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ABSTRACT This paper focuses on the tracking problem for fully-actuated mechanical systems with
uncertain parameters and external disturbances. Based on the state feedback control of contraction analysis,
the robust controller with extra gains is suggested to provide for the tracking of mechanical systems with
uncertainties. The proposed control scheme can be redesigned with dual ideas and theoretically prove that
the robust control renders uniform roundedness. Further more, the inertia matrices being uniformly bounded
above are limited. The simulation is proposed to account for the effectiveness and robustness of the provided
method.

INDEX TERMS Increment, contraction analysis, fully-actuated system, robust control.

I. INTRODUCTION
Motivation: In the situation of the booming new economy,
mechanical systems are widely used in industrial fields, such
as various types of robots [1]–[3], manufacturing [4], ship
power [5], [6], and so on. Among them, high-precision track-
ing as an important factor to measure the performance for
mechanical systems is a basic problem in the application of
mechanical systems, and decides the market competitiveness
of mechanical systems. But the situation is another saying,
due to the complexity of the actual engineering, such as
changes in the operating objects of themechanical system and
the surrounding environment, motor overheating caused by
long-term operation, parameter errors in the manufacturing
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process of mechanical apparatus, and so on, it is difficult for
mechanical systems to measure accurate dynamic models.
In response to the problems of high-precision tracking for the
inaccurate dynamic models, many scholars have conducted
in-depth investigations.
Brief Summary of Prior Literature: For fully-actuated sys-

tems, an internal model-based adaptive controller was pro-
posed to solve the robust control problem of fully-actuated
passive mechanical systems, where the reference signal and
the second derivative of the state can be used for the con-
troller, and the interference signal can be segmented [7].
The control problem for a fully-actuated second-order system
was addressed by using state proportional plus derivative
feedback [8]. A frame for handling of the path with zero
curvature and reducing the complexity of the control law
was introduced and the controller design had been achieved
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by transverse feedback linearization and a parallel transport
frame [9]. A robust chattering-free sliding mode asymptotic
tracking control design is presented for a fully actuated mul-
tirotor [10]. A disturbance observer-based model predictive
controller is designed for image-based visual servoing of
underwater vehicles subject to field-of view constraint, actu-
ator saturation, and external disturbances [11]. An adaptive
second-order fast nonsingular terminal sliding mode control
scheme was addressed for the trajectory tracking of fully
actuated autonomous underwater vehicles in the presence
of dynamic uncertainties and time-varying external distur-
bances [12]. The control problem for exempt from requiring
for accurate dynamic model was addressed by incorporat-
ing adaptive sliding-mode and online dynamics estimation
schemes [13]. The control problem of tracking a desired tra-
jectory for a fully-actuated marine surface vessel was inves-
tigated, where the output constraints were taken into [14].
A model predictive control strategy based on sliding mode
observer was proposed for image-based visual servoing fully-
actuated underwater vehicles [15]. For under-actuated sys-
tems, the control problem for under-actuated ships under
stochastic disturbances was addressed by introducing weak
and strong nonlinear Lyapunov functions [16]. A method-
ology for stabilizing the collocated state space of an under-
actuated mechanical system has been proposed by employing
PDE boundary backstepping control scheme [17]. A leader-
follower formation control problem for a group of under-
actuated surface vessels with partially known control input
functions has been solved [18]. The control performance
for uncertain under-actuated mechanical systems has been
enhanced by an adaptive fuzzy inference system was com-
bined with a sliding mode controller [19]. The application
of model predictive control for high-performance speed con-
trol and torsional vibration suppression in the drive sys-
tem with flexible coupling was demonstrated [20]. To a
certain extent, the advantages and disadvantages of fully-
actuated and under-actuated are just complementary to each
other. Fully-actuated systems are more adept at complex
tasks than under-actuated systems, but from the hardware
level of electromechanical systems, the overall integra-
tion of the system is weak and the cost is high. Many
of the machine systems for current interests are under-
actuated systems, but fully-actuated systems still have a high
value.

The concept of contraction analysis has a short history,
which can be traced back to [21]. Contraction is one of
the property of incremental stability [22] and can be simply
interpreted in Riemannian geometry as: requires the decrease
of a distance, defined through a Riemannian metric, along
trajectories [23]. In the past decade, applications of contrac-
tion analysis include intrinsic observer design [24], consensus
problems in complex networks [25], output regulation of
non-linear systems [26], design of frequency estimators [27],
synchronization of coupled identical dynamical systems [28],
stability and robustness analysis of nonlinear system [29].
Recently, the newly developed ‘‘control contraction

metric’’ (CCM) concept was used as an unified framework
for emerging mechanical control methods [30].
Contribution of This Paper: From previous literature of

authors’ knowledge, there is a lack of other applications of
contraction analysis on mechanical systems. Unlike equi-
librium point stability [6], [8], [9], [16], [31], contrac-
tion is independent of equilibrium point, especially in the
case of multiple equilibrium points or equilibrium point
displacements, contraction is more advantageous. The pro-
posed controller will involve real-time optimization to find a
minimal-length path with respect to the metric (a geodesic)
joining the current state to the desired state. But the exis-
tence of a flat metric usually simplifies the control problem
[11], [15], [20], [32]. Hence, there is a growing need to
extend existing methods or develop new ones for the pur-
pose of applying contraction property on mechanical system.
The method proposed in this paper referred to the CCM
framework, which is actually a feedback design method,
so the excessive introduction to CCM has been omitted, and
the relevant literature can be consulted in [33]–[36]. The
conclusions about robust control are obtained by perform-
ing contraction analysis on uncertain mechanical systems,
this is not discussed in [33]–[36]. In this technical note,
the main contributions of this paper focus on the following
aspects.
• Developed a robust feedback control for fully-actuated
mechanical systems with uncertainties and external
disturbances, witch has smaller tracking error and
faster convergence time than the general Lyapunov
method [31];

• Extended a robust feedback control to the CCM frame-
work and provide a new idea for the analysis of nonlinear
systems with uncertainties;

However, the present technology is relative to the fully-
actuated systems having a triangular structure. In other words,
in the case of higher-order [37] or under-actuated systems,
new technologies need to be developed. And, research on
contraction analysis in finite-time control [38]–[40] is rare,
one of the challenges in the future is to extend finite-time
control to the CCM framework. Another challenge is the case
of matrices have unknown upper and lower bounds,whether
the adaptive technologies can be introduced [41]–[43].
Organisation: The rest of this paper is structured as

follows: In Section II and III, the model of the fully-
actuated mechanical systems with uncertainties and related
preliminaries are discussed. In Section IV, firstly, the incre-
mental error dynamics is established. Secondly, proposed
the directly incremental feedback control by contraction
analysis and the incremental control can be redesigned
by Fenchel conjugate. Thirdly, the actual controller by a
schematic diagram of incremental controller. lastly, the spe-
cial case about inertia matrix was discussed. Then the
simulation results are described to verify the effective-
ness of the proposed distributed control algorithms in
Section V. Finally, some concluding remarks are given
in Section VI.
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II. CONTRACTION ANALYSIS
The contraction analysis is a theory of stability. Unlike the
Lyapunov stability theory, it focuses on the incremental sta-
bility of the system. The details for contraction analysis refer
to [21]. Given a autonomous nonlinear dynamic system and
a manifoldM

ẋ = f (x, t), (1)

where f is a nonlinear vector field that maps any (t, x) ∈
Rn
×M to a tangent vector f (t, x) ∈ TxM. The incremental

form of (1) is showed as

δ̇x(t) =
∂f (x, t)
∂x(t)

δx(t), (2)

where δx(t) is denoted as an infinitesimal displacement at a
fixed time.

According to [21], there are the following definition and
lemma.
Definition 1: A symmetric and positive definite matrix

M (x, t) is called a contraction matrix and a constant β is
called a contraction rate if there exist a Riemann metric
δTxM (x, t)δx and the strict stabilization constant β ∈ R+ in
system (2) satisfied the inequality

d
dt
(δTxMδx) = δ

T
x

(
∂f
∂x

T
M +M

∂f
∂x
+ Ṁ

)
δx

≤ −δTx βMδx , (3)

when M is independent of state x, M is called the flat con-
traction matrix and (3) is similar to Demidovich condition.
Lemma 1: Given the system (1), any trajectory, which

starts in a ball of constant radius with respect to the metric
M (x, t), centered at a given trajectory and contained at all
times in a contraction region with respect toM (x, t), remains
in that ball and converges exponentially to this trajectory.

III. FULLY-ACTUATED MECHANICAL SYSTEMS
WITH UNCERTAINTIES
Considering the nominal Lagrangian formulation of
fully-actuated mechanical system dynamics

Ru(t) = N
(
q(t)

)
q̈(t)+ C

(
q(t), q̇(t)

)
q̇(t)+ G

(
q(t)

)
, (4)

where t ∈ R is the time, q(t) ∈ Rn is the joint coordinate,
q̇(t) ∈ Rn is the joint velocity, q̈(t) ∈ Rn is the joint acceler-
ation, N

(
q(t)

)
∈ Rn×n is an inertia matrix, C

(
q(t), q̇(t)

)
∈

Rn×n is the Corsirio matrix related to centripetal force,
G
(
q(t)

)
∈ Rn is the gravitational force, u(t) ∈ Rm is the input

torque. System (4) is a fully-actuated mechanical system if
m = n and R is a fully-rank square matrix.

Next, introducing actual systems, that is, the case of normal
system (4) with uncertainties. In the real world, the model of
themechanical system (4) is not precise, for example, payload
mass and friction force parameters, which is reflected in the
N
(
q(t)

)
, C(q(t), q̇(t)), G(q(t)). In addition, there may exist

the external disturbances F̂(q̈, q̇, q, t) ∈ Rn when the external

environment changed. This paper considers above uncertain-
ties, the fully-actuated mechanical system with uncertainties
is showed as

Rû(t) = N̂
(
q(t)

)
q̈(t)+ Ĉ

(
q(t), q̇(t)

)
q̇(t)

+ Ĝ
(
q(t)

)
+ F̂(q̈, q̇, q, t), (5)

where N̂
(
q(t)

)
, Ĉ

(
q(t), q̇(t)

)
, Ĝ

(
q(t)

)
denote N

(
q(t)

)
,

C
(
q(t
)
, q̇(t)), G

(
q(t)

)
affected by uncertainties (payload

mass, friction force parameters, etc), and û is the practical
input torque. Throughout the subsequent analysis we shall
assume that the dynamics satisfy the following assumptions.

Assumption 1: N̂
(
q(t)

)
> 0,∀q(t) ∈ Rn and

∥∥N̂ (q(t))∥∥ ≤
ξ , with ξ > 0, where N̂

(
q(t)

)
is symmetric, positive definite

matrix.
Assumption 2: There exist a positive constant ε which can

be estimated to satisfy

1
ε
≤

∥∥N̂ (q(t))∥∥∥∥N (q(t))∥∥ ≤ ε, ε ∈ R+ ≥ 1.

Remark 1: Assumption 1 comes from [31], which men-
tioned that for any rigid serial typemanipulators with revolute
and prismatic joints, the upper bound property of the norm
of the inertia matrix is generic (note that the proof about the
upper bound property have been proved by [44]). For the
upper bound property of the norm of the inertia matrix of the
actual model and the nominal model, Assumption 2 further
assumes that their ratio is bounded, and the maximum ratio
can be measured.
Remark 2: It is easy to see that N̂

(
q(t)

)
is adjacent to

N
(
q(t)

)
and ε represents the maximum ranges of proximity.

The worst case of uncertainties is that N̂ ≈ εN , because the
inertia matrix is assumed to a positive definite matrix.

IV. CONTROLLER DESIGN
A. INCREMENTAL ERROR DYNAMICS
Using qd (t), q̇d (t) and q̈d (t) to denote desired trajectory,
desired velocity, and desired acceleration being follow.
Assuming qd (t), q̇d (t) and q̈d (t) are uniformly bounded. Let

e(t) = q(t)− qd (t),

and hence ė(t) = q̇(t)− q̇d (t), ë(t) = q̈(t)− q̈d (t). The system
(4) can be rewritten as

Ru(t) = N
(
e(t)

)
ë(t)+ C

(
e(t), ė(t)

)
ė(t)+ G

(
e(t)

)
, (6)

and the system (5) can be rewritten as

Rû(t) = N̂
(
e(t)

)
ë(t)+ Ĉ

(
e(t), ė(t)

)
ė(t)

+ Ĝ
(
e(t)

)
+ F̂(ë, ė, e, t). (7)

For convenience of presentation, ignoring t in the follow-
ing formula (note that state is related to t). Let x = [e ė]T,
system (6) and (7) can be rewritten as

ẋ =
[

ė
N (e)−1

(
− C(e)ė− G(e)

)]︸ ︷︷ ︸
f (x)

+

[
0

N (e)−1R

]
︸ ︷︷ ︸

B(x)

u, (8)
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and

ẋ =
[

ė
N̂ (e)−1

(
− Ĉ(e)ė− Ĝ(e)− F̂(ë, ė, e)

)]︸ ︷︷ ︸
f̂ (x)

+

[
0

N̂ (e)−1R

]
︸ ︷︷ ︸

B̂(x)

û. (9)

Taking incremental forms of system (8) and system (9),
it yields

δ̇x = A(x, u)δx + B(x)δu, (10)

and

δ̇x = Â(x, û)δx + B̂(x)δû, (11)

where

A(x, u) =
∂

∂x

(
f (x)+ B(x)u)

)
,

Â(x, û) =
∂

∂x

(
f̂ (x)+ B̂(x)û

)
.

Combining the increment system (10) and (11), it yields

δ̇2x =
(
A(x, u)+ Â(x, û)

)
δx + B(x)δu + B̂(x)δû. (12)

Remark 3: Let a manifold N = M1 ∪M2 be formed
by the combination of (8) and (9), where M1 = (8) and
M2 = (9). x ∈M2 can be contracted if x ∈ N is contracted,
because M2 ⊂ N . Some details of manifolds can be found
in [23].

B. DIRECTLY INCREMENTAL FEEDBACK CONTROL
First, we try to design a closed-loop feedback controller such
as û = u = k(x, t)+v(t) = k(e, ė, t)+v(t) and a matrixM to
satisfy the inequality (3), where v(t) is a external piecewise-
continuous signal. It is known fromLemma 1 that system (12)
is exponentially convergent and that the controller is robust
for the uncertainties in system (12). Rewriting the system
(12) as

δ̇2x =
(
A(x, k + v)+ Â(x, k + v)

)
δx

+
(
B(x)+ B̂(x)

)∂k+v
∂x

δx

=

 0 2I
∂f2(x)
∂e
+
∂ f̂2(x)
∂e

∂f2(x)
∂ ė
+
∂ f̂2(x)
∂ ė


︸ ︷︷ ︸

Ā

δx

+

[
0(

N (e)−1 + N̂ (e)−1
)
R

]
︸ ︷︷ ︸

B̄

∂k+v

∂x
δx . (13)

where f2(x) denotesN (e)−1
(
−C(e)ė−G(e)+R(k+v)

)
, f̂2(x)

denotes N̂ (e)−1
(
− Ĉ(e)ė− Ĝ(e)− F̂(ë, ė, e)+ R(k + v)

)
.

Considering a flat contraction matrix M =
[
m11 m12
m21 m22

]
,

note that m21 = mT12. The rate of change of the square of the

increment in system (13) is expressed as

d
dt
δT2xMδ2x

= δ̇T2xMδ2x + δ
T
2xṀδ2x + δ

T
2xM δ̇2x

=

(
Āδ2x + B̄Kδ2x

2

)T
Mδ2x + 0

+ δT2xM
(
Āδ2x + B̄Kδ2x

2

)
= δT2x

(
ĀTM + KTB̄TM +MĀ+MB̄K

2

)
δ2x , (14)

where K =
∂k+v
∂x , note that ∂k+v

∂x δx = δu. In order
to use contraction analysis on (13) via Definition 1 and
Lemma 1, to take the matrix part of δT2x

βM
2 δ2x and

δT2x

(
ĀTM+KTB̄TM+MĀ+MB̄K

2

)
δ2x to get an equation

ĀTM + KTB̄TM +MĀ+MB̄K + βM

=


∂(f2 + f̂2)

∂e
m21

∂(f2 + f̂2)
∂e

m22

2m11 +
∂(f2 + f̂2)

∂ ė
m21 2m12 +

∂(f2 + f̂2)
∂ ė

m22



+

m12
∂(f2 + f̂2)

∂e
2m11 + m12

∂(f2 + f̂2)
∂ ė

m22
∂(f2 + f̂2)

∂e
2m21 + m22

∂(f2 + f̂2)
∂ ė


+

[
βm11 βm12

βm21 βm22

]
+ KTB̄TM +MB̄K . (15)

Theorem 1: Considering the worst case of uncertainties
with N̂ ≈ εN in Assumption 1 and Assumption 2,
and the system (13) would be contracted if the parameter
K designed as

K =

[
−
∂f2(x)
∂e − J(

(1+ ε)N (e)
)−1R

−∂f2(x)
∂ ė − P(

(1+ ε)N (e)
)−1R

]
. (16)

�
Proof: Taking (16) into (15) and can get

ĀTM + KTB̄TM +MĀ+MB̄K + βM =

[
S̄11 S̄12
S̄T12 S̄22

]
,

(17)

where the inner elements in formula (17) are

S̄11 =
(
∂ f̂2
∂e
− J

)
m21 + m12

(
∂ f̂2
∂e
− J

)
+ βm11,

S̄12 = m22

(
∂ f̂2
∂e
− J

)
+

(
∂ f̂2
∂ ė
+
β

2
− P

)
m21 + 2m11,

S̄22 = 2m22

(
∂ f̂2
∂ ė
+
β

2
− P

)
+ 2m12 + 2m21.
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According to Definition 1 and Lemma 1, the contraction
condition in (17) is equivalent via Schur complement to
the statement

S̄22 −
S̄T12S̄12
S̄11

= 2m22

(
∂ f̂2
∂ ė
+
β

2
− P

)
+ 2m12 + 2m21

−

(
m22

(
∂ f̂2
∂e − J

)
+

(
∂ f̂2
∂ ė +

β
2 − P

)
m21 + 2m11

)2

(
∂ f̂2
∂e − J

)
m21 + m12

(
∂ f̂2
∂e − J

)
+ βm11

< 0.

It clearly shows that the appropriate P and J can cause the
system (13) to shrink, although the uncertainties are not
measured. �
Remark 4: It can be think that the contraction of (17) are to

take m21 < −βm11/
( ∂ f̂2
∂e − J

)
to guarantee S̄11 < 0, and to

take enough positive definite P to guarantee S̄22 < 0, and
to take J to approximate S̄12 ≈ 0. With the establishment of
incremental error dynamics, the direct incremental feedback
control is proposed.K provides robustness to the system (13),
noting that ε can be estimated.

C. DUALITY INCREMENTAL FEEDBACK CONTROL
It is known that a function’s dual form have a convex charac-
teristic, this section analyzes the Fenchel conjugate form of
metric δT2xMδ2x .
According to the definition of Fenchel conjugate, the con-

jugate function of original function F(δ2x) = δT2xMδ2x is

F∗(y) = sup
δ2x∈domf

(
yTδ2x − F(δ2x)

)
=

yTM−1y
4

, (18)

where y = 2Mδ2x is the tangent of F(δ2x), note that ẏ =
2Ṁδ2x + 2M δ̇2x . Let W = M−1, the rate of the changes of
the conjugate function F∗(y) can be expressed as

d
dt
F∗(y)

=
d
dt

(yTWy
4

)
= yTẆ

y
4
+ ẏTW

y
4
+
yT

4
Wẏ

= yTẆ
y
4
+
(
2Ṁδ2x + 2W−1δ̇2x

)TW y
4
+
yT

4
W

×
(
2Ṁδ2x + 2W−1δ̇2x

)
= yTẆ

y
4
+
(
2Ṁδ2x + 2W−1(Āδx + B̄Kδx)

)TW y
4

+
yT

4
W
(
2Ṁδ2x + 2W−1(Āδx + B̄Kδx)

)
= yTẆ

y
4
+
(
2Ṁδ2x +W−1(Āδ2x + B̄Kδ2x)

)TW y
4

+
yT

4
W
(
2Ṁδ2x +W−1(Āδ2x + B̄Kδ2x)

)

= yTẆ
y
4
+ δT2x

(
2Ṁ + (Ā+ B̄K )TW−1

)
W
y
4

+
yT

4
W
(
2Ṁ +W−1(Ā+ B̄K )

)
δ2x

= yTẆ
y
4
+ δT2x

(
2W−1W

2
×
(
ĀTW−1 + KTB̄TW−1

)
+ 2W−1WṀ

)
W
y
4
+
yT

4
W
(
2ṀWW−1

+
(
W−1Ā+W−1B̄K

)
×

2WW−1

2

)
δ2x

= yTẆ
y
4
+ δT2x2W

−1
(
W
2
×
(
ĀTW−1 + KTB̄TW−1

)
+WṀ

)
W
y
4
+
yT

4
W
(
ṀW +

(
W−1Ā+W−1B̄K

)
×
W
2

)
2W−1δ2x

= yTẆ
y
4
+ yT

(
W
2
×
(
ĀTW−1 + KTB̄TW−1

)
+WṀ

)
×W

y
4
+
yT

4
W
(
ṀW +

(
W−1Ā+W−1B̄K

)W
2

)
y

= yTẆ
y
4
+ yT

(
W
2
×
(
ĀT + KTB̄T

)
W−1W +WṀW

)
×
y
4
+
yT

4

(
WṀW +WW−1

(
Ā+ B̄K

)
×
W
2

)
y

= yT
(
Ẇ + 2WṀW +

WĀT +WKTB̄T

2

+
ĀW + B̄KW

2

)
y
4
. (19)

Note that the derivation from the fourth equation to the fifth
equation in (19), there is 2δx = δ2x . And the derivation from
the eighth equation to the ninth equation in (19), there is
y = 2W−1δ2x . In order to use contraction analysis on (13)

via Definition 1 and Lemma 1, let W =
[
w11 w12
w21 w22

]
in (19)

be a state-independent matrix and taking the matrix part of

yT βW8 y and yT
(
Ẇ + 2WṀW + WĀT+WKT B̄T

2 +
ĀW+B̄KW

2

)
y
4

to get an equation

WĀT + ĀW +WKT B̄T + B̄KW + βW

=

2w12 w11
∂(f2 + f̂2)

∂e
+w12

∂(f2 + f̂2)
∂ ė

2w22 w21
∂(f2 + f̂2)

∂e
+w22

∂(f2 + f̂2)
∂ ė



+

2w12 w11
∂(f2 + f̂2)

∂e
+w12

∂(f2 + f̂2)
∂ ė

2w22 w21
∂(f2 + f̂2)

∂e
+w22

∂(f2 + f̂2)
∂ ė


T

+

[
βw11 βw12

βw21 βw22

]
+WKTB̄T + B̄KW . (20)
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FIGURE 1. The schematic of incremental controller.

Theorem 2: Considering the worst case of uncertainties
with N̂ ≈ εN in Assumption 1 and Assumption 2, and
the system (13) would be contracted if the parameter K
designed as

K = [K1 K2]W−1,

K1 =
−w12

∂f2
∂ ė − w11

∂f2
∂e − 2w22 − βw12(

(1+ ε)N (e)
)−1R ,

K2 =
−T − w12

∂f2
∂e − w22

∂f2
∂ ė − β

w22
2(

(1+ ε)N (e)
)−1R . (21)

�
Proof: Taking (21) into (20), the equation (20) is

changed to

WĀT + ĀW +WKTB̄T + B̄KW + βW =
[
Ŝ11 Ŝ12
ŜT12 Ŝ22

]
,

(22)

where the inner elements in formula (22) are

Ŝ11 = 2(w12 + w21)+ βw11,

Ŝ12 = w11
∂ f̂2
∂e
+ w12

∂ f̂2
∂ ė
,

Ŝ22 = 2
(
− T + w12

∂ f̂2
∂e
+ w22

∂ f̂2
∂ ė

)
.

The system (13) is also shrinking if

Ŝ22 −
Ŝ212
Ŝ11
= 2

(
− T + w12

∂ f̂2
∂e
+ w22

∂ f̂2
∂ ė

)

−

(
w11

∂ f̂2
∂e + w12

∂ f̂2
∂ ė

)2
2(w12 + w21)+ βw11

≤ 0. (23)

�
Remark 5: The statement (23) is Schur complement of

contraction condition in (22). If 2(w12 + w21) + βw11 < 0
and T is sufficient positive definite, we can get the conclusion
that d

dtF
∗ < 0 ⇒ F∗ → 0 ⇒ y = 2Mδ2x → 0 ⇒

δ2x = 0. Therefore, the robustness of the system (13) can
be guaranteed.

D. ACTUAL CONTROLLER
Further, the actual controller can be written as

u = k(x)+ v =
∫ γ1

γ0

γ δu,

≈

n∑
j=1

δuj + u? ≈
n∑
j=1

Kjδxj + u
?. (24)

Equation (24) can be explained by Fig. 1 in this paper, where
γ denotes the geodesic connecting start point γ0 (target solu-
tion (u?, x?)) and the end point γ1 (actual solution (u, x)) in
system (13) at time t . The above derivation proves the ratio-
nality of the incremental controller δu = ∂k+v

∂x δx . It is easy to
see that u is the sum of n iterations of δu along γ . Taking the
mth incremental controller as an example, the derivative of
the solution at m has Km = K (xm) ∈ γ and δxm =

∂xm
∂t dt ∈ γ .

So the incremental controller δum = K (xm)ẋmdt ∈ γ .
After iterating n times at time t , the actual controller is u =
k(x)+ v =

∑n
j=1 Kjδxj + u

?.

Remark 6: The geodesic γ is interpreted as the shortest
distance measured by the δxTMδx between the start point γ0
(target solution (x?, u?)) and the end point γ1 (actual solution
(x, u)). It’s detailed expression is

γ = inf
∫ γ1

γ0

F
(
c(s),

∂c
∂s

)
ds,

ds =


√
δxTGδx, K ∈ (16),√
yTWy
4

, K ∈ (21).

where c(s) denotes an arbitrary curve passing points γ0 and
γ1, and F(·) is a Lagrange function. Another fact is the rate of
change of the metric δxTMδx is negative, which leads to the
geodesic γ is shortened at the next t . This paper used iteration
of the incremental controller to interpret the integral of δu
along the geodesic. However, imprecise n can also cause u to
be imprecise.

E. SPECIAL CASE: B̄ IS INDEPENDENT OF STATE
This special case is usually an independent state of the iner-
tia matrix N , and the physical sense is that the mechanical
structure is sufficiently symmetrical.
Theorem 3: If B̄ is independent of state, the parameter K

of Theorem 1 can be redesigned as

K =
[

−J(
(1+ε)N (e)

)−1
R

−P̂−P(
(1+ε)N (e)

)−1
R

]
, (25)

and u =
∫ γ1
γ0
γ δu is simplified to a linear feedback u = K

(x − x?)+ u?, where p̂ > ∂f2(x)
∂ ė . �

Proof: Taking (25) into (15), the equation (15) is
changed to

ĀTM + KTB̄TM +MĀ+MB̄K + βM =
[
Ś11 Ś12
ŚT12 Ś22

]
,

(26)
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where the inner elements in formula (26) are

Ś11 = βm11 + m12

(
∂f2 + ∂ f̂2
∂e

− J
)

+

(
∂f2 + ∂ f̂2
∂e

− J
)
m21,

Ś12 = 2m11 +

(
∂f2 + ∂ f̂2
∂ ė

− P− P̂+
β

2

)
m21

+m22

(
∂f2 + ∂ f̂2
∂e

− J
)
,

Ś22 = 2m22

(
∂f2 + ∂ f̂2
∂ ė

+
β

2
− P− P̂

)
+ 2m12 + 2m21.

The contraction condition of (26) is equivalent via Schur
complement to the statement

Ś22 −
Ś212
Ś11

< 0. (27)

The contraction condition of (27) is similar to (17). The
difference is that p̂ > ∂f2(x)

∂ ė means to keep the stability in
Theorem 1. Then, the constant parameter K makes geodesic
γ a straight line, so the integral u =

∫ γ1
γ0
γ δu = K

(x − x?)+ u?. �
Remark 7: The above analysis method is also applica-

ble to (20). Due to similar ideas, detailed descriptions are
omitted.

V. ILLUSTRATIVE EXAMPLE
The effectiveness of the algorithm developed in this paper
is verified by using an inverted pendulum showed as Fig. 2,

FIGURE 2. Vehicle with an inverted pendulum.

where M (uncertain) denotes the vehicle’s mass, F denotes
the external force, m (uncertain) denotes the mass of the
inverted pendulum and l (uncertain) denotes the length.
An external torque τ is the controller applied on the pendu-
lum. The equation of motion of the inverted pendulum can
be written in matrix form from using Lagrange’s equation as
(note that the inverted pendulum comes from [31]):

N (q)q̈+ C(q, q̇)q̇+ G(q) = u,

where

q =
[
χ

θ

]
, q̇ =

[
χ̇

θ̇

]
, q̈ =

[
χ̈

θ̈

]
, u =

[
F
τ

]
,

N (q) =
[
M + m − ml sin θ
−ml sin θ ml2

]
,

C(q, q̇) =
[
0 − mlθ̇ cos θ

0 0

]
,

G(q) =
[

0
mgl cos θ

]
.

The desired trajectory q?(t), the desired velocity and accel-
eration q̇?(t) are given by

q?(t) =
[
χ?

θ?

]
=

[
sin(t)

1.5− cos(t)

]
,

q̇?(t) =
[
χ̇?

θ̇?

]
=

[
cos(t)
sin(t)

]
.

So the errors can be written as

x =
[
e(t)
ė(t)

]
=

[
q(t)− q?(t)
q̇(t)− q̇?(t)

]
=


χ − χ?

θ − θ?

χ̇ − χ̇?

θ̇ − θ̇?

 .
In order to simulate uncertainties, we take actual parameters
g = 9.8 + sin(t), l = 1 − (0 ∼ 0.2),M = 10 + (0 ∼ 2),
m = 1 + 0.1. For simulation, we take standard parameters
g = 9.8, l = 1,M = 10,m = 1 and control gains J =
4002×2,P = 4002×2, ε = 4. The initial condition is chosen
as χ (0) = 2, θ(0) = 1, χ̇ (0) = 0.1, θ̇ (0) = 0.1.

Fig. 3 shows the tracking curves of state q of the pro-
posed directly incremental feedback control (a contraction-
based method, denoted by CBR in simulation diagram) and
proposed control in [31] (a Lyapunov-based method, denoted
by LBR in simulation diagram). Fig. 4 depicts the histories

FIGURE 3. The tracking curves.

of q position errors. Although the errors of LBR are already
small, CBR is surprisingly smaller than 0.2. It can be con-
cluded that errors can tend to be zero soon if J and P are
suitable and with the CBR has a smaller steady state error.
Fig. 5 shows the input signal u of CBR and LBR. The disad-
vantage of CBR is that the initial control signal has a larger
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FIGURE 4. The tracking errors.

FIGURE 5. The input u.

FIGURE 6.
∥∥N̂

(
q(t)

)∥∥∥∥N
(
q(t)

)∥∥ in Assumption 2.

overshoot, but it has a smoother signal and LBR’s jitter is

obviously. Fig. 6 shows the value of

∥∥N̂(q(t))∥∥∥∥N(q(t))∥∥ in Assump-

tion 2 and ε was set to 5 in this paper. On the other hand,
it shows that our assumptions are reasonable. In summary,
the proposed method (directly incremental feedback control)
has two advantages, one is a smoother control signal, second
is a smaller errors, but the disadvantage is a larger input
overshoot.

VI. CONCLUSION
The mechanical systems modeled usually have uncertainties,
the concept of contraction analysis is introduced to analysis
stability and further investigate robust control for that sys-
tems. We focus on the tracking problem of fully-actuated
mechanical systems with uncertainties of norm bounded
conditions and the system contains external disturbances.
First, incremental error dynamics are established, followed
by a combine process. That is, the result that the upper
bound of ε is introduced as a parameter into the uncertain
incremental system. Then, assumed a closed-loop feedback
controller and derived it based on the contraction theory. It is
found that the possibility of stabilizing the system can be
achieved by designing reasonable J andP. Moreover, through
the dual analysis of δT2xMδ2x , another scheme that can make
the system robust is proposed. Finally, the actual controller is
refined through graphical interpretation introduced a special
case. There is several perspective generalisations of interest
to be addressed in next researches among which extending to
finite-time control, such as, e.g. interval observer, is worth to
remark. Under-actuated mechanical systems are also worth
considering in next researches.

REFERENCES
[1] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, ‘‘3D dynamic

walking with underactuated humanoid robots: A direct collocation frame-
work for optimizing hybrid zero dynamics,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2016, pp. 1447–1454.

[2] M. Ryalat and D. S. Laila, ‘‘A simplified IDA-PBC design for underac-
tuated mechanical systems with applications,’’ Eur. J. Control, vol. 27,
pp. 1–16, Jan. 2016.

[3] R. Deimel and O. Brock, ‘‘A novel type of compliant and underactuated
robotic hand for dexterous grasping,’’ Int. J. Robot. Res., vol. 35, nos. 1–3,
pp. 161–185, Jan. 2016.

[4] L. Fu, Z. Feng, and G. Li, ‘‘Experimental investigation on overall perfor-
mance of a millimeter-scale radial turbine for micro gas turbine,’’ Energy,
vol. 134, pp. 1–9, Sep. 2017.

[5] C. Hu, R. Wang, F. Yan, M. Chadli, Y. Huang, and H. Wang, ‘‘Robust
path-following control for a fully actuated marine surface vessel with
composite nonlinear feedback,’’ Trans. Inst. Meas. Control, vol. 40, no. 12,
pp. 3477–3488, Aug. 2018.

[6] Z. Zheng, Y. Huang, L. Xie, and B. Zhu, ‘‘Adaptive trajectory tracking
control of a fully actuated surface vessel with asymmetrically constrained
input and output,’’ IEEE Trans. Control Syst. Technol., vol. 26, no. 5,
pp. 1851–1859, Sep. 2018.

[7] B. Jayawardhana and G. Weiss, ‘‘Tracking and disturbance rejection
for fully actuated mechanical systems,’’ Automatica, vol. 44, no. 11,
pp. 2863–2868, Nov. 2008.

[8] G.-R. Duan, ‘‘Direct parametric control of fully-actuated second-order
nonlinear systems—The normal case,’’ in Proc. 33rd Chin. Control Conf.,
Jul. 2014, pp. 2406–2413.

[9] B. Bischof, T. Gluck, and A. Kugi, ‘‘Combined path following and com-
pliance control for fully actuated rigid body systems in 3-D space,’’ IEEE
Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1750–1760, Sep. 2017.

[10] D. Kotarski, P. Piljek, H. Brezak, and J. Kasać, ‘‘Chattering-free tracking
control of a fully actuated multirotor with passively tilted rotors,’’ Trans.
FAMENA, vol. 42, no. 1, pp. 1–14, 2018.

20732 VOLUME 8, 2020



G. Zhang et al.: Incremental Feedback Control for Uncertain Mechanical System

[11] J. Gao, G. Zhang, P. Wu, and W. Yan, ‘‘Disturbance observer-based model
predictive visual servo control of underwater vehicles,’’ in Proc. OCEANS-
MTS/IEEE Kobe Techno-Oceans (OTO), May 2018, pp. 1–6.

[12] L. Qiao and W. Zhang, ‘‘Adaptive second-order fast nonsingular terminal
sliding mode tracking control for fully actuated autonomous underwater
vehicles,’’ IEEE J. Ocean. Eng., vol. 44, no. 2, pp. 363–385, Apr. 2019.

[13] J. Lee, H. Dallali, M. Jin, D. G. Caldwell, and N. G. Tsagarakis, ‘‘Robust
and adaptive dynamic controller for fully-actuated robots in operational
space under uncertainties,’’ Auton. Robots, vol. 43, no. 4, pp. 1023–1040,
Apr. 2019.

[14] Z. Zhao, W. He, and S. S. Ge, ‘‘Adaptive neural network control of a fully
actuated marine surface vessel with multiple output constraints,’’ IEEE
Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1536–1543, Jul. 2014.

[15] J. Gao, G. Zhang, P.Wu, X. Zhao, T.Wang, andW. Yan, ‘‘Model predictive
visual servoing of fully-actuated underwater vehicles with a sliding mode
disturbance observer,’’ IEEE Access, vol. 7, pp. 25516–25526, 2019.

[16] K. D. Do, ‘‘Global robust adaptive path-tracking control of underactuated
ships under stochastic disturbances,’’ Ocean Eng., vol. 111, pp. 267–278,
Jan. 2016.

[17] D. Pucci, F. Romano, and F. Nori, ‘‘Collocated adaptive control of
underactuated mechanical systems,’’ IEEE Trans. Robot., vol. 31, no. 6,
pp. 1527–1536, Dec. 2015.

[18] J. Ghommam and M. Saad, ‘‘Adaptive leader–follower formation control
of underactuated surface vessels under asymmetric range and bearing con-
straints,’’ IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 852–865, Feb. 2018.

[19] W. M. Bessa, S. Otto, E. Kreuzer, and R. Seifried, ‘‘An adaptive fuzzy
sliding mode controller for uncertain underactuated mechanical systems,’’
J. Vib. Control, vol. 25, no. 9, pp. 1521–1535, May 2019.

[20] M. Cychowski, K. Szabat, and T. Orlowska-Kowalska, ‘‘Constrained
model predictive control of the drive system with mechanical elasticity,’’
IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1963–1973, Jun. 2009.

[21] W. Lohmiller and J.-J.-E. Slotine, ‘‘On contraction analysis for non-linear
systems,’’ Automatica, vol. 34, no. 6, pp. 683–696, Jun. 1998.

[22] G. Zames, ‘‘Input-output feedback stability and robustness, 1959-85,’’
IEEE Control Syst. Mag., vol. 16, no. 3, pp. 61–66, Jun. 1996.

[23] J. W. Simpson-Porco and F. Bullo, ‘‘Contraction theory on Riemannian
manifolds,’’ Syst. Control Lett., vol. 65, pp. 74–80, Mar. 2014.

[24] N. Aghannan and P. Rouchon, ‘‘An intrinsic observer for a class of
Lagrangian systems,’’ IEEE Trans. Autom. Control., vol. 48, no. 6,
pp. 936–945, Jun. 2003.

[25] W. Wang and J.-J.-E. Slotine, ‘‘On partial contraction analysis for coupled
nonlinear oscillators,’’ Biol. Cybern., vol. 92, no. 1, pp. 38–53, Jan. 2005.

[26] A. Pavlov, N. van de Wouw, and H. Nijmeijer, Uniform Output Regulation
of Nonlinear Systems: A Convergent Dynamics Approach (Systems and
Control: Foundations and Applications). Cham, Switzerland: Birkhäuser
Verlag, 2006, doi: 10.1007/0-8176-4465-2.

[27] B. Sharma and I. Kar, ‘‘Design of asymptotically convergent frequency
estimator using contraction theory,’’ IEEE Trans. Autom. Control., vol. 53,
no. 8, pp. 1932–1937, Sep. 2008.

[28] G. Russo, M. Di Bernardo, and E. D. Sontag, ‘‘Global entrainment of
transcriptional systems to periodic inputs,’’ PLoS Comput. Biol., vol. 6,
no. 4, Apr. 2010, Art. no. e1000739.

[29] E. M. Aylward, P. A. Parrilo, and J.-J.-E. Slotine, ‘‘Stability and robustness
analysis of nonlinear systems via contraction metrics and SOS program-
ming,’’ Automatica, vol. 44, no. 8, pp. 2163–2170, Aug. 2008.

[30] I. R. Manchester, J. Z. Tang, and J.-J. E. Slotine, ‘‘Unifying robot tra-
jectory tracking with control contraction metrics,’’ in Robotics Research,
vol. 2, A. Bicchi andW. Burgard, Eds. Cham, Switzerland: Springer, 2018,
pp. 403–418, doi: 10.1007/978-3-319-60916-4_23.

[31] S.-C. Zhen, H. Zhao, Y.-H. Chen, and K. Huang, ‘‘A new Lyapunov based
robust control for uncertain mechanical systems,’’ Acta Autom. Sinica,
vol. 40, no. 5, pp. 875–882, May 2014.

[32] G. Li, D. Stoten, and J.-Y. Tu, ‘‘Model predictive control of dynamically
substructured systems with application to a servohydraulically actuated
mechanical plant,’’ IET Control Theory Appl., vol. 4, no. 2, pp. 253–264,
Feb. 2010.

[33] I. R. Manchester and J.-J.-E. Slotine, ‘‘Output-feedback control of nonlin-
ear systems using control contraction metrics and convex optimization,’’
in Proc. 4th Austral. Control Conf. (AUCC), Nov. 2014, pp. 215–220.

[34] I. R. Manchester and J.-J.-E. Slotine, ‘‘Control contraction metrics
and universal stabilizability,’’ IFAC Proc. Volumes, vol. 47, no. 3,
pp. 8223–8228, 2014.

[35] K. Leung and I. R. Manchester, ‘‘Nonlinear stabilization via control con-
traction metrics: A pseudospectral approach for computing geodesics,’’ in
Proc. Amer. Control Conf. (ACC), May 2017, pp. 1284–1289.

[36] I. R.Manchester and J.-J.-E. Slotine, ‘‘Control contractionmetrics: Convex
and intrinsic criteria for nonlinear feedback design,’’ IEEE Trans. Autom.
Control., vol. 62, no. 6, pp. 3046–3053, Jun. 2017.

[37] Z.-Y. Sun, C.-H. Zhang, and Z. Wang, ‘‘Adaptive disturbance attenua-
tion for generalized high-order uncertain nonlinear systems,’’ Automatica,
vol. 80, pp. 102–109, Jun. 2017.

[38] Z.-Y. Sun, Y. Shao, and C.-C. Chen, ‘‘Fast finite-time stability and its appli-
cation in adaptive control of high-order nonlinear system,’’ Automatica,
vol. 106, pp. 339–348, Aug. 2019.

[39] Z.-Y. Sun, Y.-Y. Dong, and C.-C. Chen, ‘‘Global fast finite-time partial
state feedback stabilization of high-order nonlinear systems with dynamic
uncertainties,’’ Inf. Sci., vol. 484, pp. 219–236, May 2019.

[40] L. Ma, G. Zong, X. Zhao, and X. Huo, ‘‘Observed-based adaptive
finite-time tracking control for a class of nonstrict-feedback nonlin-
ear systems with input saturation,’’ J. Franklin Inst., to be published,
doi: 10.1016/j.jfranklin.2019.07.021.

[41] Z.-Y. Sun, T. Li, and S.-H. Yang, ‘‘A unified time-varying feedback
approach and its applications in adaptive stabilization of high-order uncer-
tain nonlinear systems,’’ Automatica, vol. 70, pp. 249–257, Aug. 2016.

[42] Y. Chang, Y. Wang, F. E. Alsaadi, and G. Zong, ‘‘Adaptive fuzzy output-
feedback tracking control for switched stochastic pure-feedback nonlinear
systems,’’ Int. J. Adapt. Control Signal Process., vol. 33, pp. 1567–1582,
Oct. 2019.

[43] L.Ma, X. Huo, X. Zhao, and G. Zong, ‘‘Adaptive fuzzy tracking control for
a class of uncertain switched nonlinear systems with multiple constraints:
A small-gain approach,’’ Int. J. Fuzzy Syst., vol. 21, no. 8, pp. 2609–2624,
Nov. 2019.

[44] Y.-H. Chen and C.-Y. Kuo, ‘‘Fundamental properties of rigid serial manip-
ulators for control design,’’ in Proc. Amer. Control Conf., vol. 5, Jun. 1999,
pp. 3003–3007.

[45] P. Flores, J. Ambrósio, J. C. P. Claro, H. M. Lankarani, and C. S. Koshy,
‘‘A study on dynamics of mechanical systems including joints with
clearance and lubrication,’’ Mechanism Mach. Theory, vol. 41, no. 3,
pp. 247–261, Mar. 2006.

[46] K. Tee and S. Ge, ‘‘Control of fully actuated ocean surface vessels using a
class of feedforward approximators,’’ IEEE Trans. Control Syst. Technol.,
vol. 14, no. 4, pp. 750–756, Jul. 2006.

[47] S. Collins, ‘‘Efficient bipedal robots based on passive-dynamic walkers,’’
Science, vol. 307, no. 5712, pp. 1082–1085, Feb. 2005.

[48] Z. He and W. Xie, ‘‘Control of non-linear systems based on interval
observer design,’’ IET Control Theory Appl., vol. 12, no. 4, pp. 543–548,
Mar. 2018.

[49] X.-H. Chang, ‘‘Robust nonfragile H∞ filtering of fuzzy systems with lin-
ear fractional parametric uncertainties,’’ IEEE Trans. Fuzzy Syst., vol. 20,
no. 6, pp. 1001–1011, Dec. 2012.

GUO ZHANG received the B.S. degree in elec-
tronic science and technology from the Nanyang
Institute of Technology, Nanyang, China, in 2017.
He is currently pursuing the M.S. degree in con-
trol engineering from the Sichuan University of
Science and Engineering, Zigong, China. He is
also a Research Assistant with Dr. Ping He’s
Research Group (System Optimization and Con-
sensus), Jinan University, Zhuhai, Guangdong,
China. His research interests include nonlinear

systems, control theory and control engineering, and multiagent systems.

PING HE was born in Huilongya Village,
Nanchong, Sichuan, China, in November 1990.
He received the B.S. degree in automation from
the Sichuan University of Science and Engi-
neering, Zigong, Sichuan, China, in June 2012,
the M.S. degree in control science and engineering
from Northeastern University, Shenyang, Liaon-
ing, China, in July 2014, and the Ph.D. degree in
electromechanical engineering from the Universi-
dade de Macau, Taipa, Macau, in June 2017.

VOLUME 8, 2020 20733

http://dx.doi.org/10.1007/0-8176-4465-2
http://dx.doi.org/10.1007/978-3-319-60916-4_23
http://dx.doi.org/10.1016/j.jfranklin.2019.07.021


G. Zhang et al.: Incremental Feedback Control for Uncertain Mechanical System

From December 2015 to November 2018, he was an Adjunct Associate
Professor with theDepartment of Automation, SichuanUniversity of Science
and Engineering. From August 2017 to August 2019, he was a Postdoctoral
Research Fellow with the Emerging Technologies Institute, The University
of Hong Kong, and Smart Construction Laboratory, The Hong Kong Poly-
technic University. Since December 2018, he has been a Full Professor with
the School of Intelligent Systems Science and Engineering, Jinan University,
Zhuhai, Guangdong, China. He has authored one book, and more than
40 articles. His research interests include sensor networks, complex net-
works, multiagent systems, artificial intelligence, control theory, and control
engineering.

Dr. Ping was a recipient of the Liaoning Province of China Master’s
Thesis Award for Excellence, in March 2015, and the IEEE Robotics and
Automation Society Finalist of Best Paper Award, in July 2018. He is the
Reviewer Member for Mathematical Reviews of American Mathematical
Society (Reviewer Number: 139695). He is also an Associate Editor of
Automatika.

HENG LI was born in Hunan, China, in 1963.
He received the B.S. and M.S. degrees in civil
engineering from Tongji University, in 1984 and
1987, respectively, and the Ph.D. degree in archi-
tectural science from The University of Sydney,
Australia, in 1993.

From 1993 to 1995, he was a Lecturer with
James Cook University. From 1996 to 1997, he
was a Senior Lecture with the Civil Engineering
Department, Monash University. Since 1997, he

has been gradually promoted from an Associate Professor to a Chair Profes-
sor of construction informatics with The Hong Kong Polytechnic University.
He has authored 2 books and more than 400 articles. His research interests
include building information modeling, robotics, functional materials, and
the Internet of Things.

Dr. Li was a recipient of the National Award from Chinese Ministry of
Education, in 2015, and the Gold Prize of Geneva Innovation 2019. He is
also a Reviews Editor of Automation in Construction.

HUAN LIU was born in Chongqing, China,
in July 1993. She received the B.S. degree in Real
Estate Operation andManagement and Civil Engi-
neering from Chongqing University, Chongqing,
China, in June 2015. She is currently pursuing the
Ph.D. degree inmanagement science and engineer-
ing with the Department of Construction Manage-
ment and Real Estate, Tongji University, Shanghai,
China. Since September 2018, she has been also a
ResearchAssistant with TheHongKong Polytech-

nic University. Her research interests include construction industrialization
and automation in construction information management.

XING-ZHONG XIONG received the B.S. degree
in communication engineering from the Sichuan
University of Science and Engineering, Zigong,
China, in 1996, and the M.S and Ph.D. degrees in
communication and information system from the
University of Electronic Science and Technology
of China (UESTC), in 2006 and 2009, respectively.
In 2012, he completed a research assignment from
the Postdoctoral Station of Electronic Science and
Technology, UESTC. He is currently a Professor

with the School of Automation and Information Engineering, Sichuan Uni-
versity of Science and Engineering. His research interests include wire-
less and mobile communications technologies, intelligent signal processing,
the Internet-of-Things technologies, and very large-scale integration (VLSI)
designs.

ZHOUCHAO WEI received the B.Sc. degree in
applied mathematics and the Ph.D. degree in
applied mathematics from South China University
of Technology, in 2006 and 2011, respectively.
He joined the College of Mechanical Engineering,
Beijing University of Technology, in 2014, as a
Postdoctoral Fellow, and the Faculty of Mechan-
ical Engineering, Technical University of Lodz,
Poland, in 2015, as a Visiting Researcher. He has
also been as a Visiting Scholar with theMathemat-

ical Institute, University of Oxford, U.K., from 2016 to 2017. He is currently
a Full Professor with the China University of Geosciences, Wuhan. He has
published more than 50 relevant academic articles in SCI-indexed journals.
He has been supported by the several National Natural Science Funds.
His current research interests include the qualitative theory of differential
equations, chaos, and bifurcation theory.

WEI WEI received the M.S. and Ph.D. degrees
from Xi’an Jiaotong University, Xi’an, China,
in 2005 and 2011, respectively. He is currently an
Associate Professor with the School of Computer
Science and Engineering, Xi’an University of
Technology, Xi’an. He ran many funded research
projects as a Principal Investigator and a Technical
Member. He has published around 100 research
articles in international conferences and journals.
His current research interests include the area of

wireless networks, wireless sensor networks, image processing, mobile
computing, distributed computing, and pervasive computing, the Internet
of Things, and sensor data clouds. He is a Senior Member of the China
Computer Federation (CCF). He is an Editorial Board Member of Future
Generation Computer System, IEEE ACCESS, Ad Hoc & Sensor Wireless Sen-
sor Network, the Institute of Electronics, Information and Communication
Engineers, andKSII Transactions on Internet and Information Systems. He is
a TPC member of many conferences and a regular Reviewer of the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS

ON IMAGE PROCESSING, the IEEETRANSACTIONSONMOBILECOMPUTING, the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, the Journal of Network and
Computer Applications, and so on.

YANGMIN LI received the B.S. and M.S. degrees
in mechanical engineering from Jilin University,
Changchun, China, in 1985 and 1988, respec-
tively, and the Ph.D. degree in mechanical engi-
neering from Tianjin University, Tianjin, China,
in 1994.

He started his academic career, in 1994.
He was a Lecturer with the Mechatronics Depart-
ment, South China University of Technology,
Guangzhou, China. He was a Fellow with the

International Institute for Software Technology of the United Nations Uni-
versity (UNU/IIST), from May to November 1996; a Visiting Scholar with
the University of Cincinnati, in 1996; and a Postdoctoral Research Associate
with Purdue University, West Lafayette, USA, in 1997. He was an Assistant
Professor, from 1997 to 2001, an Associate Professor, from 2001 to 2007,
a Full Professor, from 2007 to 2016, all with the University of Macau. He is
currently a Full Professor with the Department of Industrial and Systems
Engineering, The Hong Kong Polytechnic University, Hong Kong. He has
authored and coauthored 425 scientific articles in journals and conferences.
His research interests include micro/nanomanipulation, compliant mecha-
nism, precision engineering, robotics, and multibody dynamics and control.

Dr. Li is an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATION

SCIENCEAND ENGINEERING,Mechatrionics, IEEEACCESS, and the International
Journal of Control, Automation, and Systems.

20734 VOLUME 8, 2020


