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Abstract. The work presents two modified cavitation models for the simulation of transient flow 

in pressure plastic pipes. The first model is a discrete bubble cavitation model, the prototype of 

which was presented by Shu, and the second one is the Adamkowski model. In the latter model, 

the problem encountered in the classical model (DVCM - discrete vapour cavitation model) 

related to artificial damping of pulsation, which results from approximate timing of cavity 

opening and collapse. In both models, the corrected efficient calculation of Zielke convolution 

integral was used to simulate the unsteady wall shear stresses. The numerical results from the 

two models agree well with the results of measurement in the literature. 

1. Introduction 

Transient cavitating flow often occurs in hydraulic piping systems that were not thoroughly analysed at 

the design stage. This is often the result of abandoning the detailed numerical analysis of possible 

consequences resulting from the dynamics of flows. Designers focus mostly on stationary flows and the 

only dynamic equation  applied is the simplified Joukowsky formula for the determination of appropriate 

wall thickness. In fact, not only high pressures but also low pressures resulting from water hammer are 

a threat. In conditions of vapour pressure, the liquid stream column separation occurs. Two types of 

transient cavitation can be distinguished in pressure pipelines [1]. The first one is gaseous cavitation, 

which is a slow-changing phenomenon, the air bubbles emitted from the gas are dissolved in the liquid 

as a result of the pressure drop (the secretion lasts for a second, and the possible dissolution takes even 

longer). Gaseous cavitation results in an average reduction of the pressure wave speed, therefore, it helps 

increase the damping of pressure waves. The above features are conducive to securing the system, hence, 

this type of cavitation is beneficial even if it does not occur in a steady state in the analysed system. The 

second type of cavitation, the  vaporous cavitation, takes place when the pressure drops to the vapour 

pressure. This is a fast-changing phenomenon, i.e. the evaporation requires only microseconds to form 

and to disappear given that there is a sudden increase in pressure. This type of cavitation is responsible 

for the appearance (in analysed hydraulic systems) of secondary pressure waves, which result from the 

implosion of vapour areas created in the pipe. In contrast, the interference between the primary (resulting 

from a fast closure of the valve) and these secondary pressure waves can result in pressure surges 

exceeding even twice the maximal pressure calculated from the Joukowsky formula. In practice, 

strengthening and wave suppression depend on the geometry and material properties of the analysed 

hydraulic systems, initial conditions prevailing in the system before the occurrence of unsteadiness as 
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well as boundary conditions taking place after the occurrence of unsteady flow. When implosion of 

vapour bubbles occurs at the wall of the pipe, cavitation erosion occurs: when the bubbles collapse (the 

vapour areas decrease until they completely disappear) the local velocity of the separating phase edges 

increases rapidly. The collision of the stream surrounding these edges in the last stage of closure is a 

source of large local pressures, which may be much higher than the pressure calculated from the 

Joukowsky formula.  

Due to the above-mentioned impacts of cavitation on hydraulic systems, there is a great need to analyse 

them at the design stage. In this paper, a one-dimensional flow modelling was undertaken in a simplified 

hydraulic system consisting of a pressure vessel, a pipeline and a valve. From the literature on unsteady 

flows occurring in elastic pipes [2-8], a number of models can be distinguished, including discrete 

vapour cavity model (DVCM), discrete gas cavity model (DGCM), discrete Adamkowski cavity model 

(DACM) and discrete bubble cavity model (DBCM). DVCM [3] and DGCM [2,8] have already been 

modified and used to model transient cavitating flows occurring in plastic pipes [9-12]. In this paper, 

the modified DACM and DBCM models will be developed and presented. Unsteady hydraulic resistance 

(skin friction loss) will be modelled in accordance with the improved solution presented in [13,14]. The 

calculated results obtained from the modified DBCM and DACM models will be compared with the 

experimental results found in the literature. 

2. Modelling transient cavitating pipe flow 

The unsteady flow of liquids in plastic pipes can be described by the system of equations [15]: 

 {

1

𝜌𝑙𝑐0
2

𝜕𝑝

𝜕𝑡
+
𝜕𝑣

𝜕𝑥
+ Ξ∫

𝜕𝑝(𝑢)

𝜕𝑡
∙ 𝑤𝐽(𝑡 − 𝑢)𝑑𝑢

𝑡

0
= 0,

𝜌𝑙
𝜕𝑣

𝜕𝑡
+
𝜕𝑝

𝜕𝑥
+
4𝜌𝑙

𝐷
(
𝑣|𝑣|

8
𝑓 +

4𝜈𝑙

𝐷
∫

𝜕𝑣

𝜕𝑡

𝑡

0
(𝑢) ∙ 𝑤(𝑡 − 𝑢)𝑑𝑢) = 0,

 (1) 

 

where 𝑝 – pressure [𝑃𝑎], 𝑣 – mean cross-section velocity [𝑚/𝑠], 𝑡 – time [𝑠], 𝑥 – distance along the 

pipe [𝑚], 𝜌𝑙 – liquid density [𝑘𝑔/𝑚3], 𝑐0 – pressure wave speed [𝑚/𝑠], D – inner pipe diameter [m], 𝑓 

– Darcy-Weisbach friction coefficient [−], 𝜈𝑙 – liquid kinematic viscosity [𝑚2/𝑠], 𝑤(𝑡 − 𝑢) – 

weighting function [−], 𝑤𝐽(𝑡 − 𝑢) – time derivative of pipe material creep compliance function 

[𝑠−1𝑃𝑎−1], Ξ =
𝐷

𝑒
𝜉 – enhanced 𝜉 parameter [−], 𝑒 – thickness of pipe wall [𝑚], 𝜉 – parameter 

describing support condition of pipe [−]. 
Comparing the above system of equations and the system describing the flow in metal conduits [14], 

the only difference between the systems appears in the equation of continuity (the first of the equations 

(1)) with an additional convolution integral term describing a retarded strain rate in the plastic pipe wall. 

The solution of the above system for an idealised case of flow in which the gas areas were not able to 

form can be found in the literature [15,16].  

In this paper, we extend to plastic pipes the following two models: Shu’s bubble cavitation model 

(discrete bubble cavitation model – DBCM)[4], and the Adamkowski model [17,18] (discrete 

Adamkowski cavitation model – DACM). TDACM is based on the above system of equations (1) 

assuming only a specific solution defining the average value of flow velocity at the nodes in which 

cavitation occurs. The DBCM needs a more detailed explanation. 

2.1. Discrete bubble cavity model (DBCM) 

The equation of motion of two-phase vaporous cavitating flow in the horizontal pipeline is: 

 
𝜕

𝜕𝑡
(𝜌𝑚𝑣𝑚𝐴) +

𝜕

𝜕𝑥
(𝜌𝑚𝑣𝑚

2 𝐴) + 𝐴
𝜕𝑝

𝜕𝑥
+ 𝜋𝐷𝜏𝑚 = 0  (2) 

where A – pipe cross-sectional area [𝑚2], 𝑣𝑚 – mixture velocity [𝑚/𝑠], 𝜏𝑚 – wall shear stress of two-

phase mixture [𝑃𝑎]. 
The equation that describes the mixture density 𝜌𝑚 is: 

 𝜌𝑚 = 𝛼𝜌𝑣 + (1 − 𝛼)𝜌𝑙.  (3) 



CMES'19

IOP Conf. Series: Materials Science and Engineering 710 (2019) 012013

IOP Publishing

doi:10.1088/1757-899X/710/1/012013

3

 

 

 

 

 

 

where 𝛼 – volumetric fraction of liquid phase [−], 𝜌𝑣 – density of vapour phase [𝑘𝑔/𝑚3], 𝜌𝑙  – density 

of liquid phase [𝑘𝑔/𝑚3]. 
After differentiation of equation (2) it follows: 

 
𝜌𝑚𝑣𝑚

𝐴

𝑑𝐴

𝑑𝑡
+ 𝜌𝑚

𝑑𝑣𝑚

𝑑𝑡
+ 𝜌𝑚𝑣𝑚

𝜕𝑣𝑚

𝜕𝑥
+ 𝑣𝑚

𝑑𝜌𝑚

𝑑𝑡
+
𝜕𝑝

𝜕𝑥
+
4

𝐷
𝜏𝑚 = 0  (4) 

Writing the continuity equation separately for the vaporous and liquid phase  

 {

𝜕

𝜕𝑡
(𝜌𝑣(1 − 𝛼)𝐴) +

𝜕

𝜕𝑥
(𝜌𝑣(1 − 𝛼)𝐴𝑣𝑣) = 0

𝜕

𝜕𝑡
(𝜌𝑙𝛼𝐴) +

𝜕

𝜕𝑥
(𝜌𝑙𝛼𝐴𝑣𝑙) = 0

 (5) 

where 𝑣𝑣 – average velocity of vapour flow [m/s] and 𝑣𝑙 – average velocity of liquid flow [m/s]. 

By adding the above equations to each other, one gets: 

 
𝜕

𝜕𝑡
(𝜌𝑣(1 − 𝛼)𝐴 + 𝜌𝑙𝛼𝐴) +

𝜕

𝜕𝑥
(𝜌𝑣(1 − 𝛼)𝐴𝑣𝑣 + 𝜌𝑙𝛼𝐴𝑣𝑙) = 0  (6) 

Next assuming the non-slip flow, in which the vapour phase has the same velocity as the liquid one 𝑣𝑣 =
𝑣𝑙 = 𝑣𝑚 : 

 
𝜕

𝜕𝑡
𝐴𝜌𝑚 +

𝜕

𝜕𝑥
(𝐴𝑣𝑚𝜌𝑚) = 0  (7) 

After differentiation: 

 𝐴
𝑑𝜌𝑚

𝑑𝑡
+ 𝜌𝑚

𝑑𝐴

𝑑𝑡
+ 𝐴𝜌𝑚

𝜕𝑣𝑚

𝜕𝑥
= 0  (8) 

From the above equation two useful forms of this equation can be derived: 

 
1

𝜌𝑚

𝑑𝜌𝑚

𝑑𝑡
+
1

𝐴

𝑑𝐴

𝑑𝑡
+
𝜕𝑣𝑚

𝜕𝑥
= 0  (9.1) 

and 

 𝑣𝑚
𝑑𝜌𝑚

𝑑𝑡
+
𝜌𝑚𝑣𝑚

𝐴

𝑑𝐴

𝑑𝑡
+ 𝑣𝑚𝜌𝑚

𝜕𝑣𝑚

𝜕𝑥
= 0  (9.2) 

Equation (9.2) makes three terms disappear in equation (3). The resulting final form of the equation of 

motion is similar to the single-phase flow one:  

 𝜌𝑚
𝑑𝑣𝑚

𝑑𝑡
+
𝜕𝑝

𝜕𝑥
+
2

𝑅
𝜏𝑚 = 0  (10) 

In plastic pipes [19]: 

 
𝑑𝜌𝑙

𝑑𝑡
=
𝜌𝑙

𝐾𝑙

𝑑𝑝

𝑑𝑡
  ,  

𝑑𝜌𝑣

𝑑𝑡
=
𝜌𝑣

𝐾𝑣

𝑑𝑝

𝑑𝑡
    and    

1

𝐴

𝑑𝐴

𝑑𝑡
=
Ξ

𝐸

𝑑𝑝

𝑑𝑡
+ 2

𝑑𝜀𝑟

𝑑𝑡
  (11) 

where: 𝐸 – Young modulus [Pa], 𝐾𝑙 – bulk modulus of liquid phase [Pa] and 𝐾𝑣 – bulk modulus of 

vapour phase [Pa]. 

 

The total derivative of equation (3) is: 

 
𝑑𝜌𝑚

𝑑𝑡
= 𝛼

𝑑𝜌𝑙

𝑑𝑡
+ (𝜌𝑙 − 𝜌𝑣)

𝑑𝛼

𝑑𝑡
+ (1 − 𝛼)

𝑑𝜌𝑣

𝑑𝑡
  (12) 

Using equations (11) and (12) in equation (9.1) yields: 

 [𝜌𝑚
Ξ

𝐸
+
𝛼𝜌𝑙

𝐾𝑙
+
(1−𝛼)𝜌𝑣

𝐾𝑣
]
𝑑𝑝

𝑑𝑡
+ (𝜌𝑙 − 𝜌𝑣)

𝑑𝛼

𝑑𝑡
+ 2𝜌𝑚

𝑑𝜀𝑟

𝑑𝑡
+ 𝜌𝑚

𝜕𝑣𝑚

𝜕𝑥
= 0  (13) 

The first term on the left-hand side of the above equation, in square brackets, is a formula for the pressure 

wave speed. Due to the fact that in this paper the numerical solution will be based on a constant 

rectangular grid, the value of the pressure wave propagation velocity will be determined for the flow 

occurring in the initial time. Subsequently, we deal with a single-phase liquid flow, which determines 
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the value of the liquid phase concentration coefficient 𝛼0 = 1. The same square bracket is reduced to 

the form: 

 

 𝑐0
−2 = [𝜌𝑙 (

Ξ

𝐸
+

1

𝐾𝑙
)]  (14) 

Therefore, the equation of continuity can be finally described as: 

 
1

𝑐0
2

𝑑𝑝

𝑑𝑡
+ (𝜌𝑙 − 𝜌𝑣)

𝑑𝛼

𝑑𝑡
+ 2𝜌𝑚

𝑑𝜀𝑟

𝑑𝑡
+ 𝜌𝑚

𝜕𝑣𝑚

𝜕𝑥
= 0  (15) 

In non-slip flows, the share of the dispersed phase is of the statistical nature, i.e. the volume 𝛼 and mass 

concentration 𝑐𝑚 are equal to the relevant proportions of dynamic nature, i.e. transport concentration 

and the degree of dryness [20]; then the following relationship applies: 𝑣𝑚 =
𝑣

𝛼
, where 𝑣 is superficial 

velocity of the liquid phase. 

2.2. Discrete Adamkowski Cavity Model (DACM) 

The main assumption of the Adamkowski model [17,18] is that a segment with few vapour zones may 

be replaced with only one vaporous zone, which is equivalent with regard to the mass and energy 

conservation laws. When the pressure falls to a vapour pressure 𝑝𝑣 in a given cross-section, the 

conservation law requires the equality between the cavity volume in the corresponding pipe segment 

and the sum of the cavity volumes in the original pipe segment. This law also requires the wave period 

along the pipe length to be preserved. In the intermediate cross-sections "𝑗" of the pipeline, two streams 

of the flowing liquid with velocities 𝑣𝑗
+ and 𝑣𝑗

− are replaced with one continuous fluid stream, 

represented with the velocity 𝑣𝑗. The energy conservation law requires that the sum of the kinetic and 

potential energies of elementary liquid masses separated by a vaporous zone has to be equal to the total 

energy following the reconnection of the two separate liquid streams, which is why: 

 𝑑𝑚 [
(𝑣𝑗
+)
2

2
+ 𝑔𝑧𝑗

+ +
(𝑣𝑗
−)
2

2
+ 𝑔𝑧𝑗

−] = 𝑑𝑚 [
(𝑣𝑗)

2

2
+ 𝑔𝑧𝑗

− +
(𝑣𝑗)

2

2
+ 𝑔𝑧𝑗

−]  (16) 

From the above equation the formula for mean velocity in intermediate cross-section is given by: 

 𝑣𝑗 = √0.5 [(𝑣𝑗
+)
2
+ (𝑣𝑗

−)
2
] + 𝑔(𝑧𝑗

+ − 𝑧𝑗
−)  (17) 

In the case of the horizontal pipeline, the difference (𝑧𝑗
+ − 𝑧𝑗

−) is equal to 0. The 𝑧𝑗
+ and 𝑧𝑗

− are altitudes 

of the centres of cross-sectional surfaces limiting the cavity within the computational cross-section “j” 

from the right and left sides, respectively. 

As in the water hammer case, the mean flow direction changes numerous times until final flow 

suppression occurs, the Adamkowski equation for mean velocity is expressed by: 

 𝑣𝑗 = 𝑠𝑔𝑛[0.5(𝑣𝑗
+|𝑣𝑗

+| + 𝑣𝑗
−|𝑣𝑗

−|)]√|0.5 [(𝑣𝑗
+)
2
+ (𝑣𝑗

−)
2
]|  (18) 

This equation (18) is used when the pressure falls to the vapour pressure 𝑝𝑗 = 𝑝𝑣, i.e. when the column 

separation of liquid stream takes place. 

2.3. Wall shear stress model 

In DACM the wall shear stress is modelled as for a single-phase flow. The equation used in this work 

which represents wall shear stress as a sum of quasi-steady component 𝜏𝑞 and an unsteady component 

𝜏𝑢 is: 

 𝜏 = 𝜏𝑞 + 𝜏𝑢 =
𝜌𝑣|𝑣|

8
𝑓 +

4𝜇

𝐷
∫

𝜕𝑣(𝑡−𝑢)

𝜕𝑡

𝑡

0
∙ 𝑤(𝑢)𝑑𝑢  (19) 

and its effective numerical solution, employed in this work is [14]: 
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𝜏(𝑡 + ∆𝑡) ≈
𝜌𝑓𝑣(𝑡)|𝑣(𝑡)|

8
+
4𝜇

𝐷
∑ [𝐴𝑖𝑦𝑖(𝑡) + 𝜂𝐵𝑖[𝑣(𝑡) − 𝑣(𝑡−Δ𝑡)] + [1 − 𝜂]𝐶𝑖[𝑣(𝑡−Δ𝑡) − 𝑣(𝑡−2Δ𝑡)]]⏟                                        

𝑦𝑖(𝑡+∆𝑡)

3
𝑖=1  

 (20) 

where 

 𝜂 =
∫ 𝑤𝑐𝑙𝑎𝑠𝑠.(𝑢)𝑑𝑢
Δ𝑡̂

0

∫ 𝑤𝑒𝑓𝑓.(𝑢)𝑑𝑢
Δ𝑡̂

0

, 𝐴𝑖 = 𝑒
−𝑛𝑖Δ𝑡̂, 𝐵𝑖 =

𝑚𝑖

Δ𝑡̂𝑛𝑖
[1 − 𝐴𝑖], 𝐶𝑖 = 𝐴𝑖𝐵𝑖,  (21) 

𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are constant during simulation and are calculated prior to the simulation with the coefficient 

describing the effective weighting function; Δ𝑡̂ – is a dimensionless time; 𝑤𝑐𝑙𝑎𝑠𝑠.(𝑢) and 𝑤𝑒𝑓𝑓.(𝑢)𝑑𝑢 

are respectively the classic inefficient weighting function (laminar or turbulent depending on the type 

of flow before the transients) and efficient weighting function (are the approximation of the classic 

weighting function). In this paper, the three-term efficient weighting function, presented in a former 

study [13] was used. These coefficients as the simulation was in the turbulent regime were properly 

scaled using the universal weighting function procedure.  

The second analysed DBCM is a two-phase flow model, which required the following modification in 

the effective numerical solution: 

𝜏(𝑡 + ∆𝑡) ≈
𝜌𝑚𝑓𝑣(𝑡)|𝑣(𝑡)|

8𝛼(𝑡)
2 +

4𝜇𝑚

𝐷
∑ [𝐴𝑖𝑦𝑖(𝑡) + 𝜂𝐵𝑖 [

𝑣(𝑡)

𝛼(𝑡)
−
𝑣(𝑡−Δ𝑡)

𝛼(𝑡−Δ𝑡)
] + [1 − 𝜂]𝐶𝑖 [

𝑣(𝑡−Δ𝑡)

𝛼(𝑡−Δ𝑡)
−
𝑣(𝑡−2Δ𝑡)

𝛼(𝑡−2Δ𝑡)
]]

⏟                                      
𝑦𝑖(𝑡+∆𝑡)

3
𝑖=1  (22) 

The 𝜇𝑚 is the mixture viscosity calculated in present work from a simple Dukler’s solution [4]: 

 𝜇𝑚 = 𝛼𝜇𝑙 + (1 − 𝛼)𝜇𝑣  (23) 

2.4. Numerical scheme 

With the formulation of cavitation and shear stress model above, the method of characteristics (MOC) 

based on a rectangular grid is adopted in this study to solve the continuity and motion equations (e.g. 

equations (10) and (15) when the first cavitation model is used). The principle of this MOC is to convert 

the original set of partial differential equations (PDE) into an ordinary differential equation (ODE) by 

considering the wave evolution process along the characteristic lines (𝑣 ± 𝑐0), at which the solution can 

be integrated from known information at last-time step. The obtained ODE is then solved by the central 

finite difference (FD) scheme to determine the numerical solutions at the current time step along the 

pipeline. To ensure the stability and convergence, a Courant number for the simulation process is less 

than or equal to 1 for the reservoir-pipeline-valve system used in this study. More details about the 

mathematical formulation and application of MOC can be found in a former work [16]. The final 

computer programmes were written in MatLab, which is a multi-paradigm numerical computing 

environment and proprietary programming language developed by MathWorks (plain MatLab, no extra 

toolboxes were needed). The identification of the calculation algorithm forced to filter the creep 

compliance function according to the procedure presented in former studies [15,16]. 

3. Simulation examples 

The obtained mathematical formulas described in detail in the previous section were used to write 

computer programmes for modelling unsteady runs in a hydraulic system built from a reservoir-pipe-

valve. The number of experimental studies on unsteady flows in this type of systems during which 

cavitation areas were created is limited, with only Güney [9,10] and Soares [12] being known to the 

authors. In this paper, the studies obtained by Güney will be used for comparison. The test stand was 

composed of a 43.1 meters long (R=0.0208 m and e= 0.0042 m) LDPE pipe. Two cases of turbulent 

flow were analysed, in which the main difference was a significant difference in the temperature of the 

flowing liquid – in Case 1 the temperature was 𝑇1 = 13.8℃ and in Case 2  – 𝑇2 = 38.5℃. The 

temperature significantly affects the mechanical properties of the pipe material: a drastic change in the 
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creep function occurs, the derivative of which is the main function affecting the modelled damping of 

pressure oscillation. 

Values of the necessary input parameters for computer programmes are summarised in Table 1, while 

coefficients describing the creep function for the two analysed temperatures are given in Table 2. The 

method of characteristics was used with a constant number of reaches N=64. Such a selected number of 

reaches the following time steps ∆𝑡𝑐𝑎𝑠𝑒 1 = 0.0022 [𝑠] and ∆𝑡𝑐𝑎𝑠𝑒 2 = 0.0031 [𝑠]. The results of the 

simulation tests obtained in relation to the experimental data are presented in Figure 1. 
 

Table 1. Details of Güney's research. 

Case T 𝜇𝑣 𝜇𝑙 𝑐0 𝑝𝑣 𝜌𝑣 𝜌𝑙 𝑣0 𝑝𝑅𝑟 
1 13.8 9.56e-6 0.0012 300 1.55e3 0.012 999.3 1.28 1.2955e5 

2 38.5 1.026e-5 6.7e-4 220 6.81e3 0.048 992.6 1.33 1.2985e5 

where: T – temperature [°C]; 𝜇𝑣 – dynamic viscosity of vapour [Pa·s]; 𝜇𝑙 – dynamic viscosity of 

water [Pa·s]; 𝑝𝑣 – vapour pressure [Pa]; 𝜌𝑣 – density of water vapour [kg/m3]; 𝑣0 – initial velocity 

[m/s]; 𝑝𝑅𝑟 – reservoir pressure [Pa] 
 

Table 2. Creep compliance function coefficients. 

Case T 𝐽0 𝐽1 𝐽2 𝜏1 𝜏2 

1 13.8 1.11·10-9 0.637·10-9 0.871·10-9 0.0166 1.747 

2 38.5 2.12·10-9 2.097·10-9 3.570·10-9 0.0347 3.077 

where: 𝐽𝑖 – creep-compliance coefficients [Pa-1] and 𝜏𝑖 – retardation times [s] 
 

(a)  (b) 

 
(c) (d) 

 
Figure 1. Simulation results: (a) CASE 1 (T=13.8℃), (b) the second and third amplitude enlargement 

in CASE 1, (c) CASE 2 (T=38.5℃), (d) the second amplitude enlargement in CASE 2. 
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From the presented results, it can be seen that in the analysed Case 1 (Figures 1a and 1b) both flow 

models produce accurate results. The detailed remarks regarding Case 1 are as follows: 

a) the visible peak of pressure at the top of the first amplitude (Figure 1a) as well as the subsequent 

drop followed by a gentle experimentally observed increase in pressure was modelled with both 

DBCM and DACM; 

b) the slight peak observed in experimental studies at the beginning of the second amplitude (𝑡 =
 0.96 𝑠) was modelled correctly by both models (Figure 1b); 

c) in the unsteady flow without the cavitational liquid stream column (𝑡 >  1.65 𝑠), it can be seen 

that the phase shift of the simulated amplitudes increases over time. The result of the above 

behaviour should be sought in the change of the pressure wave speed 𝑐 during the water hammer 

or measurement and approximation errors at the stage of defining the experimental creep 

function by Güney. 

Detailed comments on analysed Case 2 were similar, although it was noted that: 

a) in the first experimental amplitude, as in Case 1 after the original peak, a gentle pressure 

increase. Which, remembering given by Güney, the pressure drops on the length of the pipe 

(Case I: ℎ =  2.88 𝑚 and Case II: ℎ =  2.93 𝑚) is unusual. For similar initial parameters, one 

expects a similar course of pressure changes, as modelled by the analysed numerical models 

(Figure 1c);  

b) both numerical models (DBCM and DACM) starting from the third amplitude overestimate the 

minimum pressures occurring between successive amplitudes (see the results for 𝑡 =  3.1 𝑠); 
c) in the analysed case, it was harder to find simulation differences between the analysed numerical 

models (Figure 1d). 

4. Conclusions 

The paper presents the modelling of unsteady flows of liquids in pressure polymer pipes. During 

pressure drop to the saturated vapour pressure, there were areas of cavitation that were modelled with 

two modified models, namely: DBCM – based on two-phase flow equations and DACM – an improved 

version of the classical DVCM model. The usefulness of the presented models for flow analysis in 

plastic pipes was examined for the first time. From the research, it becomes clear that the presented 

models provided high-accuracy simulation of the unsteady flows with the cavitational liquid column 

separation, and that both similarly modelled cavitation areas. It was hard to see simulation differences 

between the results obtained from the DBCM and DACM models. 

Subsequently, a precise quantitative analysis of the results obtained will be carried out in relation to 

other experimental results known in the literature in which cavitation areas appeared in plastic pipes. 

Applied experimental creep functions (developed by Güney, and filtered using method described in a 

former paper [16]) showed high efficiency in modelling the analysed flows. This further indicates that 

the exact "maps" of the creep function in a wide range of times and temperatures will allow in the future 

a complete exclusion of the calibration method (estimation of creep compliance coefficients) commonly 

used today. 
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