Fig. 2. The schematic diagram of the multisectional pole shoes.

TABLE II
GEOMETRY OPTIMIZATION RESULTS OF A 300 MW HYDROGENERATOR

Algorithms Ri(m) R>(m) Xi(m) Yi(m) Xo(m) Yo(m)
Proposed 0.0532  1.7366  0.2570  5.6515 0.1950 5.1299
Tabu 0.0522  1.7376 _ 0.2571 _ 5.6510  0.1955 5.1302

is proposed and tested on a well designed mathematical function
as well as a practical inverse problem. The primary numerical re-
sults as reported are good validation of the proposed algorithm.
The future work of the authors will focus on a comprehensive
study of the importance of the algorithm parameters and their ef-
fects upon the algorithm performances. Also, a theoretical con-
vergence analysis of the algorithm would be carried out to make
sure the PSO algorithm will become a powerful and widely rec-
ognized global optimizer in the study of optimization problems
in different engineering disciplines.
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