
SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

Received January 19, 2020, accepted January 28, 2020, date of publication February 3, 2020, date of current version February 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971379

Optimization of Microservice Composition Based
on Artificial Immune Algorithm Considering
Fuzziness and User Preference
MING GAO 1,2, MINGXIA CHEN1, AN LIU1, WAI HUNG IP 3,4, (Senior Member, IEEE),
AND KAI LEUNG YUNG3
1School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
2Center for Post-doctoral Studies of Computer Science, Northeastern University, Shenyang 110819, China
3Department of Industrial and System Engineering, The Hong Kong Polytechnic University, Hong Kong
4Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

Corresponding author: Ming Gao (gm@dufe.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 71772033, Grant 71831003, and Grant
71672023, in part by the Scientific and Research Funds of Education Department of Liaoning Province under Grant LN2019Q14, and in
part by the Department of Industrial and Systems Engineering of the Hong Kong Polytechnic University (H-ZG3K).

ABSTRACT Microservices is a new paradigm in cloud computing that separates traditional monolithic
applications into groups of services. These individual services may correlate or cross multi-clouds. Com-
pared to a monolithic architecture, microservices are faster to develop, easier to deploy, and maintain by
leveraging modern containers or other lightweight virtualization. To satisfy the requirements of end-users
and preferences, appropriate microservices must be selected to compose complicated workflows or processes
from within a large space of candidate services. The microservice composition should consider several
factors, such as user preference, correlation effects, and fuzziness. Due to this problem being NP-hard,
an efficient metaheuristic algorithm to solve large-scale microservice compositions is essential. We describe
a microservice composition problem for multi-cloud environments that considers service grouping relations
and corresponding correlation effects of the service providers within intra- or inter-clouds. We use the
triangular fuzzy number to describe the uncertainty of QoS attributes, the improved fuzzy analytic hierarchy
process to calculate multi-attribute QoS, construct fuzzy weights related to user preferences, and transform
the multi-optimal problem into a single-optimal problem. We propose a new artificial immune algorithm
based on the immune memory clone and clone selection algorithms. We also introduce several optimal
strategies and conduct numerical experiments to verify effects and efficiencies. Our proposed method
combines the advantages of monoclone, multi-clone, and co-evolution, which are suitable for the large-scale
problems addressed in this paper.

INDEX TERMS Fuzzy analytic hierarchy process (FAHP), microservice, microservice group, quality
of service (QoS), QoS attribute, the parallel cooperative short-term memory injection multi-clone clonal
selection algorithm (ParaCoSIMCSA).

I. INTRODUCTION
With the development of cloud computing infrastructures
along with big data and edge computing, many applications
for users must now be quickly deployed in the cloud. How-
ever, user requirements are widely varied, and application
structures can be complex that may involve the invocation
and integration of different services. Traditional monolithic

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

architectures feature simple frameworks and low upfront
costs. Nevertheless, reusability is low, granularity is coarse,
and the configuration and management of quality of service
(QoS) lack flexibility when supporting complex processes
comprising massive applications.

In comparison, microservice architectures are more flex-
ible, as they can be independently extended and deployed
with easier maintenance by leveraging modern containers or
other lightweight virtualizations [1]. Microservice architec-
tures refer to the design of a single, user-facing application

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 26385

https://orcid.org/0000-0002-8502-1155
https://orcid.org/0000-0001-6609-0713
https://orcid.org/0000-0002-3945-4363


M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

through the combination of smaller, individually functional
services each running distinct processes [2]. Microservices
then become well-suited for large-scale and complex busi-
ness projects. Therefore, more enterprises concentrate today
on building microservice architectures, including Amazon,
Netflix, and LinkedIn [3].

With comprehensive applications of the cloud, deploying
microservices across multiple clouds becomes a significant
challenge. Microservices requires to be hosted on the cloud
that can meet the needs of users and microservice to maxi-
mize the effect that cover QoS [4]. Consequently, in the pro-
cess of deploying microservices in multi-clouds, allocation
and coordination are significant. From this idea, we propose
the concept of microservice composition, a challenge that
originates from the web composition problem and intends to
satisfy the requirements of end-users and their preferences
by selecting appropriate microservices to comprise compli-
catedworkflows or processes from a combination of available
services. Microservice composition should consider several
factors, such as user preference, correlation effects, and fuzzi-
ness, and can be measured by QoS.

In a multi-cloud environment, the microservice combina-
tion must satisfy a variety of QoS of requirements at the
process level and takes the uncertainty of preferences of
users into account. QoS is usually described by attributes
[5], the evaluation of which depends on the subjective and
usually uncertain judgement of users. We introduce the trian-
gular fuzzy number (TFN) to describe this uncertainty, and
the improved fuzzy analytic hierarchy process (FAHP) to
calculate the values of the attributes such as price, reliabil-
ity, and response time. We propose a fuzzy weight so that
users can obtain the weights of attributes by sorting prefer-
ences. This paper focuses on optimising multiple attributes
and combines these with a fuzzy characterization of the
QoS based on user preferences. We do this by modelling
the correlation of microservices within intra- or inter-clouds
and consider microservice compositions based on end-to-end
user preference perception. In addition, as it is an NP-hard
problem that considers multi-clouds, the correlation between
microservices and user preference, ameta-heuristic algorithm
is needed to provide an efficient and powerful ability to search
for results. For the service composition problem, an artificial
immune algorithm offers more satisfying results in terms of
efficiency and feasibility compared to a genetic algorithm [6].

The remainder of this paper is organized as follows.
Section II reviews the literature. Section III defines the
microservice composition problem, including a formal
description, the calculation of the values for the attributes of
QoS, and the method of calculating the fuzzy QoS weight of
user preference with the triangular fuzzy number. Section IV
introduces the improvements observed with the immune
memory clonal algorithm and clonal selection algorithm,
and the proposes the Parallel Cooperative Short-term Mem-
ory Injection Multi-clone Clonal Selection Algorithm (Para-
CoSIMCSA). Section VI describes and analyzes the result of
these experiments, and Section VII includes the appendix.

II. RELATED WORK
Selecting individual microservices to combine into a certain
logical order constitutes a microservice combination that
should meet the needs of users. The idea of a microservice
combination arises from the combination of web services.
While there exists little research on issues related to microser-
vice composition, the research field of web service com-
position is relatively mature. Therefore, this section intro-
duces web service composition work to support our ideas on
microservice combination. The available research in the field
of microservices is also discussed.

Sun et al. [7] and Ma et al. [8] proposed a method to
assign weights to the QoS attributes for solving deviation
in their measurement. Fang et al. [9] established an interval
QoS model to describe dynamic changes. Zhuang et al. [10]
incorporated environmental factors and proposed a QoSmon-
itoring method for a web service based on a weighted naïve
Bayesian algorithm. Xu et al. [11] proposed a coopera-
tive filtering recommendation algorithm for web services
based on the preferences of users. Zhang et al. [12] pro-
posed a multi-time sequential QoS prediction method, called
MulA-LMRBF, to facilitate users in selecting web services.
Tan et al. [13] established a multi-objective model that min-
imised network delays and total cost and improved a particle
swarm optimization.

Web service combinations with cooperation is an area
that some scholars have performed relevant researches.
Mao et al. [14] and Zou et al. [15] considered a cooperative
filtering approach to obtain more accurate predictions of
web services. Tan et al. [16] developed an improved self-
organizing neural network web service composition method,
and Yao et al. [17] combined cooperative filtering with con-
tent recommendations.

With the development of web services, accurately pre-
dicting QoS values to ensure a higher quality is also a
concern of scholars. Ma et al. [18] proposed a predic-
tion algorithm to solve the limitations due to unknown
QoS values of existing cooperative filtering algorithms.
Xu et al. [19] proposed a reputation-based matrix decompo-
sition to predict the QoS value of an unknown web service.
Chen et al. [20] designed the similarity model, JacMinMax,
driven by the QoS data range, where two neighbourhood
selection strategies were proposed to obtain a predictive QoS
system.

Wang et al. [21] proposed a combined model of QoS,
the cloud environment, andweb service composition based on
a genetic algorithm. Liu et al. [22] and Rai et al. [23] studied
the composability between service combinations.

In researching the web service composition problem,
improvement of the algorithm is crucial. Lu and Kou [24]
considered that the QoS attributes were multidimensional
and contradictory. They proposed a new algorithm by com-
bining multi-attribute decision-making with a genetic algo-
rithm. Shen et al. [25] established a logistics web service
composition model based on QoS perception and proposed
a new genetic optimization algorithm. Huang and Sun [26]

26386 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

FIGURE 1. Service grouping and correlation within intra- or inner-clouds of microservice composition problem.

proposed a service selection algorithm based on an improved
binary particle swarm optimization (BPSO) to increase effi-
ciency while also optimising the web service composition.
Tan et al. [27] proposed a chaotic genetic algorithm to
improve QoS quality. Xia et al. [28] proposed an improved
ant colony algorithm based on the established service com-
position model, which could converge to the optimal solu-
tion quickly. Liu and Yang [29] proposed a multi-objective
genetic algorithm based on the multi-level service deploy-
ment problem, which contains a strategy for local search and
mutation.

Halfaoui et al. [30] proposed a self-organized migration
algorithm for selecting a web service as well as a fuzzy
Pareto advantage to improve the algorithm and validate its
superiority. Xu et al. [31] proposed a chaotic turbo particle
swarm optimization algorithm based on a predatory search
to obtain candidate services. Ghobaei-Arani et al. [32] and
Dahan et al. [33] proposed the cuckoo algorithm and the arti-
ficial bee colony algorithm to search for the best combination
of web services.

Compared with a web service, a microservice runs as
a separate process that is easier to deploy, develop, and
maintain. Recently, scholars have also performed significant
research on microservices. Bao et al. [34] put forward a per-
formance model and a heuristic scheduling algorithm based
on a microservice to improve the scalability of applications
and reduce cost. Lin et al. [35] combined a microservice
and container, established a scheduling model and improved

resource utilization and other factors into the ant colony
algorithm to optimise the microservice scheduling process.
Wan et al. [36] and Guerrero et al. [37], [38] built optimiza-
tion models and optimized application deployments through
algorithms for microservice deployment and containers.

Jindal et al. [39] designed a regression model to fit
the loads that could be supported by microservices under
different configurations after an evaluation to optimise its
performance. Pietrantuono et al. [40] considered from the
perspective of reliability how to design an adaptive reliability
testing algorithm for microservices to evaluate and optimise.
Singh and Sateesh [41] and Villamizar et al. [42] compared
the performance between monolithic and microservice archi-
tectures through experiments with applications and verified
the advantages of a microservice architecture.

Much of this research only considered web services or
microservices while ignoring the characterization of QoS
attributes. We consider dynamic selection and optimal con-
figuration of candidate microservices in a microservice com-
position problem. We use TFN to calculate the values of QoS
attributes and propose the concept of a logical microservice
group to represent a microservice pool that processes differ-
ent microservices from the same microservice packet. This
paper is based on the research of Gao [43], which focused
on workflow modelling and optimization. Here, the service
group, fuzzy calculation, and algorithm are applicable to the
current problem, so extend the work based on the previous
research.

VOLUME 8, 2020 26387



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

III. MICROSERVICE COMPOSITION PROBLEM
DESCRIPTION
More scholars and business professionals today focus on
applying microservices in cloud computing, but selecting
and combining from available microservices is an NP-
hard problem. In this paper, we propose the concept of
a microservice group. Different types of microservices are
organized together, and then these microservices are com-
bined and constructed to meet the quality requirements of
users, which describes the microservice composition prob-
lem. Figure 1 shows how microservices are grouped and run,
and the following provides a formal.

A. DEFINITION OF THE MICROSERVICE
COMPOSITION PROBLEM
Definition 1: A 5-tuple is used to represent the attributes,

QoS = (P,T ,Rel,CO,UC). For each attribute, TFN corre-
sponds to the minimum value, average value, and maximum
value of the attributes, respectively. The definitions for each
attribute are listed in the following.
• Price (P). The service cost paid by a service requester.
• Response time (T ). The time cost of a unit data or calcu-
lation from the initial request of users to the completion
of the final service execution.

• Reliability (Rel). The probability that a service request
is executed correctly before a timeout.

• Correlation (Co). The possible correlated effects of each
inner or outer microservice.

• User customized service attributes (UC). The relevant
attributes associated with a microservice, such as service
accuracy and security.

Definition 2: SP =
{
sp1, sp2 . . . sph

}
represents the col-

lection of service providers in a correlative workflow across
multiple entities of the organization, where h is the number
of service providers.
Definition 3: The correlated weight matrix of the service

providers is expressed as

SPcow =

 cow1,1 · · · cow1,SPn
...

. . .
...

cowSPn,1 · · · cowSPn,SPn

 (1)

where cowi,j = {−1, 0,+1} represents the weight of the
internal service and the external correlation of providers,
respectively. cowi,j = −1 indicates that there is a negative
correlation between spi and spj, cowi,j = 0 indicates that
there is no correlation between spi and spj and cowi,j =
1, indicates that there is a positive correlation between spi
and spj.
Definition 4: SO = {(so1, soqos1 , sosp1 ), (so2, soqos2 , sosp2 ),

. . . , (som, soqosm , sospm )} represents the binding objects of
candidate tasks of a service node in a multi-entity correlated
workflow across an organization, where m is the number of
candidates. soi represents the identification of the service
object, and soqosi = (QPi ,QTi ,QReli ,QCoi ,QUC i ) represents
the attributes of QoS where each component is TFN. sospi

FIGURE 2. Sample process for service composition optimization.

represents the service providers corresponding to a service
object, and sospi ∈ SP.
Definition 5:Define theweightmatrix of theQoS attributes

involved in the service composition as the following matrix
where each row vector corresponds to the weight of the TFN
of the QoS attribute.

QoSw =


qwP,l qwP,m qwP,u
qwT ,l qwT ,m qwT ,u
qwRel,l qwRel,m qwRel,u
qwCo,l qwCo,m qwCo,u
qwUC,l qwUC,m qwUC,u

 (2)

Definition 6: R = {
(
r1, rsos1

)
,
(
r2, rsos2

)
, . . . , (rn, rsosn )}

represents the identification of the service group correspond-
ing to the service node in themulti-entity correlated workflow
across the organization where n is the number of the service
group. rsosi = {so1, so2, sogi} is the identification set of
the candidate service objects of the service group, and g
represents the number of candidate service objects of ri.
Definition 7: BP = (p, nf ,flo) represents an example of

a process to be bound in a correlated workflow of multiple
entities across an organization, as illustrated in Figure 2.
p = {(n1, nr1 , np1 ), (n2, nr2 , np2 ), . . . , (nv, nrv , npv )} is the

triple comprised of each service node identification, the iden-
tification of the corresponding service group, and the occur-
rence probability of the service node. v is the number of
service nodes of the process instance to be bound, and nvi
represents the service group corresponding to the service
node, where ni ∈ R. npi is the probability of occurrence of
the service node.

The occurrence probability and the parent probability of
the nested structure of each service node executing sequen-
tially or serially, in parallel, or cyclically are equal to the
parent probability of the structure. If there does not exist
nesting in any parent structure, then they are equal to 1.

In the selective or branch execution structure, the prob-
ability of the occurrence and the parent probability of the
nested structure are equal to the parent probability of the
structure multiplied by the selective or branch probability
from experience or statistics.
nf is a multi-value function described as {ni} → 2{soj}

where 2{soj} is the power set of candidate service objects
from all nodes of the process instance to be bound. This
function represents a mapping of a service node of the pro-
cess instance to the effective identification set of candidate
service objects of this node. The implementation steps of this
function include the following.

26388 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 1. Calculation of price.

TABLE 2. Calculation of response time.

• For ni, the service node inN is matched to obtain (ni, nri )
that corresponds with rj.

• For rj, the service node in R is matched to obtain
(rj, rsosj ) that corresponds with so1, so2, sowj, which is
the identification set of candidate service objects of a
given ni.

B. CALCULATION OF THE QoS ATTRIBUTES OF THE
BINDING PROCESS INSTANCES
The candidate service objects corresponding to multiple ser-
vice nodes are bound together to form process instances.
For the four local structures, the calculation of the QoS
attribute values of price, response time, reliability, and the
user-customized service attributes are defined in Tables 1 to 4,
respectively.

C. CALCULATION OF THE FUZZY QoS WEIGHT BASED ON
A FUZZY ANALYTIC HIERARCHY PROCESS
1) TRIANGULAR FUZZY NUMBERS
The values of the QoS attributes typically depend on the
preference of users where TFN described the uncertain QoS
attributes. Therefore, we propose a comparison method of
TFN and a modified formula of TFN defuzzification based
on a conservative strategy.

TFN is expressed in as a triple, such as TFN = (l,m, u) ,
where l,m, u represent the minimum, average, and maxi-
mum, respectively, of the statistics or experience. TFN must
be converted into a single value when performing the pairwise
comparison, which is called defuzzification and often uses the
centre of gravity method. For TFN = (l,m, u), the center of
gravity is CG = (l+m+u)

3 .

TABLE 3. Calculation of reliability.

TABLE 4. Calculation of the user-customized service attribute.

For our proposed comparison approach for TFN, we define
TFN 1 = (l1,m1, u1) and TFN 2 = (l2,m2, u2), and the
centers of gravity are CG1 and CG2, respectively.

a) If CG1 < CG2, then TFN 1 is inferior to TFN 2.

b) If CG1 ≥ CG2, then the comparison is divided into four
cases:
• If l1 < l2 and m1 < m2, then TFN 1 is inferior to TFN 2
and the risk is relatively high.

• If l1 < l2 and m1 > m2, then TFN 1 is superior to TFN 2
and the average is satisfied.

• If l1 > l2 and m1 < m2, then TFN 1 is superior to
TFN 2, the risk is relatively low, and the minimum is
more optimistic.

• If l1 > l2 and m1 > m2, then TFN 1 is superior to TFN 2,
which is strictly optimal.

On this comparison basis, we propose a modified formula
of the TFN defuzzification calculation. For TFN = (l,m, u),
we introduce the defuzzification weight vector TFNW =

(wl,wm,wu, ), where

Defuzzy (TFN ) =
(wl ∗ l + wm ∗ m+ wu ∗ u)

(wl + wm + wu)
(3)

When wl ≥ wm,wu, the defuzzification presents a conserva-
tive strategy, reflecting the tendency to avoid risks.

2) FUZZY ANALYTIC HIERARCHY PROCESS (FAHP)
FAHP is a fuzzy, multi-attribute decision-makingmethod that
combines fuzzy set theory and the Analytic Hierarchy Pro-
cess (AHP). We use an improved FAHP method to construct
fuzzy QoS weights with the following steps.

VOLUME 8, 2020 26389



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

Step 1. FAHP defines the hierarchical relationship between
attributes and sub-attributes.

Step 2. Set the corresponding table between the fuzzy
linguistic value and TFN. In this improved FAHP table,
the elements of the upper and lower symmetry are logically
inverse relations recorded as (l1, m1, u1) and (l2, m2, u2)
where

l1 + u2 = 1 (4)
m1 + m2 = 1 (5)
u1 + l2 = 1 (6)

In the fuzzy root of the FAHP table, the two TFNs of the
inverse relationship satisfy the following equations.

l1 ∗ u2 = 1 (7)
m1 ∗ m1 = 1 (8)
u1 ∗ l2 = 1 (9)

Step 3. Construct a fuzzy preference relationship decision
matrix such that the rows and columns are QoS attributes.

Step 4.Replace the fuzzy linguistic value in the fuzzy pref-
erence relation decision matrix to the corresponding TFN.
Let (pL(i, j), pM (i, j), pU (i, j)) be the elements representing
the TFN in the fuzzy preference relational decision matrix
where n attributes participate in the pairwise comparison, i
and j represent the rows and columns, and ∀i, j ∈ {1, . . . , n}.

pL (i, j)+ pU (j,i) = 1 (10)
pM (i, j)+ pM (j,i) = 1 (11)
pU (i, j)+ pL (j,i) = 1 (12)

pL (i, j)+ pL (j,k)+ pU (k, i) =
3
2
, i < j < k (13)

pM (i, j)+ pM (j,k)+ pM (k, i) =
3
2
, i < j < k (14)

pU (i, j)+ pU (j, k)+ pL (k, i) =
3
2
, i < j < k (15)

pL (i, i+ 1)+ pL (i+ 1, i+ 2)+ . . .+ pL (j− 1, j)

+ pU (j, i) =
j− i+ 1

2
, i < j (16)

pM (i, i+ 1)+ pM (i+ 1,i+ 2)+ . . .+ pM (j− 1,j)

+ pM (j, i) =
j− i+ 1

2
, i < j (17)

pU (i, i+ 1)+ pU (i+ 1,i+ 2)+ . . .+ pU (j− 1,j)

+ pL (j, i) =
j− i+ 1

2
, i < j (18)

Step 5. All elements of the fuzzy preference relation
decision matrix are given or calculated. If the matrix can
be found and the negative values or the values are greater
than 1, then it requires further normalization. For all ele-
ments (pL(i, j), pM (i, j), pU (i, j)), there exists c(c > 0) and
pL/M/U (i, j) ∈ [−c, 1+ c].

TFNNorm(xL) =
(xL + c)
(1+ 2∗c)

(19)

TFNNorm(xM ) =
(xM + c)
(1+ 2∗c)

(20)

TFNNorm(xU ) =
(xU + c)
(1+ 2∗c)

(21)

The TFN components of each element in the matrix are
processed according to the normalization formula. After nor-
malization, pL/M/U (i, j) ∈ [0, 1].
Step 6. Calculate the weight of each QoS attribute. First,

average each row of the fuzzy preference relational decision
matrix.

AL/M/U (i) =
1
n

∑n

j=1
pL/M/U (i, j) (22)

Then, we obtain the weight of the QoS attributes correspond-
ing to rows.

WL/M/U (i) =
AL/M/U (i)∑n
i=1AU/M/L(i)

(23)

D. CALCULATION OF THE CORRELATIVE QoS ATTRIBUTES
OF THE BINDING PROCESS INSTANCES
The calculation of correlation is complicated, as it takes
the overall consideration of the binding process instance.
We present the following calculation steps for the correlation
of the binding process instance in a microservice.

Step 1. According to the structure descriptor, the loop
execution is expanded into a sequential or serial structure. The
probability of occurrence for each service node is calculated
recursively from the external.

Step 2. Initialize the occurrence probability table sop of
the candidates with the occurrence probability of each ser-
vice node, and calculate the probability from inside out.
In this process, the same service objects are merged, and their
occurrence probabilities are adjusted. Finally, we obtain the
occurrence probability of different candidate service objects.
During this step, we apply the following rules.

Rule 1. Sequential or serial execution structure. If there
is a nested sequential or serial execution substructure, then
expand it to merge with the structure. If the same service
object soi exists, then the corresponding nodes are set as
node1 and node2. Let sopnew = max{sop1 , sop2} and only keep
the soi. If the remaining node1 corresponds to soi, then update
the sop table and the probability of node1 becomes sopnew . The
probability of node2 is 0. Then, it is processed by the parent
structure’s matching rule of this structure. If there is no parent
structure, then the algorithm ends.

Rule 2. Parallel execution structure. Connect each branch
to a sequential or serial execution structure. If there is a
sequential or serial substructure, then expand and merge with
the current structure, and apply Rule 1.

Rule 3.Selective or branch execution structure. Connect
each branch to a sequential or serial execution structure.
If there exists a nested sequential or serial execution sub-
structure, then the expansion is merged with the current
structure. If the same service object soi exists, then set the
corresponding service node as node1 and node2 to create
sopnew = sop1 + sop2 , so that soi is reserved. If node1 corre-
sponding to soi is reserved, then the sop table is updated. The
probability of node1 is sopnew , and the probability of node2 is
0. This is then processed by the parent structure’s matching

26390 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

rule of this structure. If there is no parent structure, then the
algorithm ends.

Step 3. For the sop table obtained in the previous step,
remove the column corresponding to 0 to obtain the proba-
bility of different candidates.

Step 4. Find pairwise combinations of internal and external
service providers in the table and construct the probability
matrix of the service providers corresponding to candidate
service objects. The matrix is an upper triangular matrix,
and the probability of service providers is calculated by the
following two principles.
• Internal correlation of service providers.
Initialising the correlated probability matrix of the service

providers, each element of the diagonal line is 0. In the
appearance probability table of candidate service objects,
search for different sets with the same service provider to
denote as {soi}. The number of the set element is labelled
as a satisfying 2 ≤ a ≤ b where b is the number of candidate
service objects. There exists sp(soi) = sp(soj) and the service
provider is spk .

spcop(spk ) = 1−
∏m

i=1

(
1− sop (soi)

)
−

∑m

i=1
(sop(soi) ∗

∏m

j=1,j6=i
(1− sop(soj))) (24)

• External correlation of service providers.
After initialising the correlated probability matrix of the

service providers, the upper right part of the matrix, except
for the diagonal, is 0. In the probability table of candidate
service objects, search for those corresponding to the set and
denote as {soa} and {sob} for the two service combinations
of service providers spi and spj, where the numbers of the
two set elements are a and b. If the candidate service object
set is empty, then the probability of correlation corresponding
to the two service providers is 0. Otherwise, it meets the
following condition.

spcop(spi,spj)
=

[
1−

∏m

i=1

(
1− sop (soi)

)]
∗[1−

∏n

i=1

(
1− sop (soi)

)
] (25)

Step 5. Each element in the correlated probability matrix
of service providers is multiplied by each element of the
correlated weight matrix to obtain a correlation matrix of the
providers.

Step 6. Sum over each element of the correlated matrix of
service providers denoted as COsum.

COsum =
1
2
∗ {

COsum
C
(
spn , 2

) + spn ]+ 1} (26)

where C
(
spn , 2

)
is a combination representing the value of

the correlation degree QoS attribute, or the component Qco.

E. OPTIMIZATION MODEL

max solution

= Defuzzy (TFNSumWeighted (QoS (solutioni))) (27)

where QoS (solutioni) is recorded as (QP,QT ,QRel,
QCo,QUc). The TFNSumWeighted function utilizes the
weight matrix of QoS attributes of microservice group to get
the weighted values. Weight the QoS (solutioni) to get a new
weight matrix.

QoSv=


qwP,l∗QPi,l qwP,m∗QPi,m qwP,u∗QPi,u
qwT ,l∗QTi,l qwT ,m∗QTi,m qwT ,u∗QTi,u
qwRel,l∗QReli,l qwRel,m∗QReli,m qwRel,u∗QReli,u
qwCo,l∗QCoi,l qwCo,m∗QCoi,m qwCo,u∗QCoi,u
qwUC,l∗QUci,l qwUC,m∗QUci,m qwUC,u∗QUCi,u


(28)

The matrix is summed by columns, which is recorded as(
swqosl , swqosm , swqosu

)
. Defuzzy the weighted vector, we get

Defuzzy (TFNSumWeighted (QoS (solutioni)))

=
(
wl ∗ swqosl + wm∗swqosm + wu ∗ swqosu

)
/(wl + wm + wu) (29)

IV. PARALLEL COOPERATIVE SHORT-TERM MEMORY
INJECTION POLYCLONE CLONAL SELECTION ALGORITHM
A. IMPROVEMENT OF THE CLONAL SELECTION
ALGORITHM
The clonal selection algorithm is based on an artificial
immune principle that offers an efficient algorithm for dis-
crete combinatorial optimization problems. In most cases,
it can achieve enough optimization results compared to stan-
dard genetic algorithms. For the microservice combination
optimization problem presented in this paper, we apply the
following provisions.
1) Antibody code. The antibody encodes the solution space

for the optimization problem.
2) Antibody decode. The specific service object identifier

of the sequential number mapping of the candidate service is
indicated by solution = {SOIDi}.
3) Antigen. Refers to the optimization problem domain.
4) Antibody and antigen affinity. The degree of adaptation

of the antibody to the antigen is the objective function.
5) Antibody and antibody affinity. The smaller the affinity

between antibodies, the poorer the diversity of antibody pop-
ulations become. The larger the affinity between antibodies,
the diversity becomes more abundant.
6) Assignment of the number of antibody clones. The

cloning probability qi of the antibody Ai is normalized as
qi =

qi∑n
i=1 qi

. The cloning scale of antibody Ai is nci =
INT [qi ∗ nc], where nc is the total cloning number of the
antibody population and the term INT [. . .] is rounded up or
down. Adjusting nci will make it satisfy nc =

∑n
i=1 nci .

7) Adaptive hypermutation strategy. Gao [43] proposed
this approach that comprehensively evaluated the mutation
probability based on antibody affinity and population diver-
sity. Guided by this concept, we define the following defini-
tion for transformation.

Step 1. Set the threshold of the variation probability range.
The lower limit of mutation probability of an antibody is

VOLUME 8, 2020 26391



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

pm0 =
1

antibodycodingdimension , and the upper limit of mutation
probability of an antibody is pmmax =

d
antibodycodingdimension .

If the dimension of variation is too high, then it will miss
the global optimum value. Therefore, the maximum variation
dimension of the hypervariation is limited to 2, such that
d = 2, so pmmax =

2
antibodycodingdimension .

Step 2. Calculate the normalized affinity Di of the aver-
age distance for the antibody Ai in the antibody population
A1,A2, . . . ,An.
Step 3. Calculate QoS(solution(Ai)) for the antibody Ai in

the antibody population {A1,A2, . . . ,An}, denoted as qosi.
The sum of QoS of all antibodies is

∑n
i=1 qosi.

Step 4. boost i = 1
exp(Di)

∗
qosi∑n
i=1 qosi

∗ n, where n is the
number of antibodies.

Step 5. The boost i of antibody Ai is normalized to obtain
boost i =

boost i∑n
i=1 boosti

.
Step 6. Let ci = boost i ∗ n, then assign the hypermutation

sensitive threshold parameter to c0, which is typically set
between 1.05 to 1.1. If ci > c0, then we make pmi = pmmax .
Otherwise, pmi = pm0 . p

m
i is the adaptive hypermutation

probability of the antibody.
In our experimentation, we observe that the standard clonal

selection algorithm can easily miss the global optimum when
using the adaptive mutation strategy in a larger variation of
the step. The space of the solution of the coverage is not
comprehensive enough, so the average solution is not stable.
Therefore, we suggest the following improvement strategy
based on the standard clonal selection algorithm.

1) Uniform distribution variation strategy. The mutation
probability of each dimension of the antibody is set to its
reciprocal. The random selection of the antibody with a min-
imum can achieve better optimization results. We adopt a
uniform distribution variation strategy when the dimension
is selected.

2) Short term memory injection combined with clonal
variation full storage strategy. After the cloning mutation
of an antibody Ai, the optimal antibody in the subpop-
ulation of the clonal selection algorithm is recorded as
groupbest . Regardless of if QoS(solution(Ai)) is greater than
QoS(solution(groupbesti)), the value of groupbesti is uncondi-
tionally accepted to join the next generation of the antibody
population. To prevent population degradation, the previous
generation’s optimal antibody is injected into the next gener-
ation during the final step of the clonal selection to replace
the worst population.

3) Improvement of cross strategy. Multi-point crossover
can offer an improved optimization effect. When pcrossover =
Int
[
genecodingdimension

2

]
∗pmutation = Int

[
genecodingdimension

2

]
∗

1/
genecodingdimension , then Int[. . .] is rounded down. The gene
pairs exchange the encoded values with the most significant
random selection to minimize the impact of crossover on
population diversity.

The results of this experiment suggest that the multi-clone
strategy with multi-point crossover at the largest dimen-
sion improves more significantly than a genetic algorithm.

After comprehensively using the three strategies, the improved
multi-clone selection algorithm appears superior to the
improved genetic algorithm.

B. IMPROVEMENT OF THE IMMUNE MEMORY CLONE
PROGRAMMING ALGORITHM
Jiao [47] proposed an Immune Memory Clonal Selection
Algorithm (IMCSA) based on the principle of clone selection.
The IMCSA introduces the immune memory mechanism that
divides the antibody into two subpopulations of the common
antibody population and the memory unit. The algorithm
enables the common antibody population to evolve with
a higher mutation probability for maintaining the greatest
diversity possible. The memory unit maintains the historical
global optimal solution of the current status and sets a small
mutation probability or a mutation strategy that is different
from the common antibody population. The memory unit
continuously absorbs the optimal antibody of each generation
of the common group and infuses the optimal antibody into
the common antibody group. When the memory unit is no
longer improved, the algorithm gradually converges to the
global optimum.

Based on the IMCSA, we propose the following strategies.
1) The clonal selection process for the memory cell and

common antibody populations adopts this improved clonal
selection process.

2) The immune memory injection mechanism occurs
before the improvement. At the beginning of each iteration,
only the optimal antibody of the memory unit is injected
into the common antibody population to replace the worst
antibody.

3) Improved immune memory maturation mechanism.
At the end of each iteration, the memory unit absorbs the
optimal antibody from the common antibody population and
replaces its worst antibody.

4) Short-term immune memory injection mechanism and
improved immune memory maturation mechanism. The
memory unit must have an optimal antibody in both popula-
tions after each iteration. Before the next iteration, the optimal
antibody is injected into the common antibody population.
If the antibody of the common antibody population that is
absorbed by thememory unit is not optimum, then the optimal
antibody must exist in the memory unit. So, the optimal
antibody injected into the common population must come
from the memory unit before the iteration. Then, these two
populations achieve the exchange of the optimal antibody.

5) The correlated short-term immune memory injection
strategy. After each iteration, the memory unit and the com-
mon antibody population exchange their optimal antibodies
to replace the worst antibodies.

C. THE PARALLEL COOPERATIVE SHORT-TERM MEMORY
INJECTION MULTI-CLONE CLONAL SELECTION
ALGORITHM
After combining the improved clonal selection process
and the cooperative short-term immune memory injection

26392 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

FIGURE 3. Schematic diagram of ParaCoSIMCSA based on the hybrid clone and selective moderate cooperation.

strategy, the improved clonal immune memory programming
algorithm reflects cooperative evolution between two iden-
tical populations. The experimental results demonstrate the
effectiveness of the algorithm. The results also show that the
IMCSA is inferior to the improved clonal selection algorithm
under the same computing cost and number of antibodies.
The split of the immune memory unit and ordinary antibody
group causes the two populations to be smaller. The muta-
tion and crossover are conducted in the smaller populations,
which leads to each antibody group being more sensitive to
population diversity.

Based on these experimental results, we propose a mod-
erate cooperative mechanism of short-term memory. A con-
figurable inter-group cooperative mechanism is provided
according to the size of the antibody populations that can flex-
ibly set which populations exchange either unidirectionally or
bidirectionally. After each iteration, the exchange the optimal
antibodies from the subpopulations occur to replace the worst
from each group. Finally, we propose ParaCoSIMCSA based
on the improved IMCSA. The principle of the algorithm is
shown in Figure 3, and the steps are as follows.

Step 1. Initialize the antibody population arranged in
reverse order of affinity.

Step 2. Traverse the antibody population and divide the
immune clonal population.

Step 3. Each population evolves correlatively in parallel.
At each iteration, the population is processed in parallel based

on the improved clone selection process. If the maximum
number of iterations is reached, then the algorithm ends.

In this third step, the following operations are specifically
performed.

1) Each parallel population implements the maximum
dimension multi-point crossover. The crossed offerings per-
form a single-point mutation and select the optimal antibody
to place into the new population after the two-selectionmatch.

2) Each parallel population executes the immunising
cloning process. All cloned antibodies perform the single-
point mutation.

3) Each parallel population implements the immune clonal
selection process. The new antibody is unconditionally
accepted into the subpopulations.

4) To avoid the degeneration of the populations, short-term
memory injection replaces the worst antibody with the global
optimum from the previous population.

5) After each generation of populations creates new anti-
bodies, they update the population optimal value.

Step 4. All populations end in parallel and update the
global optimal solution. Each population replaces the worst
antibodies with the optimums. Turn Step 3.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
In this experiment, a desktop PC running theWindows7-64bit
operating system is used with an Intel core i5 760(OC

VOLUME 8, 2020 26393



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

4.0 GHz, 4 cores and 4 threads), 8 GB memory and 120 GB
SSD hard disk. The emulator is implemented in Java written
with the Eclipse IDE running 64-bit JDK-1.8.0. The 64-bit
JVM can configure a large heap memory, which will improve
the time and performance of the Java garbage collection
mechanism over multiple iterations of the algorithm for mul-
tiple trials. This will eliminate much of the fluctuations of the
JVMduringmultiple runs of the same or different algorithms.
The related modules of vector, matrix, and statistical calcu-
lation use the Apache Commons Math open source library
and the random number generation uses its RandomData-
Generator class. The partition of roles of the service objects,
the TFN of the QoS attributes of the service objects, and
the service group candidate pool are generated by pseudo-
random numbers. To ensure the repeatability and consistency
of each experiment, the simulation using the pseudo-random
number sets a fixed random seed to generate the same random
value for each run.

B. PRESET PARAMETERS AND COMPARISON PRINCIPLES
1) PRESET PARAMETERS
The experimental parameters are preset, and the values of
each are as follows.

i) The processes to be combined. Take the process con-
stituting the six service nodes, as an example, that is shown
in Figure 2, which can be expressed as SEQ (1, AND (SEQ (2,
OR (4, 5)), 3), 6). The probabilities of the selective structure
are set to 0.3 and 0.7. The optimised value QoS of the service
composition for the process target belongs in [0, 1], and the
optimization direction is maximized.

ii) Service object candidate pool. h = 1000.
iii) Service Provider. y = 4, which includes {0, 1, 2, 3}.
vi) Service provider cooperative matrix. SPcow =

{{1, 0, 1,−1}, {0, 0,−1, 0}, {0, 0,−1, 1}, {0, 0, 0, 1}}.
v) QoS weight matrix of the service combination.QoSw =
{{0.12, 0.21, 0.37}, {0.07, 0.12, 0.23}, {0.16, 0.24, 0.37},
{0.11, 0.19, 0.32}, {0.13, 0.24, 0.41}}. The row vector is the
TFN weight of each QoS attribute.

vi) The service group of the process service node, rep-
resented by x. The number of service groups is set to 5,
including {0, 1, 2, 3, 4} to obtain x = {2, 1, 3, 4, 3, 0}.
vii) The candidate pool of service groups. g =

{SO (0) , SO (1) , SO (2) , SO (3) , SO (4) , } where SO(i) rep-
resents a list of candidate services corresponding to the ser-
vice group. Each element in the array randomly selects SO(i)
different service objects from the candidate pool.

The number of candidate services in the candidate
pool from the configured service groups determines the
complexity of the solution space of the service composition
optimization problem. In this experiment, we design four
combinatorial space configurations.

Scale 1. x = {25, 35, 30, 20, 15} with approximately
1.58 million combinations.

Scale 2. x = {50, 70, 60, 40, 45} with approximately
151 million combinations.

Scale 3. x = {100, 140, 120, 80, 90} with approximately
967.7 million combinations.

Scale 4. x = {200, 280, 240, 160, 180} with approxi-
mately 62 trillion combinations, which refers to the data set
size of the Ali dispatch competition.

2) COMPARISON PRINCIPLE
a) The measurement of the average execution time and aver-
age solution. After multiple experiments, we find that the
results of 200 repeated operations tend to be stable and
achieve a good compromise in terms of time consumption and
accuracy. Therefore, the total execution time and the average
solution from 200 runs are taken for horizontal and vertical
comparisons of the algorithm.
b) The cost of the calculation. The calculation cost

examines the number of iterations, the size of the popu-
lation, the number of variation and crossover, the calcula-
tion of QoS, the complexity, and the characteristics of the
algorithm.

C. COMPARISON AND ANALYSIS OF THE PARACOSIMCSA
RESULTS
The ParaCoSIMCSA is compared to the standard genetic
algorithm, the monoclone selection algorithm, and the multi-
clonal selection algorithm. Also, comparisons are provided
to the improvements of these three algorithms as well as
the monoclone immune memory cloning programming algo-
rithm and multi-clone immune memory cloning program-
ming algorithm at the same scale, which represent situation 1
with results shown in Tables 5 and 6.
In these experiments, the execution time is the total of 200

repetitions. The global optimal solution cannot be obtained
from the global search, so the experiential maximum value
of multiple runs of 0.7848657722552929 is taken as the
benchmark. The recall rate of the global optimal is calculated
as the number of times obtained by empirical global optimal solution

200 ∗

100%.
From these results, we conclude the following.
a) The mechanism of the ParaCoSIMCSA is effective.

If there is no population cooperation, then each popula-
tion evolves independently. The optimization performance
is better than with too much cooperation but is inferior
to moderate cooperation. Excessive cooperation reduces
diversity and increases the possibility of local convergence.
Moderate cooperation improves the optimization perfor-
mance, reduces the cost of communication, and enhances the
scalability.

b) The ParaCoSIMCSA offers the advantages of strong
configuration, high parallel efficiency, and ease to use.
With proper configuration, compared to the improved poly-
clone selection algorithm for a single population, our
algorithm can obtain the same optimization effect in less
computing time or a better optimization for a larger
population.

26394 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 5. Comparison of algorithms for situation 1.

VOLUME 8, 2020 26395



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 5. (Continued.) Comparison of algorithms for situation 1.

TABLE 6. Comparison of the recall rate of the empirical global optimal solution of the algorithms for situation 2.

Figure 4 compares the global optimal solution of the selec-
tive moderate cooperation and no cooperation of the hybrid
clone of the ParaCoSIMCSA with iterations. The former is
beneficial for breaking through the limitation of local optimal
values.

Figure 5 shows the global optimal solution of selective
moderate cooperation of the hybrid clone ParaCoSIMCSA
with iterations. The cooperative behaviour is tracked in the
experiment with the observation that cooperation between
the two populations is relatively frequent, reflecting the
complementarity of the population during the later stage of
optimization.

Figure 6 shows the global optimal solution of the
hybrid clone ParaCoSIMCSA without cooperation through
iterations. In the late stage of optimization, no elite
antibody injection exists in the monoclonal popula-
tion, and the multi-clone population fails to remove the

FIGURE 4. Comparison of the selective moderate cooperation and
non-cooperation in the hybrid clone ParaCoSIMCSA.

26396 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

FIGURE 5. Hybrid clone ParaCoSIMCSA with selective moderate
cooperation.

FIGURE 6. Hybrid clone ParaCoSIMCSA without selective cooperation.

attraction of a local optimal value, so it converges in
advance.

VI. CONCLUSION
This research focused on the optimization of microservice
combinations and proposed a concept of the microservice
group to take the relationship and correlation of service
groups of providers by considering intra- or inter-clouds.
We utilised the TFN to describe the uncertainty of QoS
attributes and determined the multi-attribute QoS with an
improved FAHP. The users only need to provide the order

of importance of attributes to obtain their weights. Based
on the IMCSA, we also proposed the ParaCoSIMCSA that
demonstrated superior performance compared to traditional
clonal selection algorithms and the immune memory cloning
algorithm.

APPENDIX
A. FUZZY QoS WEIGHT CALCULATION OF USER
PREFERENCES BASED ON THE IMPROVED FAHP
Users have different preferences for each attribute of the QoS
for the binding process instances. The degree of preference is
usually fuzzy, so it cannot be described accurately. Therefore,
we use the fuzzy language value of the TFN to express the
preference of users. FAHP is a fuzzy multi-attribute decision-
making method combining fuzzy set theory and AHP. In this
paper, we use an improved FAHP method to construct fuzzy
QoS weights that integrate user preferences.

Feng and Kong [46] used the fuzzy root method to
construct the corresponding relationship between the fuzzy
language value and TFN and then calculated the fuzzy
QoS weights of user preferences with FAHP. In this paper,
to obtain the QoS weights, we construct the fuzzy judgment
matrix for pairwise comparison of the QoS natures and then
calculate the weight vectors on this basis.

The fuzzy judgment matrix is a symmetric matrix, and
all diagonal elements are 1. Each element in the matrix is
the TFN corresponding to the fuzzy language value of the
evaluation of the QoS attributes of the users in pairs. The
users must fill the upper right triangle portion of the matrix,
except the diagonal elements. If the number of elements in
the QoS natures set is n, then the users must make pair-to-pair
comparison evaluations, which have n∗(n−1)

2 QoS attributes.
Therefore, with the increase in the number of QoS attributes
the accuracy of computation decreases.

Wang and Chen [47] improved the shortcomings of the
FAHP by replacing the fuzzy judgment matrix with a fuzzy
preference relation decision matrix. They redefined the corre-
sponding relation of the fuzzy language values and the TFN.
The users only need to do (n− 1) chains in the fuzzy prefer-
ence relation decisionmatrix and compare two chains, such as
(A1,A2)− > (A2,A3)− > (A3,A4). This method reduces
the number of comparisons and improves the accuracy of the
evaluation. Therefore, we propose the calculation steps of the
fuzzy QoS weight based on the improved FAHP.

Step 1. FAHP defines the hierarchical relationship between
the attributes and sub-attributes.

Step 2. Set the corresponding table between the fuzzy
linguistic value and TFN.

In the improved FAHP table, the elements of the upper
and lower symmetry are logically inverse relations and are
recorded as (l1, m1, u1) and (l2, m2, u2), which refer to
Equation (4) - (6) in the paper.

In the fuzzy root of the FAHP table, the two TFNs of the
inverse relationship satisfies Equation (7) – (9).

Step 3. Construct a fuzzy preference relationship decision
matrix, such that the rows and columns are QoS attributes.

VOLUME 8, 2020 26397



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 7. Comparison of the language value and the TFN between two
attributes in the improved FAHP.

TABLE 8. Comparison of the language value and the TFN between two
attributes in the FAHP of the fuzzy root.

TABLE 9. Fuzzy preference relation decision matrix.

Step 4.Replace the fuzzy linguistic value in the fuzzy pref-
erence relation decision matrix to the corresponding TFN.
Let (pL(i, j), pM (i, j), pU (i, j)) be the elements representing
the TFN in the fuzzy preference relational decision matrix,
n attributes participate in the pairwise comparison, i and j
represent rows and columns, and ∀i, j ∈ {1, . . . , n}. The
detailed calculation formulas refer to Equation (10) – (18).
Next, fill the values of (0.5, 0.5, 0.5) into the diagonal
elements, calculate the symmetric elements of the known
elements by the formulas, and complete the other elements
using the remaining formulas. The result of this calculation
is shown in Table 10.

Step 5. All the elements of the fuzzy preference relation
decision matrix are given or calculated. If the matrix can be
found such that the negative values or the values are greater
than 1, then it requires further normalization.

For all elements (pL(i, j), pM (i, j), pU (i, j)), there exists
c(c > 0) and pL/M/U (i, j) ∈ [−c, 1 + c]. The detailed
calculation formulas refer to (19) – (21).

The TFN components of all elements in the matrix are
processed according to this normalization formula. After nor-
malization, pL/M/U (i, j) ∈ [0, 1]. According to this method,
we obtain c = 0.4, and the normalization results are shown
in Table 11.

Step 6. Calculate the weight of each QoS attribute. The
averages are of each row in the fuzzy preference relational
decision matrix, and the detailed calculation refers to Equa-
tion (22). Then, we obtain the weight of the QoS attributes
corresponding to the rows. The detailed calculation formula
refers to Equation (23), and the QoS attribute weights are
calculated in Table 11, with results presented in Table 12.
Finally, the fuzzy QoS weight vector corresponding to this
user preference is obtained as ((0.12, 0.21, 0.37), (0.07,
0.12, 0.23), (0.16, 0.24, 0.37), (0.11, 0.19, 0.32), and (0.13,
0.24, 0.41).

B. EXPERIMENTS
1) THE STANDARD GENETIC ALGORITHM
The standard genetic algorithm is the benchmark algorithm
for this research and has developed a variety of defor-
mations. Based on the algorithm framework proposed by
Russell et al. [48], we perform experiments on scale 1 and
scale 2 with a limited computing cost of 37,800. These exper-
imental results are shown in Table 13.

The standard genetic algorithm takes crossover as the core
and variation as the supplement. Small populations decrease
diversity, which easily results in a local convergence. At the
same time, it selects a small mutation probability to produce
new offspring after the crossover, and the population degra-
dation may occur when the number of iterations is too small,
or the proportion of the retained operating genes is too large.

2) IMPROVEMENT OF STANDARD GENETIC ALGORITHM
Given the above problems, we propose improvement strate-
gies for the standard genetic algorithm.

a: CHANGE OF VARIATION STRATEGY
We set a large value for the probability of the cross-generated
genes being selected for a variation to maintain population
diversity. After several experiments, we observe that too large
a variation step can readily miss the global optimum of the
nearest neighbor, and the coverage of the solution space is
not as good as the single-point variation. Uniform distribution
variation can cover the solution space through iterations as
much as possible. Gaussian mutation variation values are too
close to the original point, which leads to the limited cover of
the solution space.

b: IMPROVEMENT OF CROSSOVER STRATEGY
Crossover strategy generates new gene pairs by randomly
selecting pairs from the elite population. In the standard
genetic algorithm, this strategy leads to population diversity
decline after multiple iterations causing population degrada-
tion. Therefore, we apply a single-point evenly distributed

26398 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 10. Fuzzy preference relation decision matrix containing the TFN.

TABLE 11. Fuzzy preference relation decision matrix after normalization.

TABLE 12. QoS attribute weights in the fuzzy preference relation decision matrix.

TABLE 13. Comparison of the global search, random search, and standard genetic algorithm.

variation to the cross-generated genes in the improved algo-
rithm, which alleviates the impact of cross-generated genes
on population diversity.

c: SHORT-TERM MEMORY EFFECT
While there exists a population degradation in the standard
genetic algorithm, in the improved algorithm, we inject short-
term memory at the end of each iteration so that the worst
antibody from the new generation is replaced by the global
optimum. The optimal historical memory of the previous

population is injected into the current generation, ensuring
that the new group will not degenerate relative to the previous
population. When the new population features a better result,
the historical memory of the previous generation is eliminated
after the next iteration, and the new historical memory is
injected into the next generation, which has a less negative
impact on the diversity of the group. When the new pop-
ulation degenerates, the historical memory of the previous
population drives the new population to return to the nearest
optimal value and then perform a new round of crossover and

VOLUME 8, 2020 26399



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 14. Comparison of the genetic algorithm and its improvement.

variation. This approach offers an increased probability and
computing cost to bring it out of the local optimal value. Thus,
the introduction of the short-term memory effect adjusts the
concentration of historical memory adaptively to realize a
stable evolution of each generation.

The experimental results of the improved genetic algorithm
are compared with those of the standard genetic algorithm,
as shown in Table 14. The improved genetic algorithm shows
a satisfying optimization result, maintains population diver-
sity, stabilizes high-frequency variation of small sizes, and
avoids degradation. However, it must set a larger population
size to achieve better optimization results. If the size of the
optimization is too small, then an increase in the number of
iterations cannot bring about significant improvement to the
optimal solution. If the scale of the optimization problem is
too large, then the scalability may significantly decrease.

3) IMPROVEMENT OF THE IMMUNE MEMORY CLONAL
SELECTION ALGORITHM
Jiao [45] proposed the immune memory clonal program-
ming algorithm IMCSA by introducing the immune memory

mechanism and dividing the antibody populations into two
subpopulations.

a) Normal antibody population, denoted as A = {A1,A2,
. . . ,Ann}, where nn is the number of antibodies in the com-
mon antibody population. The number its clone is denoted
as ncn.

b) Memory unit, denoted as M = {M1,M2, . . . ,Mnm},
where nm is the number of antibodies in the antibody group
of the memory units. The number of its clone is denoted as
ncm.

The operation of the immune maturation strategy of the
algorithm is as follows.

a) The optimal antibody in the common antibody group
is denoted as normgbest . Compare with the distance of each
antibodyMi inM with the preset distance threshold, denoted
as δ0, which means compare distance(normgbest ,Mi) with δ0.

When distance
(
normgbest ,Mi

)
< δ0 for all Mi,

if QoS
(
solution

(
normgbest

))
> QoS(solution(Mi)), then

replaceMi with normgbest .
When distance(normgbest ,Mi) > δ0 for all Mi, normgbest

replaces the worst antibody inM .

26400 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 15. Comparison of the algorithms in situation 2.

VOLUME 8, 2020 26401



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

TABLE 16. Comparison of algorithms in situation 3.

b) A new generation of memory unit antibodies is gener-
ated with the above method.

We adjust the algorithm with the following strategies.
i) Memory recall rate.
The memory recall rate is denoted as memoryrecall , which

represents the ratio of the memory unit to the normal antibody
population injected into the normal antibody group. In the
experiment, the number of antibodies exceeding the memory
unit means that the excellent individuals of the common
antibody group will be injected into the common antibody

group again, resulting in the decrease of the diversity of the
common antibody group and a decline in the performance
of the algorithm. The number of injections is denoted as
nr = memoryrecall ∗ ncm, and memoryrecall is set between
0 and 1.

ii) The variation strategies of the memory units and com-
mon antibody populations.

After the experiments, we discover that compared with the
gauss variation, the single-point variation has a better perfor-
mance in the discrete combinatorial optimization problem.

26402 VOLUME 8, 2020



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

Based on the algorithm framework proposed by Jiao [45],
our algorithm is implemented with the above adjustments
for considering monoclone and multi-clone immune memory
cloning programming. Monoclone and multi-clone varia-
tion strategies adopt single-point uniform distribution vari-
ations, and multi-clone crossover strategies adopt single-
point crossovers. A comparison of algorithms comprised of
the standard genetic algorithm, monoclone selection algo-
rithm, and multi-clone selection algorithm along with the
improvements of these three algorithms, monoclone immune
memory clone programming algorithm, and multi-clone
immune memory clone programming algorithm belonging to
situation 2 is shown in Table 15.

The results of these experiments show that the immune
memory mechanism does not improve optimization as
expected, and the high recall rate of the immune memory
greatly affects the population diversity for the discrete com-
binatorial optimization problem. The injection of the immune
memory reduces new mutated antibodies, inhibits population
diversity, and leads to an increase in the possibility of local
convergence.

Based on these considerations, we improve the IMCSA and
propose specific improvements. A comparison of algorithms
comprising the standard genetic algorithm, monoclone selec-
tion algorithm, multi-clone selection algorithm, monoclone
immune memory clone programming algorithm, multi-clone
immune memory clone programming algorithm, and their
improvements belonging to situation 3 is shown in Table 16.

REFERENCES
[1] M. E. Kholy and A. E. Fatatry, ‘‘Framework for interaction between

databases and microservice architecture,’’ IT Prof., vol. 21, no. 5,
pp. 57–63, Sep. 2019.

[2] A. Koschel, I. Astrova, and J. Dotterl, ‘‘Making the move to microser-
vice architecture,’’ in Proc. 2017 Int. Conf. Inf. Soc. (I-Soc.), Jul. 2017,
pp. 74–79.

[3] M.Kalske, N.Mäkitalo, and T.Mikkonen, ‘‘Challenges whenmoving from
monolith to microservice architecture,’’ in Proc. Int. Conf. Web Eng., 2017,
pp. 32–47.

[4] C. Esposito, A. Castiglione, and K.-K.-R. Choo, ‘‘Challenges in delivering
software in the cloud asmicroservices,’’ IEEECloud Comput., vol. 3, no. 5,
pp. 10–14, Sep. 2016.

[5] S. Li, ‘‘Understanding quality attributes in microservice architecture,’’
in Proc. 24th Asia–Pacific Softw. Eng. Conf. Workshops (APSECW),
Dec. 2017, pp. 9–10.

[6] Y. Que, W. Zhong, H. Chen, X. Chen, and X. Ji, ‘‘Improved adaptive
immune genetic algorithm for optimal QoS-aware service composition
selection in cloud manufacturing,’’ Int. J. Adv. Manuf. Technol., vol. 96,
nos. 9–12, pp. 4455–4465, Jun. 2018.

[7] X. Sun, J. Niu, Q. Gong, and Z. Li, ‘‘Web services selection strategy based
on combination weighting approach,’’ Appl. Res. Comput., vol. 34, no. 8,
pp. 174–177 and 194, 2017.

[8] Y. Ma, S. Wang, Q. Sun, and F. Yang, ‘‘A Web services QoS measure-
ment algorithm that comprehensively considers subjective and objective
weights,’’ J. Softw., vol. 25, no. 11, pp. 2473–2485 2014.

[9] C. Fang, J. Wang, and Z. Yu, ‘‘Web service selection based on dynamic
QoS,’’ Comput. Sci., vol. 44, no. 5, pp. 245–250, 2017.

[10] Y. Zhuang, P. Zhang, W. Li, J. Feng, and Y. Zhu, ‘‘An environmentally
sensitive approach to Web service QoS monitoring,’’ J. Softw., vol. 27,
no. 8, pp. 1978–1992, May 2017.

[11] K. Xu, X. Zhu, and X. Jin, ‘‘Research on personalized web service rec-
ommendation method based on improved cooperative filtering,’’ Comput.
Tech. Develop., vol. 28, no. 1, pp. 64–68, Jan. 2018.

[12] P. Zhang, L. Wang, S. Ji, and W. Li, ‘‘Prediction method of Web ser-
vice QoS based on multivariate time series,’’ J. Softw., vol. 30, no. 6,
pp. 1742–1758, 019.

[13] B. Tan, H. Ma, Y. Mei, and M. Zhang, ‘‘Evolutionary multi-objective
optimization for Web service location allocation problem,’’ IEEE Trans.
Services Comput., to be published.

[14] Y. Mao, J. Liu, R. Hu, M. Dong, and M. Shi, ‘‘The Sigmoid function is
adopted forWeb service cooperative filtering recommendation algorithm,’’
J. Frontiers Comput. Sci. Tech., vol. 11, no. 2, pp. 314–322, 2017.

[15] G. Zou, M. Jiang, S. Niu, H. Wu, S. Pang, and Y. Gan, ‘‘QoS-aware Web
service recommendation with reinforced cooperative filtering,’’ in Proc.
Int. Conf. Service-Oriented Comput., 2017, pp. 430–445.

[16] W. Tan, Y. Zhao, X. Hu, L. Xu, A. Tang, and T. Wang, ‘‘A method towards
Web service combination for cross-organisational business process using
QoS and cluster,’’ Enterprise Inf. Syst., vol. 13, no. 5, pp. 631–649,
May 2019.

[17] L. Yao, Q. Z. Sheng, A. H. Ngu, J. Yu, andA. Segev, ‘‘Unified collaborative
and content-based Web service recommendation,’’ IEEE Trans. Services
Comput., vol. 8, no. 3, pp. 453–466, May 2015.

[18] Y. Ma, S. Wang, P. C. Hung, C.-H. Hsu, Q. Sun, and F. Yang, ‘‘A highly
accurate prediction algorithm for unknown Web service QoS values,’’
IEEE Trans. Services Comput., vol. 9, no. 4, pp. 511–523, Jul. 2016.

[19] J. Xu, Z. Zheng, and M. R. Lyu, ‘‘Web service personalized quality of
service prediction via reputation-based matrix factorization,’’ IEEE Trans.
Rel., vol. 65, no. 1, pp. 28–37, Mar. 2016.

[20] Z. Chen, L. Shen, and F. Li, ‘‘Your neighbors are misunderstood: On mod-
eling accurate similarity driven by data range to cooperative Web service
QoS prediction,’’ Future Gener. Comput. Syst., vol. 95, no. 6, pp. 404–419,
2019.

[21] D. Wang, Y. Yang, and Z. Mi, ‘‘A genetic-based approach to Web service
composition in geo-distributed cloud environment,’’ Comput. Electr. Eng.,
vol. 43, pp. 129–141, Apr. 2015.

[22] Z.-Z. Liu, D.-H. Chu, Z.-P. Jia, J.-Q. Shen, and L. Wang, ‘‘Two-stage
approach for reliable dynamic Web service composition,’’ Knowl.-Based
Syst., vol. 97, pp. 123–143, Apr. 2016.

[23] G. N. Rai, G. R. Gangadharan, V. Padmanabhan, and R. Buyya, ‘‘Web ser-
vice interaction modeling and verification using recursive composition
algebra,’’ IEEE Trans. Services Comput., to be published.

[24] C. Lu and J. Kou, ‘‘Multi-attribute decision making and adaptive genetic
algorithm for Web service composition QoS optimization,’’ Comput. Sci.,
vol. 46, no. 02, pp. 196–204 2019.

[25] J. Shen, C. Luo, Z. Hou, and Z. Liu, ‘‘Improved genetic algorithm for QoS-
aware logistics Web service combination,’’ J. Chin. Comput. Syst., vol. 40,
no. 01, pp. 38–41, Jan. 2019.

[26] H. Huang and J. Sun, ‘‘Web service composition selection algorithm
based on improved BPSO,’’ Comput. Eng., vol. 37, no. 24, pp. 266–268,
Dec. 2011.

[27] W. Tan, Z. Yao, and J. Ting, ‘‘Constraint-based QoS-aware Web service
composition in cross-organizational cooperation,’’ Comput. Eng., vol. 44,
no. 11, pp. 73–81, Nov. 2018.

[28] Y. Xia, P. Cheng, J. Chen, andX. Kong, ‘‘Service composition optimization
based on improved ant colony algorithm,’’ Chin. J. Comput., vol. 35, no. 2,
pp. 270–281, Jun. 2011.

[29] L. Liu and D. Yang, ‘‘Multi-objective genetic algorithm for service level-
aware service combination problem,’’ J. Jilin Univ. (Eng. Tech. Ed.),
vol. 45, no. 1, pp. 267–273, Jun. 2015.

[30] A. Halfaoui, F. Hadjila, and F. Didi, ‘‘QoS-aware Web services selection
based on fuzzy dominance,’’ in Computer Science and its Applications.
Cham, Switzerland: Springer, 2015.

[31] X. Xu, H. Rong, E. Pereira, andM. Trovati, ‘‘Predatory search-based chaos
turbo particle swarm optimisation (PS-CTPSO): A new particle swarm
optimisation algorithm for Web service combination problems,’’ Future
Gener. Comput. Syst., vol. 89, pp. 375–386, Dec. 2018.

[32] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E. Dashti,
‘‘CSA-WSC: Cuckoo search algorithm for Web service composition in
cloud environments,’’ Soft Comput., vol. 22, no. 24, pp. 8353–8378,
Dec. 2018.

[33] F. Dahan, H. Mathkour, and M. Arafah, ‘‘Two-step artificial bee colony
algorithm enhancement for QoS-aware Web service selection problem,’’
IEEE Access, vol. 7, pp. 21787–21794, 2019.

[34] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, ‘‘Performance modeling and
workflow scheduling of microservice-based applications in clouds,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 9, pp. 2114–2129, Sep. 2019.

VOLUME 8, 2020 26403



M. Gao et al.: Optimization of Microservice Composition Based on Artificial Immune Algorithm

[35] M. Lin, J. Xi, W. Bai, and J. Wu, ‘‘Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud,’’ IEEE
Access, vol. 7, pp. 83088–83100, 2019.

[36] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ‘‘Application deploy-
ment using microservice and Docker containers: Framework and optimiza-
tion,’’ J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct. 2018.

[37] C. Guerrero, I. Lera, and C. Juiz, ‘‘Resource optimization of container
orchestration: A case study in multi-cloud microservices-based applica-
tions,’’ J. Supercomput., vol. 74, no. 7, pp. 2956–2983, Jul. 2018.

[38] C. Guerrero, I. Lera, and C. Juiz, ‘‘Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,’’ J. Grid Com-
put., vol. 16, no. 1, pp. 113–135, Mar. 2018.

[39] A. Jindal, V. Podolskiy, and M. Gerndt, ‘‘Performance modeling for cloud
microservice applications,’’ in Proc. 10th ACM/SPEC ICPE, Apr. 2019,
pp. 25–32.

[40] R. Pietrantuono, R. Stefano, and G. Antonio, ‘‘Run-time reliability esti-
mation of microservice architectures,’’ in Proc. 29th ISSRE, Oct. 2018,
pp. 25–35.

[41] V. Singh and K. P. Sateesh, ‘‘Container-based microservice architecture for
cloud applications,’’ in Proc. IICCCA, May 20172017.

[42] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano,
R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang, ‘‘Infrastruc-
ture cost comparison of running Web applications in the cloud using AWS
Lambda and monolithic and microservice architectures,’’ in Proc. 16th
IEEE/ACM Int. Symp. CCGrid, Jul. 2016, pp. 179–182.

[43] M. Gao, ‘‘Modeling, service planning and service composition in
knowledge-intensive collaborativeworkflows,’’ Ph.D. dissertation, Schlool
Manage. Sci. Eng., Dongbei Univ. Finance Econ., Dalian, China, 2013.

[44] H. Du, L. Jiao, and R. Liu, ‘‘Adaptive polyclonal programming algo-
rithm with applications,’’ in Proc. 5th Int. Conf. ICCIMA, Sep. 2003,
pp. 350–355.

[45] L. Jiao, The Calculation, Learning and Recognition of Immune Optimiza-
tion. Beijing, China: Science Press, 2006.

[46] J. Feng and L. Kong, ‘‘Research onWeb service compositionmethod based
on fuzzyQoS and preferenceweight,’’ J. Chin. Comput. Syst., vol. 33, no. 7,
pp. 1516–1521, 2012.

[47] T.-C. Wang and Y.-H. Chen, ‘‘Applying fuzzy linguistic preference rela-
tions to the improvement of consistency of fuzzy AHP,’’ Inf. Sci., vol. 178,
no. 19, pp. 3755–3765, Oct. 2008.

[48] S. Russell, Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1995.

MING GAO received the B.E. degree in
management information system from the Depart-
ment of Economic Information, Dongbei Univer-
sity of Finance and Economics (DUFE), Dalian,
China, in 2002, the M.S. degree in information
management from DUFE, in 2004, and the Ph.D.
degree in information technology and manage-
ment from the School of Management Science
and Engineering (SMSE), DUFE, in 2013. He is
currently an Associate Professor with SMSE,

DUFE. His research interests include business process management, web
service composition, cloud computing, and big-data applications.

MINGXIA CHEN received the B.E. degree in
engineering management from Liaoning Tech-
nical University, Huludao, China, in 2014. She
is currently pursuing the degree in manage-
ment science and engineering with the Dong-
bei University of Finance and Economics. Her
research interests include web service composi-
tion, cloud computing, and big-data applications.

AN LIU received the B.E. degree in logis-
tics management from the Dalian University of
Finance and Economics, Dalian, China, in 2014.
She is currently pursuing the degree in manage-
ment science and engineering with the Dong-
bei University of Finance and Economics. Her
research interests include web service composi-
tion, cloud computing, and big-data applications.

WAI HUNG IP (Senior Member, IEEE) received
the LL.B. degree (Hons.) from the University of
Wolverhampton, the M.Sc. degree in industrial
engineering from Cranfield University, the MBA
degree from Brunel University London, and the
Ph.D. degree from Loughborough University,
U.K.

He is currently a Principal Research Fellowwith
the Department of Industrial and Systems Engi-
neering, The Hong Kong Polytechnic University,

and a Professor Emeritus and an Adjunct Professor of Mechanical Engineer-
ing with the University of Saskatchewan, Canada.

Prof. Ip is a member of the Hong Kong Institution of Engineering.

KAI LEUNG YUNG received the B.Sc. degree
in electronic engineering from Brighton Univer-
sity, in 1975, the M.Sc. and DIC degrees in auto-
matic control systems from the Imperial College
of Science, Technology and Medicine, Univer-
sity of London, in 1976, and the Ph.D. degree
in microprocessor applications in process control
from Plymouth University, U.K., in 1985.

He became a Chartered Engineer (C.Eng.,
MIEE), in 1982. He is currently the Associate

Head and the Chair Professor of the Department of Industrial and Systems
Engineering, The Hong Kong Polytechnic University. His research interests
include space systems, mechatronics, robotics and automatons, AI, and big
data.

26404 VOLUME 8, 2020


