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Abstract—We propose a class of doubly-generalized LDPC
(DGLDPC) codes that use single-parity-check (SPC) codes as
component codes at the super-variable nodes (SVNs) and SPC
product-codes (SPC-PCs) as component codes at the super-check
nodes (SCNs). We propose a low-complexity iterative decoding
algorithm catered for the special structures of the SPC-PCs.
Finally, we present the error performance and the convergence
rate of the proposed DGLDPC codes.

I. INTRODUCTION

Being one of the two known classes of Shannon limit-

approaching codes, low-density parity-check (LDPC) codes

beat their competitors (namely turbo codes) because of (i) their

better error performance particularly at high code rate and (ii)

the highly parallel decoder structure. The original LDPC codes

are based on using repetition codes at the variable nodes (VNs)

and using single-parity-check (SPC) codes at the check nodes

(CNs) [1].

LDPC codes can also be generalized by replacing the SPC

codes or/and the repetition codes with more complex linear

block codes called constituent codes, and form the generalized

LDPC (GLDPC) codes/doubly-generalized LDPC (DGLDPC)

codes. Subsequently, the nodes become super-variable nodes

(SVNs) and super-check nodes (SCNs). Many kinds of short-

length component codes have been considered for use in

GLDPC/DGLDPC codes. They include Hamming component

codes [2]–[4]; Bose-Chaudhuri-Hocquenghem (BCH) compo-

nent codes [3], [5]; Reed-Solomon (RS) component codes

[5]; Reed-Muller component codes [6]; and hybrid component

codes [7], [8]. Comparing with the LDPC codes, GLDPC

codes and DGLDPC codes possess several advantages in-

cluding better error performance, faster convergence rate and

good performance at low rates. However, GLDPC/DGLDPC

decoder complexity is much higher since more complicated

constraints are introduced. Hence, finding proper constituent

codes that can achieve a given error performance at a tolerable

computation complexity is a key challenge in designing good

GLDPC/DGLDPC codes.

In [9], it has been demonstrated that product codes can

force the probability of bit error to zero when the number of

dimensions goes to infinite. In [10], it has further been shown

that SPC-PCs with check on checks can achieve error-free

transmission within 2 dB of the theoretical capacity by using

an iterative decoding algorithm. The SPC-PCs have surpris-

ingly good performance even for high code rate and relatively

short block length because of their outstanding minimum
distance property. It can achieve an asymptotic coding gain

of 11.3 dB [11]. Besides, SPC-PCs are suitable for effective
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Fig. 1: The structure of the (4, 3)2 single-parity-check product-

code (SPC-PC). 9 information bits are arranged in a 2-

dimensional 3× 3 structure. Check bits are added in the first

dimension and then in the second dimension.

decoding algorithm, in which the extrinsic information of each

bit is exchanged between different dimensions of the product

codes for a fixed number of iterations. Because of the above

advantages, we propose using SPC-PCs component codes

at SCNs in GLDPC/DGLDPC codes. We further propose

applying SPCs at SVNs because SPCs are simple to decode

and can raise the overall rate of the DGLDPC codes.

We organize this paper as follows. In Section II, we give

a review of multi-dimensional SPC-PCs in terms of their

structure and their minimum distance property. In Section III,

we describe an iterative algorithm for decoding SPC-PCs.

Compared with the maximum a posteriori probability (MAP)

decoder, the iterative algorithm has a lower complexity. Fi-

nally, in Section IV, we present our proposed DGLDPC codes,

in which SPC-PCs are used as component codes at SCNs and

SPCs are used at SVNs. We present the error performance and

the convergence rate of the proposed DGLDPC codes.

II. SINGLE-PARITY-CHECK PRODUCT-CODES

SPC-PCs, denoted by (nspc, nspc − 1)D, is referred to as

a kind of D-dimensional product code concatenated with

(nspc, nspc − 1) SPC component codes in each dimension.

A (nspc, nspc − 1)D SPC-PC can be constructed as follows.

Firstly, the information bits are arranged in a D-dimensional

hypercube. Secondly, each nspc − 1 information bits are

encoded by a (nspc, nspc − 1) SPC in each dimension [12].

Figure 1 shows the process of constructing a (4, 3)2 SPC-PC.

In particular, 9 information bits are arranged as a 2-dimension

array (size 3 × 3), and then encoded by the (4, 3) SPC code

in a row-wise and column-wise manner. Finally, a check-on-

checks bit is added.

For a (nspc, nspc− 1)D SPC-PC, in general, the number of
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information bits is equal to

kspc−pc = (nspc − 1)D, (1)

the code length is

nspc−pc = nD
spc, (2)

the number of valid check bits is

mspc−pc = nD
spc − (nspc − 1)D, (3)

and hence the code rate is equal to

rspc−pc =
k

n
=

(nspc − 1)D

nD
spc

. (4)

The corresponding parity-check matrix is of size mspc−pc ×
nspc−pc.

The minimum distance of the (nspc, nspc−1)D SPC-PC has

been shown equal to [12]

dmin = 2D, (5)

and the number of codewords with this minimum distance
equals

Ndmin
=

(
nspc(nspc − 1)

2

)D

. (6)

It has also been proved that DGLDPC codes with con-

stituent codes having a minimum distance dmin ≥ 3 performs

well asymptotically [13]. Since the minimum distance of the

(nspc, nspc − 1)D SPC-PC equals dmin = 2D [12], such

an outstanding distance property makes SPC-PC an attractive

candidate for the constituent code of DGLDPC codes.

III. DECODING ALGORITHM

The belief propagation (BP) algorithm can be used to

decode DGLDPC codes. We consider the extrinsic information

exchange between the super-variable nodes (SVNs) and the

super-check nodes (SCNs), based on the bipartite graph of the

adjacency matrix, as the role of a global decoder. Besides, each

super node is regarded as a local decoder. A soft-input soft-

output (SISO) decoding algorithm, e.g., maximum a posteriori
probability (MAP) algorithm, is employed in the local decoder

to generate the extrinsic information for the global decoder.

Since the complexity of the DGLDPC decoder is dominated

by the complexity of the local decoders at the SCNs [14]

[15], we focus on reducing the complexity of such decoders.

At each SCN, we decode each of the SPC component codes

of the SPC-PC with an independent SISO decoder based

on the BP algorithm [16]. Then, the extrinsic information

of each SPC decoder output can be exchanged among the

different dimensions of the SPC-PC by using a small number

of local turbo iterations. By adjusting the number of local
turbo iterations, a tradeoff between error performance and

computation complexity can be obtained.

Suppose the (nspc, nspc − 1)D SPC-PC is used as the con-

stituent code in each SCN. Each (nspc, nspc − 1) component

SPC code in each dimension is considered as an independent

code and uses an independent decoder. The iterative decoding
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Fig. 2: Illustration of notations with a (3, 2)2 SPC-PC.

algorithm of the SPC-PC decoder used at the SCN is summa-

rized as follows. Unless otherwise stated, all messages are in

log-likelihood-ratio (LLR) format.

A. Initialization

a) Initialize the channel messages: Each SCN treats

the incoming messages passed from the SVNs as channel
messages. For a (nspc, nspc − 1)D SPC-PC used at the SCN,

there are (nspc)
D such channel messages denoted by Ct

(t = 1, 2, ..., (nspc)
D). Also denote I as the set of messages.

For a given dimension c = 1, 2, ..., D, there are (nspc)
D−1

SPC codes; and for each of these SPC codes, there are nspc

messages. Then, denote Ia,b,c as the channel message corre-

sponding to the b-th bit of the a-th SPC component code in the

c-th dimension of the product code (a = 1, 2, ..., (nspc)
D−1;

b = 1, 2, ..., nspc and c = 1, 2, ..., D).

Figure 2 illustrates the above notations based on a (3, 2)2

SPC-PC i.e., a 2-dimensional SPC-PC with 9 coded bits. There

are 9 channel messages denoted by Ct (t = 1, 2, ..., 9). The

messages can be viewed from 2 different dimensions (c =
1, 2). For a given dimension, there are 3 SPCs; and for each

SPC, there are 3 messages.
b) Initialize the extrinsic LLR values:: Denote the ex-

trinsic LLR value corresponding to the b-th bit of the a-th

SPC component code in the c-th dimension of the SPC-PC as

Ea,b,c and initialize it to zero, i.e.,

Ea,b,c = 0, (7)

where a = 1, 2, ..., (nspc)
D−1, b = 1, 2, ..., nspc and c =

1, 2, ..., D.

B. Iteration

Denote Aa,b,c as the a priori LLR value corresponding

to the b-th bit of the a-th SPC component code in the c-th
dimension of the SPC-PC.

Step 1: Set the local iteration number τ = 1.

Step 2: Set the dimension index c = 1.

Step 3: Compute the a priori LLR value for each bit in

each SPC component code in the c-th dimension by summing

the extrinsic LLR values of the corresponding bit in other

dimensions of the SPC-PC, i.e.,

Aa,b,c =
∑D

�=1,� �=c
Ea,b,� (8)
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Fig. 3: Passing of the extrinsic LLR values in a 2-dimensional

SPC-PC decoder. I denotes the channel messages in the form

of LLR, A denotes the a priori LLR values at the input of

a SISO decoder and E denotes the extrinsic LLR values at

the output of a SISO decoder. The subscript corresponds to

the index of dimension of the SISO decoder. “Int.” denotes an

interleaver.

where a = 1, 2, ..., (nspc)
D−1 and b = 1, 2, ..., nspc.

Step 4: Compute the extrinsic LLR value for each of the

nspc bits in each of the (nspc)
D−1 SPC component codes

using

Ea,b,c = 2 tanh−1

⎛
⎝ nspc∏

�=1,��=b

tanh

(
Ia,�,c + Aa,�,c

2

)⎞⎠(9)

= log

⎛
⎝1 +

∏nspc

�=1,� �=b tanh
(

Ia,�,c+Aa,�,c

2

)

1−∏nspc

�=1,� �=b tanh
(

Ia,�,c+Aa,�,c

2

)
⎞
⎠ ,(10)

where a = 1, 2, ..., (nspc)
D−1 and b = 1, 2, ..., nspc. Note that

these extrinsic LLR values are used for updating the a priori
LLR values for the bits in other dimensions.

Step 5: The computation for the c-th dimension is com-

pleted. Increment the value of the dimension index c by 1,

i.e., set c = c+ 1. If c ≤ D, go to Step 3.

Step 6: One local turbo iteration is completed. Increment

the local iteration number τ by 1, i.e., set τ = τ+1. If τ does

not exceed a pre-set maximum local iteration number τmax,

go to Step 2.

Step 7: All local iterations are completed.

Figure 3 illustrates how the extrinsic LLR values are passed

among the decoders for the 2-dimensional SPC-PC local

decoder.

C. Output Extrinsic Message

After a fixed number of local turbo iterations (τ = τmax)

have been carried out, the overall extrinsic LLR value for a

particular bit indexed by (a, b) is obtained by summing the

corresponding extrinsic LLR values in all dimensions, i.e.,

Ea,b =
∑D

c=1
Ea,b,c (11)
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Fig. 4: Bit error rate of DGLDPC-1 when the maximum

number of global iterations equals (a) 10; (b) 20; and (c) 50.

where a = 1, 2, ..., (nspc)
D−1 and b = 1, 2, ..., nspc. Finally,

these overall extrinsic LLR values are passed to the connected

SVNs.

The decoder in each SVN, based on all incoming messages,

evaluates the extrinsic LLR values. Afterward, the messages

are returned to the connected SCNs and one global iteration
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(a) Convergence rate of DGLDPC-1 with 1 local turbo iteration.
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(b) Convergence rate of DGLDPC-1 with 3 local turbo iterations.
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(c) Convergence rate of DGLDPC-1 with 5 local turbo iterations.
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(d) Convergence rate of DGLDPC-1 with the algorithm in [17].

Fig. 5: Convergence rate of DGLDPC-1 with different decoding algorithms. (a)–(c) Algorithm-2; (d) Algorithm-1. A maximum

of 50 iterations is used for decoding each codeword.

is completed. When a sufficient number of global iterations

are performed, the SVNs decode the codeword.

IV. SIMULATION RESULTS

We use two different decoding algorithms in our simula-

tions. Algorithm-1 denoting the algorithm from [17] is used as

the baseline for performance comparison and that Algorithm-2
is our proposed algorithm described in Section III. Note that

Algorithm-1 is based on the MAP algorithm and no iteration

is needed at the SCN decoder.

A. Error Performance

A DGLDPC code denoted as DGLDPC-1 is constructed

with the following parameters.

• (4, 3) SPC codes as constituent codes in all SVNs

• (4, 3)2 SPC-PCs as constituent codes in all SCNs

• Adjacency matrix of size Ma,1 ×Na,1 = 250× 1000
• Code rate 0.417
• Code length 3000

We assume a binary input-additive white Gaussian noise

(BI-AWGN) channel. Figure 4 depicts the bit-error-rate (BER)

performance when DGLDPC-1 is decoded with a maximum of

10, 20 and 50 global iterations, respectively. Both Algorithm-1
and Algorithm-2 have been used at the SCNs. For Algorithm-

2, the number of local iterations used is set to 1, 3, 5 and 6.

From the curves, it can be observed that for a fixed number

of local iterations, the error performance of the DGLDPC-1
code improves with the maximum number of global iterations.

When the maximum number of global iterations is fixed, we

can see that the error performance improves when the number

of local iterations performed by Algorithm-2 at the SCNs

increases from 1 to 3, and then to 5. However, if the number

of local iterations is increased to 6, the performance does not

improved anymore. In fact, we find that using iterations more

than 6 will further degrade the error performance. We also

observe that Algorithm-2 using 5 local iterations outperforms

Algorithm-1 [17]. For example, when a maximum of 50 global
iterations are used, Algorithm-2 outperforms Algorithm-1 by



TABLE I: Simulation statistics of the DGLDPC-1 code.

Codes No. of converged Total time Total no. of Avg. time taken Avg. no. of global
codewords consumed global iters. per global iter. iters. per codeword

DGLDPC-1,
1 local turbo iters. 4803 1477 seconds 355410 0.0042 seconds 35.54

DGLDPC-1,
3 local turbo iters. 8540 1957 seconds 133369 0.0147 seconds 13.33

DGLDPC-1,
5 local turbo iters. 10000 2222 seconds 51706 0.0430 seconds 5.17

DGLDPC-1,
algorithm in [17] 9993 20138 seconds 89054 0.2261 seconds 8.99

about 0.3 dB at a BER of 2×10−7. Besides, we do not observe

any error floor at a BER of 2× 10−8.

B. Convergence Rate

We send 10000 DGLDPC-1 codewords, and then decode

them by Algorithm-1 (Algorithm in [17]) and Algorithm-2
at Eb/N0 = 1.6 dB. We also set the maximum number of

global iterations to 50. The number of global iterations taken

to decode each codeword is recorded and the statistical data

are plotted in Figure 5. From the figure, we can easily find that

Algorithm-2 using 1 or 3 local iterations does not perform as

well as Algorithm-1 because many of the codewords cannot be

decoded even after 50 global iterations have been performed.

On the other hand, Algorithm-2 using 5 local iterations

outperforms Algorithm-1 because all the codewords can be

decoded with a very small number of global iterations. Such

observations are consistent with those made in the previous

section. In Table I, we list the simulation times. We can see

that Algorithm-2 using 5 local iterations requires about 1/9
of the simulation time compared with Algorithm-1.

V. CONCLUSION

In this paper, we have proposed a class of DGLDPC

codes based on SPC-PCs as component codes at SCNs and

SPCs at SVNs. We have also proposed a decoding algorithm

(Algorithm-2) that uses an iterative decoder at the SCNs. Sim-

ulation results have shown that the proposed DGLDPC code

possesses excellent error performance. Moreover, Algorithm-2
with an appropriate number of local iterations can outperform

the decoding algorithm in [17] in terms of both speed and

error performance.
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