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A Simulated Annealing Algorithm for Multiobjective
Optimizations of Electromagnetic Devices

S. L. Ho, Shiyou Yang, H. C. Wong, and Guangzheng Ni

Abstract—This paper proposes a simulated annealing algorithm
for multiobjective optimizations of electromagnetic devices to find
the Pareto solutions in a relatively simple manner. The algorithm
is based on the successful introductions of the Pareto set as well as
the parameter and objective space strings. The new rank formula
and fitness-sharing functions together with the stop criterion and
other improvements are investigated in the proposed method. Two
numerical examples for validating the robustness of the proposed
method are also reported.

Index Terms—Design optimization, grid algorithm, multiobjec-
tive optimization, simulated annealing.

I. INTRODUCTION

T HE MULTIOBJECTIVE or vector optimization is a very
important research area in engineering studies because

real world design problems require the optimization of a group
of objectives. Thanks to the effort of scientists and engineers
during the last two decades, particularly the last decade, a
wealth of multiobjective optimizers have been developed,
and some multiobjective optimization problems that could
not be solved hitherto were successfully solved by using
these optimizers. In terms of robustness and efficiency of the
available vector optimizers, these optimizers are still in need
of improvements and hence there are many unresolved open
problems [1]. It is also observed that most of the multiobjec-
tive optimization studies have been focused on evolutionary
algorithms. However, a more thorough research reveals that the
performances of evolutionary algorithms are often overshad-
owed by local search methods, such as simulated annealing
or tabu search that are generally quite complex [2]. In this
paper, a simple multiobjective optimizer based on simulated
annealing algorithms is proposed. Without a loss of generality,
the following minimization problem is considered:

(1)

(2)

where ,
, , and

.
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When working with multiobjective optimal problems, it is de-
sirable to define some concepts or terminologies for the conve-
nience of the potential users. The main terminologies used in
this paper are therefore given as follows.

A. Weakly (Strongly) Dominated and Nondominated Solutions

A solution is a weakly nondominated solution if there is no
such that for ;

otherwise, solution is a weakly dominated solution (a so-
lution is a strongly nondominated solution if there is no

such that for
and for at least one index ofsuch that ; other-
wise, the solution is a strongly dominated solution).

B. Pareto Optimal (Solution or Front)

The strongly and weakly nondominated solutions constitute
the total Pareto front of a multiobjective optimization problem.

A qualitative demonstration of the Pareto front for mini-
mizing two objectives is shown in Fig. 1.

II. M ULTIOBJECTIVE SIMULATED ANNEALING ALGORITHM

An ideal multiobjective optimal tool should have the ability
to find and to sample the Pareto solutions uniformly. To achieve
these two goals, different approaches for designing a robust mul-
tiobjective optimizer based on a simulated annealing algorithm
of single objectives is proposed. To facilitate the understanding,
an iterative procedure of the proposed algorithm is firstly given
as:

Empty the Pareto set , set the con-
trol parameter ;
Randomly generate a feasible solution ;
Repeat
Generate randomly from , evaluate

the fitness values of solution and solu-
tion ;
Accept with probability

If is not dominated by , adjust the
;

If the control parameter is reduced, set
;

Until the termination criterion is satis-
fied.
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Fig. 1. Weakly and strongly nondominated solutions for minimizing a two
objective case.

A. Introduction of Pareto Set

To report the searched Pareto solutions, a Pareto set
is introduced in the proposed algorithm. The length of the set is
finite, and its quantities are dynamically updated in the search
process. To maintain the diversity of the searched Pareto solu-
tions in both parameter and objective spaces, the solutions in
the Pareto set is used in the computation of the point density
around a specific point in the determination of its sharing func-
tion value.

B. Introduction of Parameter and Objective Strings

To reduce the CPU time when computing the distances among
different solutions and to evaluate the densities of a solution in
the fitness sharing procedure as well as to develop an efficient
multiobjective optimizer, the objective and parameter spaces are
first divided into separate discrete grids according to user prede-
fined precision parameters. Each of the discrete grids is recorded
as a binary string. When a solution is identified as a Pareto so-
lution, its location in the grids, for example in the parameter
space grid, is determined by repeatedly bisecting the range of it
in each direction and to identify the specific half range that con-
tains the solution. The corresponding bit of the strings is then
set to a logical 1. Since the maximum and the minimal values
of an objective in optimal problems are generally unattainable
before the optimization process is carried out in real problems, a
reference point, giving a base value of the objective vector and
a pointer to identify the position of this reference point in the
objective string, is used in the evaluation of the grid location of
an arbitrary Pareto solution in the objective grid. By introducing
the two strings for both the parameter and objective grids, the
computation of the point densities and the evaluation and re-
porting of the searched Pareto solutions can be done simply and
efficiently. It should also be noted that the proposed strings are
vital in maintaining a constant number of the searched Pareto
solutions in the final stage of the search process, particularly
where the Pareto solutions are found in different disconnected
subregions in the parameter spaces. Moreover, these strings are
very important in the development of an efficient stop criterion
for the proposed algorithm.

C. Fitness Value

To decide if a solution is to be taken as the current one, some
techniques must be designed to scale the vector objectives. For

this purpose, the ranking concept used in a genetic algorithm is
introduced to assign a fitness value to a solution [3]. Extensive
simulation results show that after the introduction of the fitness
sharing function, especially in both the parameter and objective
spaces for preserving the diversity of the searched Pareto so-
lutions where the point density of a dominated solution is far
smaller than that of a Pareto solution in some cases, the total
fitness value of the dominated solution may be larger than that
of the Pareto solution. Hence, the dominated solution will have
a very high probability to be selected as the most current one to
begin the next iterative cycle, giving rise to an inefficient algo-
rithm. To overcome such drawbacks of the conventional ranking
approach, a new rank formula to decide the rank of a solution
is proposed as

(3)

where is the number of solutions in which dominates
the solution .

To guarantee uniform distributions of the searched Pareto so-
lutions in both the parameter and objective spaces, the fitness
sharing concept is extended [4]. To address the densities of the
searched Pareto solutions around a specified point, the fol-
lowing simple but efficient fitness sharing function is proposed:

(4)

where ( ) is the density of Pareto
solutions found around in the space.

The fitness value of the solutionis then given by

(5)

The minimal value of the rank of a dominated solution is 4/3,
and the value of the rank of a nondominated one is constant at
1/3. The total fitness value of a nondominated solution is still
larger than that of the dominated solutions, even in the worst
case where the maximal value of the sharing functions, which
is 2, is assigned to the dominated solutions while the minimal
value of the sharing functions of 0 is assigned to this nondom-
inated one. The proposed approach for fitness assignments is
thus relatively superior and efficient.

To determine the density of the Pareto optimals for a specific
point, one simply needs to account for the number of logical
“1”s in the bits of the aforementioned two strings that corre-
spond to the neighborhood points of the specific grid point.
Thus, by introducing the parameter and objective strings as
proposed, the point densities evaluation is done efficiently and
simply.

D. Evaluation and Reporting the Pareto Solutions

In the optimization process, the Pareto optimal set is updated
automatically in the proposed algorithm. To simplify the de-
scription, let be a new solution to be considered. In the set
of the Pareto solution, there is a solutionsuch that:
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1) if is dominated by , then is substituted by ;
Set the bit of the strings for to zero, and set the bit of
the strings for to 1s;

2) if is dominated by , then is discarded;
3) if none in the Pareto optimal set satisfies (1) or (2), then

becomes the current Pareto solution, and in this case:

i) if the bit value of this solution in either the param-
eter or objective strings is not a logic 1, add this
solution to the Pareto set; set the bits of the strings
for this solution to logic 1;

ii) otherwise, discard the solution.
By using the new parameter and objective strings, the evalua-

tion and reporting of the new Pareto solutions become straight-
forward in the proposed algorithm. In the final stage of the
searching process, the number of the searched Pareto solutions,
which are now distributed uniformly in both the parameter and
objective spaces, will also become constant.

E. Start of New Iterations

To keep the diversity of the searched Pareto solutions after
the iteration of every control parameter, the proposed algorithm
will always restart from a randomly generated point which is far
away from the current one in the Pareto set rather than from the
last accepted point.

F. Stop Criterion

By using a combination of the aforementioned two binary
strings as well as the new evaluation and reporting schemes,
the searched Pareto solutions will become constant if enough
searches are executed in the searching process. Thus, a very
simple stop criterion is proposed and used in this paper, i.e.,
the algorithm will stop the iterative process automatically if the
mean square value of the total searched Pareto optimal solutions
is constant for a specific number of iterative cycles.

III. N UMERICAL VALIDATION

To validate the proposed algorithm and to compare it with
other well known multiobjective optimizers, i.e., the genetic al-
gorithm using uniform design (UGA) [5] and the hybrid genetic
algorithm (HGA) [6], a test function as follows is selected and
solved:

s.t. (6)

For this test function, the proposed algorithm is inde-
pendently run ten times, and a comparison of the average
performances with those of UGA and HGA is summarized
in Table I. The searched Pareto solutions in the objective and
parameter spaces for a typical run are, respectively, given in
Figs. 2 and 3. Comparing Fig. 2 with [5, Fig. 6], one can see
that: 1) although the number of the searched Pareto solutions
of the proposed algorithm is less than that of UGA, the
searched Pareto solutions have a more uniform distribution in
the objective space and 2) the number of the searched Pareto

TABLE I
PERFORMANCECOMPARISON OF THEPROPOSEDALGORITHM WITH

AVAILABLE ONES FOR THETEST FUNCTION

Fig. 2. The searched Pareto solution in the objective space for the test function.

Fig. 3. The searched Pareto solution in the parameter grid for the test function.

solutions using the proposed algorithm is almost double of that
using HGA. From the performance comparison of Table I, it
can be seen that the proposed algorithm is the most efficient
one among the three multiobjective optimizers. Although
the Pareto solutions of this problem are located in different
disconnected subregions in the parameter space (Fig. 3), the
proposed stop criterion can still work very well and produces
uniform distribution of the searched Pareto solutions in both
the parameter and objective spaces, thereby illustrating the
advantages of introducing the two binary strings.

IV. A PPLICATION

The single objective design problem of the geometrical
optimization of the multisectional pole arcs of large hydro-
generators [7] is extended to include two additional objectives
to demonstrate the usefulness of the proposed algorithm in
solving engineering multiobjective design problems. Mathe-
matically, the problem is formulated as

s.t

(7)
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Fig. 4. The searched Pareto solutions of a 300-MW hydrogenerator in the
objective space.

Fig. 5. The searched Pareto solutions of the 300-MW hydrogenerator in the
r or plane grid.

Fig. 6. The searched Pareto solutions of the 300-MW hydrogenerator in the
y oy plane grid.

Fig. 7. The searched Pareto solutions of the 300-MW hydrogenerator in the
x ox plane grid.

where is the amplitude of the fundamental component of
the flux density in the air gap, is the distortion factor of a si-
nusoidal voltage of the machine running on no-load,THF is the
abbreviation of the Telephone Harmonic Factor,is the direct
axis transient reactance of the motor, andSCRis the abbrevia-
tion of the short circuit ratio.

The corresponding geometrical parameters to be optimized
are the center positions ( ) and radii ( )
of the multisectional arcs of the pole shoes. The 628 searched
Pareto solutions of a 300-MW 44-pole hydrogenerator in the
objective space are given in Fig. 4. To visually demonstrate the
distribution of the searched Pareto solutions in the parameter
space, Figs. 5–7 show, respectively, their distributions in the

, , planes. From Figs. 5–7, one can see that
the distribution of the Pareto solutions in the parameter space
for this problem is very irregular and located in some discon-
nected subregions. In other words, the specific design problem
is hard to solve due to the difficulties in finding and uniformly
sampling the Pareto solutions. Nevertheless, the numerical
results reported in Figs. 4–7 show that the proposed algorithm
would not only simply find, but also can uniformly sample,
the Pareto solutions in both spaces. Thus, the proposed method
is very robust in solving complex multiobjective optimization
problems of the real world.

V. CONCLUSION

A simulated annealing-based algorithm for multiobjective
optimal designs of electromagnetic devices is proposed in this
paper. The numerical results reveal that the proposed algorithm
can find and sample uniformly the Pareto solutions of multiob-
jective problems very efficiently and is thus very suitable for
engineering multiobjective optimal problems, especially for
problems where the Pareto solutions are located in different
disconnected subregions in the parameter spaces.
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