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ABSTRACT Simultaneous localization and mapping (SLAM) is an important function for service robots to
self-navigate modernized buildings. However, only a few existing applications allow them to automatically
move between stories through elevator. Some approaches have accomplished with the aid of hardware;
however, this study shows that computer vision can be a promising alternative for button localization. In this
paper, we proposed a real-timemulti-story SLAM systemwhich overcomes the problem of detecting elevator
buttons using a localization framework that combines tracking and detecting approaches. A two-stage deep
neural network initially locates the original positions of the target buttons, and a part-based tracker follows
the target buttons in real-time. A positive-negative classifier and deep learning neural network (particular
for button shape detection) modify the tracker’s output in every frame. To allow the robot to self-navigate,
a 2D grid mapping approach was used for the localization and mapping. Then, when the robot navigates a
floor, the A∗ algorithm generates the shortest path. In the experiment, two dynamic scenes (which include
common elevator button localization challenges) were used to evaluate the efficiency of our approach, and
compared it with other state-of-the-art methods. Our approach was also tested on a prototype robot system to
assesses how well it can navigate a multi-story building. The results show that our method could overcome
the common background challenges that occur inside an elevator, and in doing so, it enables the mobile robot
to autonomously navigate a multi-story building.

INDEX TERMS Elevator button localization, multi-story navigation, object detection, visual tracking, deep
learning.

I. INTRODUCTION
For a mobile robot, moving between the stories of a mod-
ern building is challenging. This capability is required in
tasks such as the automatic delivery of goods or automatic
transport of patients in hospitals. Autonomous navigation
includes two critical tasks: navigation on a single story,
and navigation between stories. Many existing approaches
which use simultaneous localization and mapping (SLAM)
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will be reviewed in Section 2. A deficiency in most exist-
ing approaches is that the autonomous indoor navigation
of service robots only focuses on single-story navigation.
For multi-story navigation, robots must use elevators, and
most state-of-the-art approaches depend on either human
assistance or the collaborative efforts of multiple robots (for
example, Miura et al. [1] and Veloso et al. [30]). In these
methods, a human must help the robot operate the eleva-
tor; this requirement limits the service robot’s autonomous
navigation capability. Therefore, a robust method for auto-
matic recognition of the elevator buttons is essential for
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multi-story SLAM. Because of the wide view angle and
detailed information collected, computer vision can solve
this problem. However, classical methods such as template
matching [9] are sensitive to background changes, and deep
learning methods based on convolutional neural networks
(CNNs) [11] have high computational costs. Otherwise, the
real-time processing is essential for the robot system. If the
vision algorithm costs exhaustive computing cost, the entire
system, i.e., controlling system and navigation system will
get hung because of the largememory andCPUusage through
the deep learning procedure leading the entire system to
fail.

In this paper, we propose a combined detection and
tracking strategy for rapid and robust localization of the
buttons. The key idea is to use generative adversarial net-
works (GANs): combining online and offline detectors. Our
approach can be divided into three parts. First of all, we use
the detection method based on a two-stage neural network to
provide a single-shot detection of the target buttons on the
scene. However, detection based on deep learning generally
has high computational costs. As elevator buttons have visible
edges, we use edge detection (a traditional image processing
method) to search for the rectangles, and then input these
rectangles into the neural network. We use the visual tracking
technology combined with a deep learning neural network
because this locates the object with low computational costs,
and is adaptive to the environment. We then use our own
designed tracking approach to localize the target buttons after
they are detected. A pairwise consensus of cluster trackers
tracks the elevator through the center of pairwise feature
points. In the second step, we propose two-step validation. A
positive-negative (PN) classifier checks the tracker’s output’s
accuracy. Then, a deep neural network detects the buttons in
the elevator in the appended region of the tracker and PN
classifier (it only detects the buttons’ shape, not the numbers
on them) and modifies the output. Finally, the three outputs
are merged as a final region of interest (ROI), and the tracker
and PN classifier are updated according to the output. The
tracker and PN classifier serve as online detectors to adapt the
localization framework to the environment. The deep neural
network serves as an offline detector that restricts the object’s
properties. With this combination, the online tracker’s focus
is restricted to the target object, and the offline detector is
more adaptive to the environment. Thus, our approach is both
robust and fast on a mobile platform. Unlike the methods
based solely on object detection, the visual tracking allows a
smooth and continuous localization of the target with greatly
lower computing cost. The methods based on object detection
might face the problem of miss-detection and ROI flash, but
the tracking will not lose because it simplifies the localization
role to only detect the targets. Moreover, the continuous
localization can also benefit the controlling module on the
robot arm and navigating when the robot approaches the
panel. Accumulating errors are inevitable, but the continu-
ous localization assists on correcting those errors, benefiting
navigation and arm control tasks. Therefore, the combined

strategy is essential for operating the system both with high
accuracy and quick response.

Autonomous navigation on each story requires the real-
time position of the robot and a map of the environment.
As lidar can obtain dense and precise depth information
in a plane, our approach uses lidar data to perform two-
dimensional laser SLAM. This can be run on a mobile plat-
form in real time. Three tasks should be considered in the
navigation module: 1) finding the nearest elevator and relo-
cating to another floor; 2) providing accurate SLAM on each
floor; and 3) recalculating the robot’s position on the map of
the new floor when the robot uses the elevator.

The experiments show that our approach is robust for
the task of elevator button localization. Two dynamic image
sequences recorded in the elevator are designed to reflect the
challenges of this environment (such as blurriness, darkness,
light, different angles, or reflections). The results show that
our detection strategy always detects the correct target button,
even when image quality is poor. Furthermore, the tracking
model can constantly localize the target button from different
distances and angles, while processing at a high frames-per-
second (FPS). In experiments with a real robot, our robot
moves between two stories. The results illustrate that thanks
to our approach, the robot can complete tasks in a multi-story
environment. Throughout its service, the robot autonomously
navigates each floor, and localizes its initial position on the
map after relocating to a different story. The robust elevator
localization also enables our robot to operate the elevator.

The contributions of this paper can be summarized as fol-
lows: (1) We demonstrated the efficiency of combined detec-
tion and tracking strategies for elevator button localization.
(2) We applied our button localization framework on a multi-
story service robot, which operating on a central processing
unit (CPU) mobile platform.

II. RELATED WORK
A. AUTONOMOUS NAVIGATION
Research on SLAM technology has a long history (a sur-
vey can be found in [2]). Several approaches using a cam-
era [33] or lidar have been proposed for this task. Vision
SLAM methods with RGB or gray cameras consume sig-
nificantly more CPU resources than laser SLAM. They are
also less accurate when environmental brightness changes.
As a result, laser SLAM is more popular in the industry
than vision SLAM. In [3], Murphy and Doucet proposed a
particle filter called Rao-Blackwellized to solve the SLAM
problem. This filter can estimate the robot’s position more
accurately than ordinary particle filters. However, to obtain a
precise localization and mapping algorithm, a large quantity
of particles needs to be maintained. This leads to a high
time complexity. Grisetti et al. [4] proposed a grid mapping
algorithm to solve the problems of high complexity and
particle degeneration in Rao-Blackwellized particle filters.
Luo and Qin [32] presented a fast flier to minimize the
computing cost. Using the robot’s movement data and 2D
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depth data from recent frames, a more accurate particle dis-
tribution is calculated. This reduces the uncertainty of robot
localization in the filter prediction stage; thus slashing the
number of particles. Another well-known algorithm is the
Hector mapping algorithm [5] which performs as a stable
scan matching method. While processing scan matching, the
algorithm uses the Gauss-Newton method to obtain the best
current position estimation in a fixed number of iterations.
This method also matches the versions of the established
map in different resolutions, thus avoiding convergence to the
local minima. Google released its Carto Graher 2D SLAM
technology in 2016 [6]. In addition to the front-end matching
calculation, it performs the branch-and-bound graph opti-
mization in the backend. The established map is divided into
multiple subgraphs. Each subgraph has a corresponding key
frame. During loop closure detection, the robot matches the
current laser scan with the subgraph keyframes to split the
accumulated errors into their appropriate subgraphs. How-
ever, mapping the robot’s movement between stories is a chal-
lenge, as it is difficult for it to control the elevator and plan
its path. The current trend is to utilize human assistance [1]
or employ collaborative robot systems [30]. However, these
methods demand extra resources to allow the robot to utilize
the elevator. Therefore, a fully automatizedmethod is needed.

B. BUTTON DETECTION AND RECOGNITION
To help the robot operate the elevator autonomously, we pro-
cessed image data to obtain the positions of the elevator
buttons on the scene. Related research can be divided into
two areas: button detection and button recognition.

In button detection, some methods use visual features of
elevator button, such as color or texture. Yu et al. [7] pre-
sented a system to detect elevator buttons based on the Hough
transform, structural inference, and multi-symbol recogni-
tion. Adbulla et al. [8] introduced an approach which uses
color, shape, and size to search for buttons on the scene.
However, such methods often fail when the lighting and
background change.

The traditional method for button recognition, template
matching [9], is used to rapidly identify the buttons. How-
ever, identification is a challenge because of the complicated
background; the limited number of samples cannot represent
all possible noisy situations in button recognition. However,
some studies use machine learning to recognize the elevator
buttons with approaches such as optical character recognition
(OCR) [10] and CNNs [11]. However, high computational
costs from CNN limits its application to mobile platforms.

C. OBJECT DETECTION BASED ON DEEP LEARNING
We propose a novel approach to detect the elevator buttons.
In this study, we use only a single-shot detector to obtain the
position of the target button. Then, we use visual tracking
technology to follow the button.

Recently, deep learning has made a breakthrough in
the field of object detection. Starting from region CNN
(R-CNNs) [12], the two-stage approaches (finding objects’

potential positions and detecting high-confidence candidates)
and faster R-CNN [13], [14] have achieved exceptional detec-
tion quality. Another direction includes one-stage approaches
such as You Only Look Once (YOLO) [15], in which
researchers convert the detection task into a regression task
to improve detection speed. Moreover, single-shot multibox
detector (SSD) [16] combines the advantages of faster R-
CNN and YOLO, resulting in fast, accurate detection.

D. VISUAL TRACKING
Although the above methods are fast and robust with graphics
processing units (GPU), their applications for a service robot
are limited, because of mobile robots’ rudimentary hardware.
We aim to process images on the mobile platform in real
time, and our method uses the tracking approach after single-
shot detection to locate the target button by comparing two
neighbor frames. In earlier research, optical flow [17] and
kernels [18] have been used to continuously compare two
frames following a target. However, these methods are sen-
sitive to continuous error accumulation. Current state-of-the-
art approaches can be divided into three trends. The first
trend is tracking-by-detecting: Zhang et al. [19] and [20] esti-
mate the object’s state with an established model. Based on
this, an appearance model is combined with a detecting and
updating procedure such as Kalal et al. [21]. Additionally,
Hare et al. [22] have succeed in a long-term tracking task.
Another method is to use a part-based method such as that of
Nebehay and Pflugfelder [23], which tracks each part of the
object separately, instead of tracking the complete object.

In contrast to earlier approaches, ours converts the task of
elevator button localization into a combined detection and
tracking structure. We demonstrate that this provides rapid,
robust, and accurate button localization that can adapt to dif-
ferent environments. Furthermore, our approach is deployed
on a mobile robot platform, and combined with laser SLAM
technology to facilitate multi-story autonomous navigation

III. PROPOSED METHOD
A. OVERVIEW
Existing approaches to elevator button localization focus on
detection by using a predesigned model. Unlike these ideas,
our approach takes advantage of both detection and visual
tracking, which are used to introduce a more adaptive local-
ization approach. In our design, the CNN is used as the first
shot on the scene to obtain an initial precise position of the tar-
get button. After that, our framework outputs the initial shot
to the tracker. The tracker employs the pairwise consensus to
locate the button by a vote of the feature points. To ensure
that the tracking model overcomes challenges with the scale,
rotation of the target, and background, we use a PN model to
validate the tracker’s results and update its model. To deploy
the localization and mapping feature in the real robot, we use
a laser SLAM method called cartographer mapping [6]. The
well-known A∗ algorithm is used to plan the shortest path on
the occupancy grid constructed by the SLAM algorithm.
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FIGURE 1. Button localization results inside the elevator. (A) Original image. (B) Proposed contour extraction. (C) Effect after size filter and NMS.

B. BUTTON DETECTION
1) ROI EXTRACTION
The first part of button detection with deep learning is to cal-
culate the button’s potential positions on the scene. Because
most existing methods of object detection based on deep
learning need to scan the whole scene and input several
useless candidates into the neural network, the computational
costs are high. As a result, we propose a classical image
processing procedure to obtain the candidates for the buttons’
proposed positions. Assuming that the buttons are always
rectangle with clear contour, we propose a contour feature
to detect their potential positions.

Our method includes three steps. First, the RGB image is
converted into a greyscale image. To filter noise from the
scene, we use the morphological opening operation (eroding
and dilating the image) and median filter. Afterwards, we
use the canny edge detector [27] to extract any edges that
are considered candidates. The greyscale image conversion
from RGB, morphological opening operation and median
filter allows our method to filter low-frequency noises. The
boundary of the elevator button is strongly featured. And,
the buttons are generally manufactured by the light reflection
material. Therefore, the canny scanning can constantly obtain
the boundary of the buttons. In the experiment part, we design
two data sequences to show that our proposed method can
operate against the illumination challenges. In Fig 14, it was
shown that our proposed method overcomes extremely chal-
lenging illumination condition. However, the illumination
condition might change when inside the elevator, which leads
to either high exposure or extremely dark images captured by
the camera. This situation generally causes the failure of the
button recognition. To solve this problem, an updated pose

between the panel and the robot is required through slight
rotation andmovement of robot. A slight position and rotation
change can greatly influence the illumination condition for
the camera. The adjustment is operating continuously until
the desired button is recognized.

As shown in Fig. 1 (B), false positives are still produced
by the detector because the background objects create noise.
As the sizes and shapes of elevator buttons are similar, we use
a size controller (i.e., if the width/height ratio exceeds 1:2.5,
or the length of the button is less than 10 pixels) to remove
abnormally sized proposals. Moreover, a simple binary clas-
sifier and non-maximum suppression (NMS) [28] are applied
to remove false positive noise and overlapping candidate
regions. Fig. 1 (C) shows that all buttons are found when
using our approach. The proposals are estimated according
to followed formula:

Px,y,w,h = NMS [(x, y)+ (w, h)] if (w : h) < 1 : 2.5

(1)

wherePx,y,w,h denotes button proposals combining x, y coor-
dinates and weight w and height h. The proposals are filtered
by the NMS and size controller. Regarding about the circle
button localization, [7] shows that possibility of using tra-
ditional circle detector to detect the target buttons in circle.
Therefore, our proposed method can be simply modified to
from rectangle detector to the circle detector to fulfil the
requirement of circle button detection.

2) BUTTON RECOGNITION
After we obtained the potential positions of the buttons,
the next step was to classify them. The standard approaches
to object recognition use the OCR algorithm [10], but such
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FIGURE 2. Button tracking framework.

methods require initial image binarization and segmentation,
which diminishes accuracy for complicated backgrounds.
To maximize accuracy, our approach uses deep learning—
specifically, SSD—to train the model and detect the target
buttons. One difference between our version and the original
version is the ROI extraction. We use the selective proposal
method, as shown in ROI proposals, instead of global scan-
ning, i.e., we employ the results of ROI proposals as input
to the deep neural network. However, some of the target
buttons’ coordinate errors remain, and the SSD input will be
extended by a factor of 1.5 from the original ROI extrac-
tions. To expedite the SSD, we use the MobileNet [31] as
the backnet, and a depthwise convolutional layer instead of
the traditional convolutional layer. Furthermore, we reduce
the SSD input resolution from 300 × 300 to 128 × 128
to minimize computational costs. The final formula of our
proposed method is shown as follow:

Onx,y,w,h = SSD
(
pnx,y,w∗1.5,h∗1.5

)
(2)

where each output Onx,y,w,h is recognized by SSD through
inputting extended proposals pnx,y,w∗1.5,h∗1.5. The architecture
of it is shown as in fig 3.

In each extra feature layer, there are 512 convolutional
filters to allow the sufficient strength for recognition. The
anchor factor is set as 1:1 and 1:1.5 to help localize the

FIGURE 3. Architecture of mobile SSD.

button more accurately. In each scale, 100 estimations are
proposed to obtain the region of the targets. Through this
architecture, the mobile SSD enables to rapidly recognize the
buttons proposed by the ROI extraction without the thousands
of proposal steps present in the original version. Due to the
ROI proposals through button extraction helping the DNN
to localize the targets with rough positions, and the SSD
just requires to detect the position of the objects without
global searching. In this way, we can maximize the detection
accuracy and reduce the computing cost.. Hence, the miss-
recognition and ROI flash are inevitable during the robot
movement even when using an object detection DNN. The
continuous localization is also important for the navigation
and robot arm control. Therefore, the method to allow rapid,
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accurate and low-cost localization of the target buttons is
important..

C. VISUAL TRACKING
1) INITIALIZATION
The button tracking framework is shown in Fig. 2. After
the detecting procedure outputs the objects’ initial position,
the visual tracking module uses the resulting target button
ROI to initialize the tracker model. As our approach is based
on feature points, it employs the features from an accelerated
segment test (FAST) [24] to detect the feature points, and
the binary robust invariant scalable keypoints (BRISK) [25]
as the descriptor. With this combination, FAST allows rapid
detection of the scene’s corner information. Additionally,
BRISK provides a binary descriptor to overcome scale chal-
lenges, as is required for the tracking task.

Our approach divides the image region into two parts:
the foreground and background regions (FR and BR). The
feature points inside the region are saved as the foreground
feature points, and those outside of the region are saved as
the background feature points. Once the groups have been
distributed, the relationship between the foreground points
(i.e., rotation of the target and distance) is saved, as detailed
in the following section. When the results are obtained,
a dataset is built including the properties (positions, rota-
tion of the target, and distance) of the feature points. This
dataset is then used in the tracking procedure. At the same
time, our approach divides the image into small patches and
saves them as positive and negative samples, according to
region. By using these samples, our approach establishes a
constraint model based on randomized decision forests [29]
to record the environmental features in each tracking task.
This improves the environmental adaptability of our tracking
approach.

2) TRACKING
After the initialization, the original model is set up for
the tracker. Next, the tracker starts building the correspon-
dence between the previous frame and the current frame.
Lucas–Kanade (LK) optical flow [17] is used in this part to
track the points’ trajectory, and to filter outlier points in the
current frame, as determined by their position in the previ-
ous frame. The optical flow roughly builds the relationship
between the two frames, and then a more detailed corre-
spondence is built by global matching. The global matching
function is:

d
(
pt−1i , ptj

)
< θ∧

d
(
pt−1i , ptj

)
d
(
pt−1i , ptk

) < γ, j 6= k, (3)

where pt−1i denotes the feature points in the tracker’s model,
ptj are the matched points in the current frame; θ is the
threshold of the translations of the matched feature points
and γ threshold of the LK optical flow, which are set as
15 pixels and 20 pixels in our experiment. The p in the current

frame is matched with those filtered by the LK optical flow;
thus, the correspondence between two continuous frames is
obtained. Brute force is employed as the matching mode in
the global matching. In our case, the optical flow contributes
to filtering the outliers to reduce computational costs, and the
brute force provides a robustly similar matching to maintain
correspondence accuracy. As a result, an efficient matching
task identifies the closest feature point.

Afterwards, the object’s appearance changes from the pre-
vious frame to the current frame are estimated according to
the correspondence established by the matching step. The
function of the translation between each two points is:

D
(
mi,mj

)
=

∥∥∥(pti − Hpt−1i

)
−

(
pti − Hp

t−1
j

)∥∥∥ . (4)

The Euclidean distance between every two matched points
mi and mj is computed by a similarity transform H matrix
composed of the rotation of the target and scale change. The
scale change is calculated as follows:

s = med


∥∥∥pti − ptj∥∥∥∥∥∥pt−1i − pt−1j

∥∥∥
 , i 6= j

 (5)

The scale ratio s is the median ratio of all pairwise points’
distance changes between two continuous frames. In the end,
the rotation change is computed by the equation:

r=med
({

arctan
(
pt−1i − pt−1j

)
−arctan

(
pti−p

t
j

)
, i 6= j

})
(6)

Rotation change r is computed by the median value of
arctangent changes for each pair between two frames.

Combining the distance, scale, and rotation changes,
an ROI is voted by the center of the cluster as follows:

c =
1
|M |

∑
mt∈M

(
pti − Hp

t−1
i

)
, (7)

where M denotes the class of all the matched points. The
center of the target button is voted based on the average value
of the coordinates of all the feature points’ pairs. Accord-
ingly, the similarity transform (c, s, r) is used to calculate
the ROI’s oriented position, thus completing the tracking
procedure. The matching step builds the relationship between
the two frames and the rotation/scale estimations to present
the appearance of change in the object. Based on this, the final
voting outputs a scale and rotation invariant tracking result.

3) VALIDATION, UPDATING AND REDETECTION
Change in the scale, lighting, blurriness, and rotation of the
target is inevitable during long-term visual tracking tasks
in button localization. Thus, a model-updating procedure
is employed to maintain the model’s robustness. In our
approach, the PN classifier is used to detect the correct button
position on the scene to validate the tracking. An online learn-
ing model is built by using every incoming frame according
to the tracker’s results. The purpose of this is to maintain
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the robustness of background changes. Subsequently, a multi-
scale sliding window scanner is employed to scan the patches
and input them into the randomized-decision forest model in
the last frames. The visualization of it is shown as follow:

The tracker outputs an initial position of the button, and an
extended region is proposed. Apart from the GAN concept,
the selective windows are employed to scan the potential
position of the button which refers the history button informa-
tion to the tracking module. In each box, the pairwise points
are employed, which utilize the dataset saved in the random
forest. As the tracking is a continuous procedure, and the
change between nearby and current frames is insignificant,
the previous points’ pairs in nearby frames are compared with
the current frame to vote the ideal position of the button under
tracking. The visualization of the random forest is shown as
follows.

The random forest is constructed by 20 decision trees. Each
tree represents a frame in the nearest 20 frames. The depth
of each decision tree is 15 and it has a single branch. Each
tree represents 15 pairs of random points saved in its leaves
to compare their intensity change to obtain a binary code.
Each tree outputs a bayesian probability according to the
formula P(F\C). F represents the result of each tree and C
is the total number of possible sections, i.e., (2^15). Only
two results (positive and negative) are saved in the histogram.
And over 15 random decision trees output the positive result,
the position will be regarded as the button’s detected position
after beingmerged with the tracker and GAN results. The size
of the employed random decision tree is fixed, which avoids
growing indefinitely.

The structural patches (xi) of the given image are input into
the forests, which then output a series of probabilities:

pr (T | xi) =
ps

ps+ ns
. (8)

The average value is composed of these probabilities, and our
approach selects the window with the best score as the new
ROI position. The detector’s output is then compared with
the tracker proposal. If at least 80% of the area overlaps, our
approach selects the tracker’s ROI; if not, the classifier and
tracker’s results are merged into a new ROI.

Because After the ROI output is received from the tracker
and classifier, we employ the SSD (trained only by the shape
of the buttons) to coordinate the ROI to restrict the tracker.
The SSD inputs the appended region of the above ROI into the
neural network to search for the most accurate button shape.

The SSD employed here is slightly different from the one
which was introduced for recognizing the elevator button.
As this block’s main goal is simply to valid the shape of
output, we further decrease the resolution of the mobile-SSD.
The 128× 128 inputs were reduced to 32× 32, the convolu-
tional depth from 512 to 64, down sampling only one time to
keep the application real-time for visual tracking.

After that, the tracker’s output, PN classifier, and SSD are
merged by their median value to output the final ROI. For
the tracker, the feature points inside the ROI are updated as

FIGURE 4. The framework of classifier. Red lines in the rightest image
mean point pairs.

FIGURE 5. The architecture of the random forest.

new foreground points, and those outside as new background
points.

A remaining issue is redetection after the loss of a button.
In our approach, the PN classifier is first used to search the
region for the lost buttons for 3 seconds. If it fails to locate
them, the initialization step repeats.

D. GAN RESTRICTION
The generative adversarial networks (GAN) [34] employ the
‘‘GAME’’ theory which makes two neural networks compete
with each other in every training step. In our proposed frame-
work, a similar concept is employed to avoid the outlier of
tracker caused by unsupervised learning. The outline of our
proposed strategy is shown on figure 7.

The tracker performs as a generator to provide the rough
position of the elevator button on the scene. The result of
tracker and PN classifier is firstly fed into the SSD to detect
whether the ROI still accurately localizes the elevator button
(the system regards localizing loss if the confidence is less
than 0.5). The discriminator then detects the button in a
roughly extended region to adjust the button ROI to avoid
potential ROI outlier. Then, the merging with PN classifier
is operated to allow the tracker with history information from
nearest 20 frames. The discriminator finally detects the button
in an extended region to adjust the button’s ROI to prevent
potential ROI outlier happening in the upcoming frames. Its
formula can be defined as follow:

X ,Y ,W ,H = max (D(G (x, y) ,w, h)) (9)
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FIGURE 6. Multi-story SLAM system framework.

where the G (x, y) is the output of tracker, the w is the
width and the h is the height of the ROI, the output are
coordinate X and Y, and the width (W) and height (H) are
calculated based on the maximal accuracy output from D.
As we introduced, the visual tracking is an online learning
procedure imposing no restriction on target types, and is
sensitive to the background noises. The architecture allows
the localization system to focus on the specific target (elevator
button), which avoids common challenges both from object
detection and visual tracking.

E. AUTONOMOUS NAVIGATION
To assess the efficiency of our proposed vision system,
a prototype of the multi-story SLAM robot system was
designed. The robot’s autonomous navigation can be divided
into three modules: a lidar SLAMmodule, a path planner and
a proportional-derivative (PD) controller. A lidar is mounted
on our robot to collect real-time depth data on the plane at
its present altitude. With this laser scan, the cartographer
mapping 2-dimensional SLAM method outputs the real-time
robot position and incremental occupancy grid. For the sake
of coordinate accordance, when the robot takes the elevator to
another floor, the 2D coordinate system with its position on
the former floor is replaced by an occupancy grid based on
the button detection results. With the constructed occupancy
grid, the A∗ algorithm identifies the resolution’s shortest path
from the current position to the target position. Based on
the path, the PD controller generates a smooth linear and
angular velocity output sequence for the robot actuator. The
autonomous navigation system runs in real-time throughout
our tests. The navigation system is shown in Fig. 6.

FIGURE 7. Framework of generative adversarial neural network. The
generator employs the result from tracker, and the SSD performs as
discriminator.

1) LIDAR SLAM AND PATH PLANNER
The cartographer employs the range data (lidar) which can
obtain the real-time 2D point cloud at lidar altitude (height
from ground to lidar) from the environment. However, an esti-
mated map is essential for the robot’s self-navigation. Thus,
the cartographer pre-generates the map by manually navigat-
ing the robot through every floor.

The global planner, i.e., the A∗ algorithm, then generates
a global path based on the robot’s position and navigation
target. However, exhaustive computing costs are incurred if
the robot searches the global path of a sizable map. Therefore,
a reasonable grid mapping manager plans the system’s path.
Unlike searching for a path on a single story, the costs of
riding an elevator are difficult to determine. Because of this,
dynamic path costs are difficult to compute, which can lead
to failure. To solve this problem, we establish ‘‘portals’’ to
connect different stories.

Fig. 8 shows three paths which change stories via a portal
(i.e. an elevator). In our design, we establish a path with
three steps. 1) Searching for the elevator nearest the robot
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FIGURE 8. Visualization of multi-story path planning. Red, blue and yellow donate three trajectories which move from floor 1 to floor 2 via elevators
(green). Gray denotes an unpassable area.

and moving to it; 2) Controlling the elevator and relocat-
ing to the target floor; 3) Setting the elevator as the initial
position and searching for the path again. As A∗ is a path
planner that uses heuristic distance cost, it is difficult to
determine the costs of the path if the robot uses the ele-
vator. However, because the task is conducted in a modern
building, and the elevator’s positions are fixed, we set them
as the temperate destinations for the whole task. To search
the nearest elevator, the Dijkstra’s algorithm (first frame
of A∗) is employed to search the path cost from current
position to target elevators, then the nearest elevator is set
as the temporary destination according to the cost on path
planning.

Then, we use the control module to take the elevator to
different floors. After the robot reaches the new floor, the
initial robot position in the new floor is set with respect to
the former robot position in the elevator, and A∗ globally
searches the path to the destination.

2) LOCAL MAPPING AND PLANNER
As the global mapping only estimates the rough direction
of this task, the local planner is essential for the robot to
locomote and avoid obstacles. We employ a breadth-first
search (BFS) path planner to locate a safe local path to an
unblocked way point on the global path when dangerous
obstacles are detected. The obtained local path with the
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FIGURE 9. Elevator controller module framework.

residual global path is passed as a PD controller input for
velocity command computing.

One challenge for the system is the pose drift that accumu-
lates with the tracker. In other applications, it is difficult to
determine the robot’s position when the odometry is too big.
The major reason for this is the inevitable accumulation of
errors from the SLAM module, which is solved by the loop
closure. During loop closure detection, the robot matches the
current laser scanned map with the subgraph keyframes to
split the accumulated errors into their appropriate subgraphs.
Apart from utilizing the keyframes, the ‘‘portal’’ is also used
as a strongly featured keyframe. The elevator is a perfect
landmark for the SLAM framework because its geometry
is fixed on the map. Therefore, the cartographer can easily
conduct loop closure detection and bundle adjustment (BA)
once the robot is inside the elevator, thus preventing pose drift
accumulation.

3) LIDAR SLAM AND PATH PLANNER
Once the robot is near the elevator, the elevator control mod-
ule is activated. See the flowchart in Fig. 9 (A).

The module is triggered if it is located inside the elevator
on the global map. As the shape inside the elevator also has
localization feature on global map, the position and pose
of the robot on global map is directly utilized to determine
whether the robot is inside the elevator. The size of eleva-
tor is 2.5 m × 2.8m, which is featured as a rectangle, and
the resolution of the laser scanner is 1 ray /0.25 degree,
thus allowing the robot to detect shape inside the elevator

very accurately. Therefore, the localization inside the elevator
is certainly correct.

Then, two branches are employed for the motion. If the
robot is outside the elevator, it first moves to the posi-
tion in front of the panel through the local planner. Then,
it operates the button localization method to detect the
‘‘up/down’’ buttons. If a button is obtained, a decision is
made whether the robot should go upstairs or downstairs by
condition (target_floor – current_floor)>! 0. Once the target
is obtained, the vision module continues tracking the button
and approaches the panel. Once the distance (detected by the
laser) between the robot and the panel is less than 0.3 m,
the robot arm pushes the target button. During the waiting
motion, the robot stands in front of the panel and uses the
laser scanner to detect whether the elevator door is open,
i.e., it detects whether the occupied grid ahead disappears
in the local map. If the door opens, the robot enters the
elevator and operates the elevator controlling module again.
One major difference for the elevator to control the elevator
panel outside/inside the elevator is the path planning. If it is
outside, only one path should be generated to control the arm
to press up/downstairs. If it is inside, the arm is required to
follow the path to first press the target floor, then press the
close button.

The framework of the elevator control module inside the
elevator is shown in Fig. 9 (B). After the robot enters the
elevator, it approaches the front of the panel via the local map.
After that, it employs the detecting and tracking strategy to
locate the target buttons. The illumination condition might
change when inside the elevator, which leads to either high
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FIGURE 10. The design of robot and coordinate description.

exposure or extremely dark images captured by the cam-
era. This situation generally causes the failure of the button
recognition controller. To solve this problem, a new pose
between the panel and the robot is required through slight
rotation andmovement of robot. A slight position and rotation
change can greatly influence the illumination condition on the
camera. The adjustment is done continuously until the desired
button is recognized. Then, it approaches the panel and its
arm pushes the button. There are two procedures for this
step—the arm is programmed to move to the ‘‘floor’’ button
and push it, and then move to the ‘‘close’’ button to close
the elevator door. The waiting motion indicator is operated
again, and it waits for the robot to reach the target floor.
To obtain the level information, we installed several WIFI
senders in front of elevator doors for each floor and used them
to determine the story level based on the signal intensity and
mac address of the senders. When the dbm of specific signal
is between −30 to 0, the robot system regards the elevator
reaching the target floor. As the maps on every story is pre-
scanned by SLAM program and stored in the system. During
the floor change, the map is updated by directly replacing
the current map with the target map. In our design, the level
information is obtained by wifi senders installed in front of
every elevator door. The initial pose and coordinate for navi-
gating in the target floor is inherited from the pose in the map
of the previous floor. Nonetheless, during our experiments,
the situation that elevator stopped on an unexpected level has
not happened yet, because we conducted the experiment in an
unmanned environment. After the robot arrives at the target
floor, the global planning is operated again and the position
of the robot inside the elevator is set as the original position.

4) ROBOT DESIGN AND ARM CONTROL
The design of our robot is shown in the figure 10. Our robot
employs two wheels operation, which the rolls are concluded
in the odometer. The laser scanner is installed on the board
with 0.5m height from the ground. The bearing bracket is
installed to allow the robot arm to operate in a sufficient

TABLE 1. DH parameter.

height to touch the elevator button. To avoid the laser to
scan the bearing bracket as obstacles, we set the minimum
range of laser with 0.2 m. In every frame, the vision module
outputs the coordinate of the elevator button on the plane,
which still requires to be further transformed into real-world
3D coordinates to operate the robot. The base coordinate is set
by Zw,Yw,Xw. In between the base coordinate and the robot
arm coordinate, the offset is added:

rxm = 0.091m
rym = 0.065m
rzm = 0.867m (10)

In the robot arm control, we utilize the two-joint robot arm
to touch the elevator button. The Denavit–Hartenberg param-
eters (DH parameter) to describe the robot arm manipulator
is determined as follow:

Our method presents a horizontal robot arm manipulator,
in which the joint 1 performs for vertical movement, and the
joint 2 performs for the horizontal movement. The homoge-
neous transform matrix is used to transform 3D coordinate,
as follow:

0T2 =


0 0 1 a+ d2∗

1 0 0 0
0 1 0 d∗1
0 0 0 1

 (11)

The final output can be summarized as inverse kinematics
formula which is shown as follow:

x∗m = a+ d2∗

y∗m = 0

z∗m = d∗1 (12)

Therefore, the xm, ym, zm of robot arm coordinate convert-
ing to the robot arm through the inverse kinematic.

As the camera have a fixed position on the robot, the coor-
dinate between underpan and camera can be converted simply
by the offset:

rxc = 0.035m
ryc = 0.05m
rzc = 1.036m (13)

As a result, we can convert the coordinate of the target
buttons recognized by the camera to the coordinate of manip-
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FIGURE 11. The grid map on the panel and path visualization for robot
arm inside the elevator. Red point means the first trajectory and green
means the second.

ulator target position:

x∗m = x∗c +
rxc − rxm

y∗m = y∗c +
ryc − rym

z∗m = z∗c +
rzc − rzm (14)

While the vision module is processing, it returns the coor-
dinate of the target buttons which are needed for the robot to
navigate towards the panel. Every frame, the position of the
elevator button is updated to the local planner. When the laser
detects the distance between the panel and robot as less than
0.3m, the robot arm is operated to press the elevator buttons
using the inverse kinematics solution.

The path planning architecture is shown in figure 11.
When the robot has reached the active region, a grid map is
generated for the panel. The y and z are obtained from the
camera image and the x coordinate from the lidar. To calculate
the target point of the robot arm, the camera and robot arm
coordinates are calculated based on the mobile robot coor-
dinate system, as shown in Formula (10) and Formula (13).
Formula (14) allows to calculate the target coordinates x∗m, y

∗
m,

and z∗m of the robot arm. Formula (12) allows the calculation
of the target points for each joint of the robot arm. The robot
arm creates a trajectory to the target point, moves to the target
button (6th floor), and presses it. The trajectory is based on the
Dijkstra’s algorithm path planning on grid map. Then, when
the order is to close the elevator door, the target coordinates of
the robot arm are changed, which creates the trajectory again,
i.e. to manage the path from button (6) to button (close).

IV. EXPERIMENTS
We evaluated our approach in two scenarios: (a) the designed
challenges inside the elevator, and (b) real robot opera-
tion. Our elevator button locating approach was first tested
by the two video sequences which included scale, rotation
of the target, exposure, and blurriness challenges. Both of
our localization approaches—with and without a tracking
strategy—were evaluated to emphasize the necessity of the
tracking procedure. To validate our approach, we compared
its results for three sequences with those of the state-of-art
methods. Finally, a mobile platform was constructed on an

FIGURE 12. Samples from the training dataset: the images have different
sizes, illumination, blur rate, and angles.

own designed robot which used a 2DOI robot arm to touch
the buttons. In our experiment, a laptop with a mobile CPU I7
7700 HQ, and 16G of DDR4 memory was selected to operate
both video challenges and the multi-story SLAM system.
The CPU I7 7700 HQ only had 2.8 GHZ basic frequency
and could reach 3.8 GHZ with Intel Turbo Boost. This fre-
quency was far less than that of the other CPUs employed
by mini PCs (such as the IntelNuc series). A Real Sense
was used to acquire the image data, and RPLIDARA3 was
employed to obtain real-world range data. In the experi-
ments, only the CPU was chosen to operate our system. The
FPS was employed as the speed evaluating factor. Our com-
bined detecting and tracking strategy achieved approximately
40 FPS on average, and the button locating procedure had
0.1 second detection duration. Thus, our system works in
real-time for multi-story navigation, and it allows the robot
to navigate between stories.

A. BUTTON LOCALIZATION
As various positions may appear while the service robot
enters the elevator, a detection deep neural network is
required to overcome the scale, rotation of the target, and
lighting challenges. The deep neural network for button
detection first needs to be trained. We trained the neural
network on a desktop computer with a 1080 Ti GPU.

1) DATASET
To apply deep learning to object detection and recognition,
a rich dataset is essential for model training. Since there are
few public elevator button datasets online, we collected our
own dataset by recording videos inside two elevators, with
different angles and distances. Samples are shown in Fig. 12.

Then, the video frames were extracted as image data.
To train the model, we collected 400 images with differ-
ent angles and distances for each elevator’s inner panel,
and 200 images for their outside panels. To limit the influ-
ence of lighting, we augmented the data by changing each
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FIGURE 13. Accuracy vs iteration.

TABLE 2. Button detection performance.

image’s color saturation and blur level. Aftermanual labeling,
we divided the samples into the following classes: Floor: B1,
1, 2, 3, 4, 5, 6, 7, open, close, upstairs, downstairs, and alarm.

To evaluate our proposed method’s button detection per-
formance in an elevator environment, we collected another
200 images in the elevator with different positions. We uti-
lized over 600 images for training, and collected an extra
200 images for testing. As the size of the dataset was limited,
a validation dataset was not employed. For each 5,000 iter-
ations, the neural network was tested by the testing dataset.
During training, several data augmentation approaches (such
as horizontal flips, random crops or scales, rotation of the
target, and translation) were used to increase input data.
As our proposed method was employed to operate in specific
elevators, and thus the environment was fixed, the overfitting
problem was not a concern. After over 35,000 training iter-
ations, the CNN label recognition surpassed 85% accuracy.
The training progress is shown in Fig. 13.

2) EVALUATING BUTTON DETECTION
IN DIFFERENT POSITIONS
To demonstrate the innovation of our methods, we
compared them to other state-of-art object detection deep
neural networks that utilize one- or two-stage strategies. The
comparison was done with the testing dataset, and results are
shown in Table 1.

The results illustrate that our button detection module was
faster than other state-of-the-art methods, and had similar
accuracy. The elapsed time of our proposed method is around
93.4ms to recognize the buttons, while the othermethods cost

TABLE 3. Localization performance.

at least two timesmore. According to the table 2, the improve-
ment on speed of our proposed network is significant when
compared with other methods. This demonstrates the utility
of our detection module for elevator button detection.

3) EVALUATING BUTTON LOCALIZATION WITH OTHER
METHODS
To further evaluate our framework, we compare our frame-
work with other existing methods in our designed dynamic
scenes. Because multiple challenges may occur simultane-
ously, we recorded video of fixed situations which may
transpire during button localization. The two videos were
recorded inside the two elevators in our building, with dif-
ferent lighting and different buttons.

The first sequence records an elevator with sufficient light-
ing. The extra challenge was the buttons’ color. The elevator’s
background was white, which inhibited button localization
because of the unclear edges between the background and
the buttons. For the video, we first stood in the center of
the elevator and adjusted the camera to it. Next, we rapidly
moved to the front of the panel and then turned back. The
motion in the second sequence was similar to that of the
first one. The difference was the lighting, in which the back-
ground was dark, and the button edges were black. In the
two sequences, blurriness, exposure, darkness, scale and rota-
tion challenges were evaluated. We compared our approach
with and without a tracking strategy (WT and WOT), deep
learning method based AlexNet [11] (DP), support vector
machines [26] (SVM), and optical character recognition [10]
(OCR). Performance metrics were the recall rate and average
FPS. The recall rate employs the percentage as unit and the
FPS means frame per second. The DT means different data
sequences.

As shown in Table 3 and Fig. 14, the methods that use deep
learning (WT,WOT, and DP) achieved better button localiza-
tion than traditional methods (SVM and OCR). However, the
computational costs of deep learning methods were signifi-
cantly higher. As shown in Fig. 14, WOT and DP usually fails
when motion is blurry. This is because our training dataset
lacks samples with blurry motion. Optimization makes our
approach three times faster than DP; it is also slightly more
accurate. Our detecting-cooperating with-tracking strategy
overcomes the blurry motion; however, it has limited local-
ization capability in the dark. This is because feature points
cannot be detected in such situations. Because the number
of feature points detected in sequences one and two was
different, WT obtained a different average FPS, but they were
both around 40 FPS. Apart from this deficiency, the tracking
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FIGURE 14. Results of button localization.

procedure provided a smooth ROI change and PN classifier.
This allowed the model to adapt to the unknown environment
and helped WT overcome the problems inherent to the two
methods above. Thus, it obtained the highest accuracy with
real-time performance.

The SVM and OCR both utilized the sliding window +
classifier architecture based on a series of linear equations.
However, the SVM and OCR generally perform well in tasks
withminimal number classification. This is because the linear
system’s complexity is limited, especially in elevator button
localization. Furthermore, the different buttons were similar,
and this complicated both localization and recognition. One
concern is whether a GPU can augment FPS. Those meth-
ods based entirely on deep neural networks will see marked
improvement, while those based on traditional methods will
only experience limited improvement. The reason for this is
that GPUs perform well at float and parallel computation, but
the response time through the bus of a peripheral component
interconnect express (PCIE) unit takes longer than direct
processing on the board. The deep neural network employs
many neural nodes which requires parallel and backward
processing to occupy millions of float computing steps. How-
ever, most of the traditional methods do not require such
frequent parallel and float computing. Thus, the FPS of deep
neural network-based methods will significantly increase;
those of traditional methods will also increase, but less so.
Considering the average CPU and memory usage rate in the
table 3, theWOT consumes almost all resources in our mobile
platform which means that the WOT may greatly hinder the
performance of other modules in our robot system. In con-
trast, the WT employs the benefit of visual tracking which
has lower computational cost, while being more reliable to
obtain the target buttons.

TABLE 4. CPU and memory utilization rate.

These results demonstrate that our detecting-cooperating
with-tracking strategy is not only fast enough, but also has
reliable button localization. Our method can overcome the
situation in extreme dark, exposure, reflection and blur with
various rotation and distance which allows it to operate in the
real world.

B. MULTI-STORY SLAM SYSTEM
As the system manages to operate in the office environment,
some chairs or desks may appear in the map. Although the
sizes of legs on the chairs and tables are very small, our
system still enables to scan them by the laser. The RPLI-
DARA3 employed in our experiment has angel resolution of 1
ray / 0.25 degree. This can be illustrated as follows:

Where max_gap = r ∗ angle_in_rad (2m ∗ 0.25 / 180 ∗

pi = 0.87cm). The laser scans the plane in a specific height,
where the x. y information of obstacles can be obtained. In the
distance of 2m, the max gap is 0.87 cm, which is smaller than
the width of most table and chair legs. As the buffer size of
each obstacle’s ray is set as 0.15m, the gap between legs will
be regarded as impassable terrain, which avoids the situation
where the robot tries to navigate through the gap between
legs.

As shown in the map in Fig. 15, we first set a rough original
position in the building and a destination position for the
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FIGURE 15. Robot’s traveling path.

mobile robot. Then, the SLAMmethod navigated itself. After
the initial positionwas chosen, our system chooses the nearest
path to the destination (including the elevator). Once the
elevator was chosen, the robot went to the front of the selected
elevator and employed the detecting-cooperating-tracking
strategy to locate the elevator button, i.e., the ‘‘up/down’’
button. Because the button localization accuracy in rotated
and small-scale positions was sufficient, our approach iden-
tified the button panel for the initial localization. Combined
with the robot movement, the robot went closer to the front of
the panel. Once the scale of the button reached the threshold,
the robot arm pressed the elevator button. After the elevator
door opened, the robot entered the elevator and rotated itself
to search for the target buttons. The operation was similar to
that of pushing the elevator button; our robot tracks the target
floor button and the ‘‘close’’ button, moves itself closer, and
then pushes them. The final step is the initialization after floor
change: once the target floor is reached, the occupancy grid is
switched to the version with the new floor. The robot’s initial
position on the new floor is the elevator and its 2D position
inside the elevator.

The results of this trajectory are shown in Fig. 15. The
success of this trip demonstrates that our system overcomes
the challenges of operating the elevator buttons, and thus
accomplishes the multi-story SLAM task.

C. EXPERIMENT FOR CIRCLE BUTTON APPLICATION
To prove that our proposed method is able to be applied to
different types of elevator buttons, an experiment on circle
button localization was conducted. In this part, we collected
another dataset of circle elevator button. The dataset con-
sists of 200 images in the elevator with different angles of
view and distances inside the elevator. An additional plan is
proposed that the deep neural network is utilized to localize
the elevator buttons. For deep neural network, 150 images
are used for training and another 50 is used for testing.

FIGURE 16. The calculation of min scanning gape between two rays.

TABLE 5. Recall rate of two methods in circle button detection.

The same test dataset is employed for both traditional method
and deep neural network. There are twomethods evaluated on
button localization. 1.) The modified version of our proposed
method, which employs HouGH [7] circle detection instead
of rectangle detection. 2.) Mobile SSD, which is employed
in the validation part of our method. The results and the
visualization of our method are shown in table 3 and Fig. 17.

The traditional method based on hough features allows
the detection in 89.6% recall rate with 245.0 FPS. The
method based on mobile SSD obtained 95.5% recall rate with
5.8 FPS. The visualization of the two methods is shown.

On Figure 17, the result of HouGH detector is shown in
the left side and the result of mobile SSD is shown in the
right side. Most buttons are accurately extracted. The results

1132 VOLUME 8, 2020



S. Jiang et al.: Automatic Elevator Button Localization

FIGURE 17. The result of HouGH detector is shown in the left side and
the result of mobile SSD is shown in the right side.

in table 4 and figure corroborates that our method can be
transferred to an environment with a circle button elevator.

V. CONCLUSION
This paper illustrates a novel approach for elevator button
localization. Our approach takes advantage of the combined
detection and tracking strategy which allows it to oper-
ate against the background challenges inside the elevator
with real-time processing performance. Our approach detect
and recognize the buttons in challenging environment with
higher performance compared with other state-of-art meth-
ods. Combined with laser SLAM technology, our system runs
throuhout the trip through a multi-story environment.

This work does have a limitation. The elevator button
dataset cannot cover all makes of elevator, and thus usersmust
collect and label several images when applying them to a new
environment. In the future, we plan to extend the database and
allow our approach to operate without expanding the dataset
for every new environment.
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