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ABSTRACT Despite the significant advances in convolutional neural network (CNN) based image
denoising, the existing methods still cannot consistently outperform non-local self-similarity (NSS) based
methods, especially on images with many repetitive structures. Although several studies have been given
to incorporate NSS priors with CNN-based denoising,their improvement is generally insignificant when
compared with the state-of-the-art CNN-based denoisers. In this paper, we suggest to combine CNN andNSS
based methods for improved image denoising, resulting in an NSS-UNet architecture. Motivated by gradient
descent inference of TNRD, both the current estimate and noisy observation are considered as the inputs to
the CNN. To take the NSS prior into account, the result by NSS (e.g., BM3D or WNNM), is adopted as the
initial estimate. And a modified UNet is presented for exploiting the multi-scale information. We evaluate
the proposed method on three common testing datasets. The results clearly show that NSS-UNet outperforms
the existing CNN and NSS based methods in terms of both PSNR index and visual quality.

INDEX TERMS Non-local self-similarity, convolutional neural network, residual learning, image denoising.

I. INTRODUCTION
Image denoising is a fundamental and classical topic in
image processing and low level vision. Given a noisy image
y = x + n, image denoising aims to estimate the corre-
sponding clean image x. And n is usually assumed to be
an additive white Gaussian noise (AWGN) with the mean
zero and standard deviation σ . For decades, a wide range of
models have been suggested for image denoising, to name
a few, variational models [1]–[3], non-local self-similarity
(NSS) based methods [4]–[6], Markov random fields
[7]–[9], sparse representation methods [4]–[6], [10]–[12] and
discriminative learning based methods [13]–[15]. Among
these methods, NSS-based methods and discriminative
learning based ones are two representative categories of
approaches with state-of-the-art denoising performance.

The NSS-based methods utilize the repetitive local pat-
terns in an image for effective denoising. Generally, for
each noisy image patch yi, one can find a group of
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similar patches Y (including yi) from a larger neighbor-
hood of yi. The non-local mean (NLM) approach [16] simply
adopts the weighted mean of the patches in Y as the estimate
of the clean patch. In BM3D [17], Y is reshaped as 3D data
array, and transform-domain collaborative filtering is then
deployed to estimate the clean patch group X. Inspired by
the success of BM3D, group sparsity and centralized sparsity
are respectively adopted in LSSC [4] and NCSR [6] to model
the prior of X. Recently, low rank representation is exploited
by WNNM [18] for modeling X, and achieves favorable
denoising performance.

Another representative category of state-of-the-art denois-
ing approaches are discriminative learning based methods.
Given a training set of noisy observation and ground truth
clean image pairs, discriminative learning based methods
directly learn a mapping to estimate the clean image from
its noisy observation. Based on the truncated inference pro-
cedure, the cascade shrinkage fields (CSF) model [13] and
the trainable non-linear reaction diffusion (TNRD) model
[14], [15] have been proposed to learn stage-wise inference
models. However, the performance of such methods may be
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FIGURE 1. Denoising results (σ = 50) by discriminative learning based methods: DnCNN [21], NSS-based methods: BM3D [17] and the
proposed BM3D-UNet. (a) Barbara, (b) Monar.

limited by the forms of image priors and inference algo-
rithms. With the progress in deep learning, convolutional
neural networks (CNNs) are also utilized for image denoising
[19]–[23]. Nowadays, CNN-based solutions have achieved
better denoising performance than those based on NSS and
truncated inference.

Despite their success on image denoising, both the two
categories of approaches have their respective merits and
drawbacks. The discriminative learning methods take advan-
tage of large scale training data, and accumulate image local
information to generate high quality denoising estimation.
In contrast, non-local based approaches are able to take bene-
fit from image NSS prior, and are superior in handling images
with repetitive patterns. Fig. 1 presents the denoising results
of two noisy images (i.e., Barbara and Monar.) with σ = 50
by a representative NSS-based method (i.e., BM3D [17]) and
a state-of-the-art CNN-based method (i.e., DnCNN [21]).
Due to the rich repetitive patterns ofBarbara, BM3D [17] sig-
nificantly outperforms DnCNN [21] in terms of PSNR index,
and recovers more detailed textures from noisy observation.
As for images dominated by salient structures (e.g., Monar.
in Fig. 1), DnCNN [21] generally surpasses BM3D [17],
and is effective in recovering sharp edges and suppressing
artifacts in the smooth region.

Considering their relative merits and complementarity,
it is encouraging to incorporate NSS-based and discrim-
inative learning methods for enhanced denoising perfor-
mance. Recently, some attempts have already been made
for improving discriminatively learned denosing models
(e.g., TNRD [15]) with NSS prior [24], [25]. These meth-
ods, however, perform marginally better than the NSS-based
methods and generally are inferior to the state-of-the-art
CNN-based denoisers. Therefore, more studies are still
required to take the full advantages of both NSS-based and
CNN-based methods.

In this paper, we suggest to combine CNN and NSS based
methods for improved image denoising. Concretely, we con-
sider two representative NSS-basedmethods, i.e., BM3D [17]
and WNNM [18], and adopt the UNet architecture [26] due
to its optimal tradeoff between efficiency and receptive field
size. In order to design appropriate combination scheme,

we refer to [21] which shows that DnCNN can be treated as
an extension of TNRD with the residual learning formula-
tion and initialized by the noisy observation y. Particularly,
DnCNN aims to learn a residual mapping R(y) ≈ n, and
the clean image is then predicted by x = y − R(y). Here,
we move one step forward by taking the estimate by some
NSS-based method xt as the initialization of x. By analyzing
the connection with TNRD, we argue that both the initial
estimate xt and the noisy observation y should be taken
as the inputs to the CNN model. And the modified UNet
is deployed for learning the residual mapping R(y, xt ) ≈
x− xt , resulting in our NSS-UNet model. Finally, the results
on three widely used datasets show that BM3D-UNet and
WNNM-UNet outperform existing popular CNN and NSS
based methods in terms of PSNR index and visual quality.
On Set12, given the noise level σ = 50, the average PSNR
by our WNNM-UNet can be about 0.5 dB higher than the
state-of-the-art DnCNN and WNNM, and 0.2 dB higher than
the baseline UNet.

To sum up, the main contribution of this work is three-fold:
• We suggest to combine the NSS-based denoiser with
the CNN-based methods for enhanced image denoising.
While the combination ofWNNMandCNNgreatly ben-
efits denoising performance, the combination of BM3D
and CNN can achieve better tradeoff between efficiency
and effectiveness.

• A simple but effective combination scheme is presented
by dissecting the connection between CNN and TNRD
inference. Both the estimate by the NSS-based method
and the noisy observation are taken as inputs to the
modified UNet for predicting the residual between the
ground truth and the estimate.

• Extensive experiments show that our NSS-UNet outper-
forms the state-of-the-art model-based denoising meth-
ods, and even achieve denoising results comparable with
current best performing NSS and CNN basedmethods in
terms of quantitative and qualitative evaluation.

The remainder of this paper is organized as follows.
Section II presents a brief survey on the related works
on image denoising. Section III describes the pro-
posed NSS-UNet method, while Section IV reports the
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experimental results. Finally, Section V ends this paper by
providing several concluding remarks.

II. RELATED WORKS
A. IMAGE DENOISING BASED ON
DEEP NEURAL NETWORK
Due to that great successes had been achieved on high
level computer vision applications, the application of deep
neural networks (DNN) methods on denoising tasks have
been attracting great research interests in recent years.
In [20], Jain and Seung propose to use convolutional neu-
ral networks (CNNs) for image denoising and discuss their
relationship with Markov random field (MRF). In [19],
Burger et al. show that the multi-layer perceptron (MLP)
can achieve state-of-the-art performance for image denoising.
In [27], Xie et al. combine sparse coding and deep networks
pre-trained with denoising auto-encoder (DA) together for
Gaussian noise removal. In [15], Chen et al. propose a simple
but effective framework to learn stage-wise inference models.
In [21], Zhang et al. design a deep denoising CNN (DnCNN)
by incorporating residual learning [28] and batch normal-
ization [29]. Although CNN-based methods (e.g., DnCNN
[21]) have achieved state-of-the-art denoising performance,
they cannot consistently outperform the NSS-based methods,
especially on images with many repetitive structures.

B. IMAGE DENOISING BASED ON NONLOCAL
SELF-SIMILARITY
The nonlocal self-similarity (NSS) prior refers to the fact
that natural images contain many repetitive structures at
different locations. On the basis of above considerations,
Buades et al. [16] firstly adopt the NSS prior and pro-
posed a non-local mean (NLM) filtering method for image
denoising. Inspired by NLM, a lot of NSS-based meth-
ods [4], [6], [17], [18], [30] have been suggested in the
last decade, and achieved promising denoising performance.
In [17], Dabov et al. propose a very efficient and highly
engineered approach known as BM3D, which consists of
three steps: nonlocal patch grouping, 3D wavelet shrinkage,
and patch group aggregation. In [6], Dong et al. present a
nonlocally centralized sparse representation (NCSR) model
for image restoration, which uses the NSS prior to obtain
good estimate of the sparse coding coefficients of the orig-
inal clean image. Gu et al. [18] apply the weighted nuclear
norm minimization (WNNM) algorithm to image denoising
by exploiting the low-rank property of nonlocal self-similar
image patches.

C. INCORPORATION OF NSS AND CNN BASED METHODS
Despite their rapid progress, the CNN-based denoising
methods [14], [15], [21], [22] remain local models and
rarely take into account the inherent NSS property. In con-
trast, the NSS-based methods, such as BM3D [17] and
WNNM [18], are promising in recovering repetitive struc-
tures but may introduce artifacts in smooth region. Therefore,
it is natural to expect that the denoising performance can be
further boosted by incorporating the NSS and CNN based

methods [24], [25], [31]. In [24], [25], the NSS regularization
terms are designed for TNRD [15]. In [31], by extending
BM3D [17], the algorithm consists of three parts: blocking
matching, denoising CNN, and aggregation. For better loca-
tion of similar patches, the block matching is operated on the
DnCNN [21] results. N3Net [32] introduces the continuous
deterministic relaxation of the KNN rule to neural network
architectures by proposing a non-local processing layer. For
the purpose of capturing self-smilar information, GCDN [33]
employs graph convolution to create layers with hidden neu-
rons having non-local receptive fields. By computing reliable
feature correlations within a confined neighorbood and pass-
ing feature correlation messages between adjacent recurrent
stages, NLRN [34] incorporates non-local operations into
a recurrent neural network for image denosing. Different
from [24], [25], [31]–[34], we present a simple yet effective
scheme to combine the NSS and CNN-based methods. Con-
cretely, the NSS-based method is first deployed to obtain an
initial estimate of the clean image. By taking both the initial
estimate and noisy observation as inputs, a modified UNet is
then presented to produce the final denoising result. Exten-
sive experiments clearly demonstrate the superiority of our
NSS-UNet in comparison with the state-of-the-art denoising
methods.

III. THE PROPOSED NSS-UNET MODEL
This section presents the proposedNSS-UNetmodel for com-
bining NSS and CNN based methods. First, the NSS-based
method is employed to generate an initial estimate xt from the
noisy input y. Then, the key issue of NSS-UNet is to design
proper CNN model to predict the final denoising result based
on the initial estimate xt .

To this end, in Sec. III-A we resort to the connection
between TNRD inference and CNN, and provide two tips
for the CNN model: (i) taking both xt and y as inputs, and
(ii) predicting the residual x − xt instead of x − y.
Sec. III-B disccusses the choice of xt based on three prin-
ciples, i.e., learnability, complementarity, and efficiency.
Finally, Sec. III-C introduces the modified UNet architecture
to produce the final denoising result.

A. TNRD AND GRADIENT DESCENT INFERENCE
In this work, we treat the denoising result by the NSS-based
method as an initial estimate xt of the clean image. Our
combination scheme can then be modeled as the learning of a
mapping to the clean image by using xt as the starting point.
Thus, we resort to the gradient descent inference adopted in
TNRD [14], which can be operated at any starting point and
may shed some light on the design of the CNN model. The
objective function of the TNRD model [14] is defined as,

min
x

1
2
‖y− x‖2 + λ

K∑
k=1

N∑
p=1

ρk ((fk ∗ x)p), (1)

where N denotes the image size, λ denotes the regularization
parameter, ∗ denotes the convolution operator. fk and ρk are
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FIGURE 2. Illustration of the proposed NSS-UNet model.

the k-th filter kernel and penalty function, respectively. (·)p
denotes the pixel value at the location p. At a general starting
point xt , the diffusion of TNRD can be written as one gradient
descent step,

x = xt − α

(
(xt − y)+ λ

K∑
k=1

f̃k ∗ ρ′k (fk ∗ xt )

)
, (2)

where f̃k denotes the adjoint filter of fk , α is the step size, and
ρ′k (·) denotes the derivative of ρk (·). Furthermore, we define
the residual mappingR(y, xt ) = x− xt as,

R(y, xt ) = −α

(
(xt − y)+ λ

K∑
k=1

f̃k ∗ ρ′k (fk ∗ xt )

)
. (3)

We can obtain the following two observations from Eqn. (3):
(i) the residualmapping is a function of both y and xt , and thus
we should take both y and xt as inputs to CNN; (ii) instead of
predicting x−y in DnCNN [21], we should learn the mapping
R(y, xt ) to predict x− xt .

B. PROPER CHOICE OF Xt
From Eqn. (3), one can see that xt may affect both the form
and the result of the residual mappingR(y, xt ). Thus, proper
choice of xt is also a crucial issue in the proposed method.
In general, we consider three principles for choosing proper
xt , i.e., learnability, complementarity, and efficiency. As to
the learnability, we require to use some xt whichmakes it eas-
ier to learn the residualmappingR(y, xt ). Here ‖R(y, xt )‖2 is
simply adopted as a metric on the easiness of learning, where
lower ‖R(y, xt )‖2 indicates that it is easier to learnR(y, xt ).
Note that R(y, xt ) ≈ x − xt . Thus, to decrease ‖R(y, xt )‖2,
we require xt to be close to the ground truth clean image x,
and one feasible choice is to use another high-performance
denoiser to obtain xt .

As to the complementarity, xt is required to con-
tain some complementary information to the result by
CNN-based denoiser. From Fig. 1, one can see that
DnCNN only considers the generic image priors, and
performs poor on images with rich repetitive structures.

In contrast, NSS-based methods usually achieve favor-
able results on this kind of images. Therefore, we sug-
gest to use the NSS-based methods (e.g., BM3D, WNNM)
to produce xt . Moreover, our empirical experiments show
that the combination of CNN with patch based methods
(e.g., EPLL) contributes little in improving denoising result,
which indicates that complementarity play more important
role in improving denoising performance. Through exper-
iments, we find that utilizing WNNM to generate xt can
achieve the best denoising performance. When taking the
efficiency into account, BM3D will be more preferred to
combine with the CNN-based method.

C. NETWORK ARCHITECTURE
Based on the discussion in Sec. III-A, the network should
take both y and xt as inputs, and learn the residual map-
ping R(y, xt ) = x − xt . Here we adopt a modified UNet
architecture to learn R(y, xt ) for better tradeoff between
efficiency and denoising performance. With the introduction
of skip connections and pooling operations, the UNet [26]
provides an efficient way to exploit multi-scale information,
and usually exhibits higher computational efficiency and
larger receptive field at the moderate increase of memory
cost.

As illustrated in Fig. 2, we further modify UNet from
two aspects. First, instead of the deployment of pool-
ing layer, we use convolutional layers with stride 2 and
1/2 for in-network downsampling and upsampling. Specif-
ically, we utilize k (= 2) downsampling and upsampling
steps in the modified UNet, leading to k + 1 spatial scales of
feature maps. For each scale, two convolutional blocks (3×3
convolution + Batch Normalization + ReLU) are employed
in the encoder and decoder subnetworks, respectively. Thus,
ourNSS-UNet can have a very large reception field of 85×85.
Second, we adopt a simple element-wise summation oper-
ation to combine the feature maps from the encoder and
decoder subnetworks. In contrast, concatenation has been
utilized in [26]. We empirically find that element-wise sum-
mation is effective in reducing the network parameters, and
can lead to comparable denoising results. For more details
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TABLE 1. The PSNR (dB) results by different methods on Set12.

on the setting of NSS-UNet, please refer to Fig. 2. Finally,
the average mean squared error (MSE) loss is adopted to train
the modified UNet,

LMSE =
1
N

N∑
i=1

‖x igt − xit −R(yi, xit )‖
2
2, (4)

where x igt is the ground truth, xit denotes the denoising result
by NSS-based methods, and N is the number of the training
pairs. Given a testing noisy image y, the NSS-based method
are first used to produce xt , and the denoising result is then
obtained by x = xt +R(y, xt ).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTING
1) TRAINING AND TESTING DATA
We choose 200 images from BSD300 [36] to train our model,
where the image size is 321×481. Data augmentation includ-
ing flipping, rotation and data refinement by resizing images
with different factors, i.e. 1, 0.9, 0.8 and 0.7, have been used
for generating more training data. We crop 60,000 image
patches with size of 120×120 to train our model. To generate
xt , we only use the noisy training patches as the input to
NSS-based algorithms. To test NSS-UNet, three datasets are
used for evaluation: (i) Set12 (The 12 testing images used in
[21]), (ii) BSD68 (The 68 natural images from Berkeley seg-
mentation dataset [36]) and (iii) Urban100 (a dataset contains
structured scenes in [37]).

TABLE 2. Run Time (in seconds, s) of different methods with noise level
σ = 50, NSS-based method runs on CPU while UNet runs on both CPU
(left) and GPU (Right).

2) PARAMETER SETTING
The Adam [38] algorithm with β1 = 0.9 is used to train
our model, and the size of mini-batch is 32. All the models
are trained with 35 epochs, the learning rate for the first
20 epoches is 10−3, and it becomes 10−4 for the remaining
epoches. The network parameters are initialized based on the
method in [39]. It takes about 9.5 hours to train our model
with the MatConvNet package [40] on a Nvidia GeForce
GTX 1080 GPU. The source code and test results will be
released after the publication of this work.

B. QUANTITATIVE AND QUALITATIVE EVALUATION
We compare our NSS-UNet with several state-of-the-art
denoising algorithms, including BM3D [17], WNNM [18],
EPLL [35], CSF [13], TNRD [15], and DnCNN [21]. The
results of the baseline UNet are also reported. Three noise
levels, i.e., σ = 15, 25 and 50, are considered in our
experiments. Table 1 lists the PSNR results of the com-
peting methods on Set12. The best two PSNR results for
each image are highlighted in red and blue, respectively.
Our BM3D-UNet and WNNM-UNet achieve the highest
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FIGURE 3. Denoising results of the image in Set68 with noise level 25.

TABLE 3. The PSNR/SSIM results of different methods on BSD68 and Urban100.

average PSNR result. Moreover, even for the images House
and Barbara, BM3D-UNet also outperforms BM3D, while
WNNM-UNet performs consistently better than the compet-
ing methods on all the 12 images. In order to investigate
the performance of the proposed method comparing with the
state-of-the-art non-local-based image denoising methods,
Table 3 further reports the average PSNR and SSIM results
on Set12, BSD68 and Urban100 with different noise level.
All results have been obtained running the pretrained models
provided by the authors, except for N3Net at σ = 15 which is
unavailable. OurWNNM-UNet and BM3D-UNet can always
achieve denoising results comparable with current best per-
forming non-local-based methods, and work especially well
at medium to high levels of noise. As illustrated in Fig. 4,
the proposed method provides the best visual quality on high
noise level image which contains rich repetitive structures,

and outperforms the strong baselines GCDN and NLRN with
largemargins, namely 1.02 dB and 0.51 dB forWNNM-UNet
respectively.

C. THE EFFECT OF xt BY DIFFERENT DENOISERS
Using Set12, we evaluate the effect of xt produced by dif-
ferent denoisers. We consider one non-NSS-based method,
i.e., EPLL, and two NSS-based methods, i.e., BM3D, and
WNNM. Three variants of our models are then imple-
mented, i.e., EPLL-UNet, BM3D-UNet, and WNNM-UNet.
The denoising results and the run time are provided in
Tables 4 and 2, respectively. One can see that NSS-based esti-
mate of xt generally results in better performance than both
baseline UNet and the corresponding NSS-based method.
And verify that a better NSS-based estimate also lead to better
denoising result.
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FIGURE 4. Denoising results on a representative image from Urban100 with noise level 50.

TABLE 4. The PSNR (DB) results of different non-NSS-based and NSS-based UNet on Set12 with noise level σ = 50.

V. CONCLUSION
In this paper, we present a simple yet effective NSS-UNet
architecture to combine the NSS-based method with deep
CNN for image denoising. In NSS-UNet, the NSS-based

method is first employed to generate an estimate of xt from
the noisy image y. Then, by taking both xt and y as inputs,
a modified UNet is trained to obtain the final denoising result.
NSS-UNet outperforms existing popular denoising methods
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in terms of both quantitative measure and visual perceptual
quality. On Set12, at the noise level σ = 50, the average
PSNR by our WNNM-UNet can be about 0.5 dB higher than
the state-of-the-art DnCNN, and 0.2 dB higher than the base-
line UNet. One limitation of NSS-UNet is that its efficiency is
highly dependent on the complexity of theNSS-basedmethod
(e.g., WNNM). In future work, we will investigate efficient
solution to directly incorporate the NSS prior into appropriate
CNN architecture.
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