a2 United States Patent

US010178204B2

ao) Patent No.: US 10,178,204 B2

Luo et al. 45) Date of Patent: Jan. 8, 2019
(54) INFORMATION PROCESSING METHOD (52) US. CL
AND DEVICE CPC HO4L 67/42 (2013.01); HO4L 1/1678
(2013.01); HO4L 43/106 (2013.01); HO4L
(71) Applicants: The Hong Kong Polytechnic 69/16 (2013.01);
University, Hong Kong (CN); (Continued)
TENCENT TECHNOLOGY (58) Field of Classification Search
(SHENZHEN) COMPANY CPC HO4L 43/0835; HO4L 43/0864; HO4L
LIMITED, Shenzhen, Guangdong (CN) 43/087; HO4L 43/0882; HO4L 43/103;
HO4L 43/106; HO4L 67/42; HO4L 69/16
(72) Inventors: Xiapu Luo, Shenzhen (CN); Jingang See application file for complete search history.
Hou, Shenzhen (CN); Zhiwei Liu, (56) References Cited
Shenzhen (CN); Xianneng Zou,
Shenzhen (CN); Juhong Wang, U.S. PATENT DOCUMENTS
Shenzhen (CN); Lei Xue, Shenzhen 3707.186 A 12/1972 Zomilla et al
K . . ,707, orrilla et al.
&SN)’ YaJ{‘;,‘“ g?lng’zshenéhﬁn (CN); 4,897,908 A 2/1990 Henriksson
eigang Wu, Shenzhen (CN) (Continued)
(SHENZHEN) COMPANY
LIMITED, Shenzhen, Guangdong DE 3022480 Al 1/1982
Province (CN); THE HONG KONG EI]:: 1?(5)4612225 ﬁé ?gggz
EOLYEECI'%EI{IS UNIVERSITY, EP 1995543 Al 11/2008
ong RKong p 08-291996 A 11/1996
WO 2009066260 Al 5/2009
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 380 days.
J. Sommers, P. Barford, N. Duffield, and A. Ron, “A framework for
(21) Appl. No.: 14/671,544 multi-objective sla compliance monitoring,” in Proc. IEEE INFOCOM,
2007, pp. 2446-2450.
(22) Filed: Mar. 27, 2015 (Continued)
Primary Examiner — Asad M Nawaz
(65) Prior Publication Data Assistant Examiner — Saad A. Waqas
US 2016/0119214 Al Apr. 28, 2016 (74) Allorney, Agent, or Firm — Morgan, Lewis &
Bockius LLP
(30) Foreign Application Priority Data 7 ABSTRACT
It is described an information processing method and device.
Oct. 27, 2014 (CN) o 2014 1 0584882 It is received a request for service data from a client device.
In response to the request for service data, it is sent at least
(51) Int.CL two probing packets which contain the service data to the
HO4L 29/06 (2006.01) client device on a forward path which is from a server to the
HO4L 1/16 (2006.01) client device. It is obtained timing information, which
HO4L 1226 (2006.01) (Continued)
Web Server + Resource Server + Web Server +
OWPScope OWPScope OWPScope
o H &
\"é? s 7 &
““““““ T A
B Try T [| [Tun Tz |
[[
| " e ’ £ N I
- | Wiy | T | 28905 | }
@.’ G| VN T T
Y| NTRTRRT [J e . o Tme

Interfaces Request a web

page containing
resources for
measurement.

Conduct forward-path
measurements through
requesting a wehb object.

Conduct Backward-path

measurements through

sending back the timing
information.

US 10,178,204 B2
Page 2

includes: a time stamp corresponding to the service data, a
time stamp corresponding to the request for the service data,
and time stamps corresponding to at least two backward-
path packets sent by the client device on a backward path,
the backward path being from the client device to the server.
It is determined according to the timing information a
one-way path metric.

15 Claims, 10 Drawing Sheets

(52) US.CL
CPC ... HO4L 43/087 (2013.01); HOAL 43/0835
(2013.01); HO4L 43/0864 (2013.01); HO4L
43/0882 (2013.01); HO4L 43/103 (2013.01);
HO4L 43/14 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

6,442,141 B1* 8/2002 Borella HO4L 12/2602
370/248
6,868,094 B1* 3/2005 Bordonaro HO4L 41/5009
370/516
7,457,868 B1* 11/2008 Guoccccoonnen HO4L 12/2602
709/203

2005/0040023 Al 2/2005 Hino et al.

2007/0076605 Al* 4/2007 Cidon ... HO4L 12/2697
370/230
2008/0037420 Al* 2/2008 Tang HO4L 1/1607
370/229
2008/0259813 Al* 10/2008 Matta HO4L 12/2602
370/252
2009/0213828 Al* 82009 Brundage ... GO1S 5/0289
370/338
2010/0128606 Al* 5/2010 Patel HO4L 12/5691
370/235
2010/0315958 Al* 12/2010 Luoccoeernenn HO4L 12/2602
370/248
20110161701 A1* 6/2011 BLXt .o HO3L 1/026
713/320
2015/0333993 Al* 11/2015 Welin HO4L 43/0882
370/252

OTHER PUBLICATIONS

D. Croce, T. En-Najjary, G. Urvoy-Keller, and E. Biersack, “Capca-
ity estimation of ADSL links,” in Proc. ACM CoNEXT, 2008, Dec.
10-12, 2008.

R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe:
A simple and accurate capacity estimation technique,”in Proc. ACM
SIGCOMM, 2004.

X. Luo, E. Chan, and R. Chang, “Design and implementation of
TCP data probes for reliable and metric-rich network path moni-
toring,” in Proc. USENIX ATC, 2009.

Ying Zhang, 7Z. Morley Mao, and Ming Zhang, “Detecting traffic
differentiation in backbone isps with NetPolice,” in Proc. ACM
IMC, 2009.

M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N.
Weaver, and V. Paxson, “Fathom: a browser-based network mea-
surement platform,” in Proc. ACM IMC, 2012.

R. Rajamony and M. Elnozahy, “Measuring client-preceived response
time on the www,” in Proc. USENIX USITS, 2001.

R. Krishnan, H.Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson and J. Gao, “Moving beyond end-to-end path infor-
mation to optimize CDN performance,” in Proc. ACM IMC, 2009.
C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr:
Illuminating the edge network,” in Proc. ACM IMC, 2010, pp.
246-259.

A. Janc, C. Wills, and M. Claypool, “Network performance evalu-
ation in a web browser,” in Proc. IASTED PDCS, 2009.

P. Kanuparthy and C. Dovrolis, “Pythia: Diagnosing performance
problems in wide area providers,” in Proc. USENIX ATC,2014.
R. Mok, X. Luo, E. Chan, and R. Chang, “QDASH: a QoE-aware
DASH system,” in Proc. ACM MMSys, 2012.

X. Zhou and P. Mieghem, “Reordering of IP packets in internet,” in
Proc. PAM, 2004.

S. Savage, “Sting: a TCP-based network measurement tool,” in
Proc. USENIX USITS, 1999.

H. Balakrishnan, V. Padmanabhan, G. Fairhurst, and M. Sooriyabandara,
“TCP performance implication of network path asymmetry,” RFC
3449, IETF, 2002, pp. 1-41.

E Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang, “Trio:
Measuring asymmetric capacity with three minimum round-trip
times,” in Proc. ACM CoNEXT, 2011.

R. Mahajan, M. Zhang, L. Poole, and V. Pai, “Uncovering perfor-
mance differences among backbone ISPs with Netdiff,” in Proc.
NSDI, 2008.

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level
Internet path diagnosis,” in Proc. ACM SOSP, 2003.

European Search Report issued in European Patent No. 14003968.6
dated Apr. 30, 2015.

Constantinos Dovrolis et al., “Packet-Dispersion Techniques and a
Capacity-Estimation Methodology”, IEEE/ACM Transactions on
Networking, vol. 12, No. 6, Dec. 2004, pp. 963-977.

Tadayoshi Kohno et al., “Remote Physical Device Fingerprinting”,
Copyright the IEEE Symposium on Security and Privacy May 25,
2005.

* cited by examiner

U.S. Patent

Jan. 8, 2019 Sheet 1 of 10 US 10,178,204 B2
FIG. 1
it is received a request from a client device for 101

service data, and then the requested service data |

are encapsulated into at least two probing -

packets, afterwards the at least two probing
packets are sent out via a forward path

102

timing information is obtained -

A 4

a one-way path metric is determined accordingto | .~
the obtained timestamps

FIG. 2
information
processing device
first packet- /21
processing
unit
22
//’
obtaining unit -~
23
determining |
unit

U.S. Patent Jan. 8, 2019 Sheet 2 of 10 US 10,178,204 B2

FIG 3

Client device

31
second packet- | "
processing unit

32
measurement |
unit
FIG 4

Resource Servers

Client

U.S. Patent Sheet 3 of 10

Jan. 8, 2019

FIG. 5

Resource Server +
OWPScope

Web Server +
OWPScope

TRq TRm Tsz l

US 10,178,204 B2

Web Server +
OWPScope

| |
l
Rg._p/'Rg p I Reguest |
| Vo I Ra Rp,\ \sz | other web | Mty M, |
| \ \T o | Tiga | 2008 | |
. o
Client ! T M‘TV |
NT/RT/HRT ‘ :—rfaquests tart respo'nsesran respons%End ! _JT'me
Interfaces Request 3 web Conduct forward-path Conduct Backward-path
page containing measurements through measurements through
resources for requesting a web object. sending back the timing
measurement. information.
FIG. 6a
Resource
Server+OWPscope
Timeout
\ Pure
. ACK
Client
\ / Time
NT/RTHRT
Interfaces requestStart responseStan—responseEnd

U.S. Patent Jan. 8, 2019 Sheet 4 of 10 US 10,178,204 B2

FIG. 6b
Resource
' Server+OWPscope
N
Q i Rp1 Rp2
RqT X Rql' *P:
NS
> Rq2
§ Client)
e \/ \/
l Time
NT/RT/HRT AN responseEnd
Interfaces Timeout
requestStart
responseStart
FiG. 6¢
Resource
' Server+OWPscope
§
o - R 2 . [
x O RPN\ P pl | \Rp2
Ratf XX Rq2
Rqi Pure
VN
v { .
NT/RT/HRT || Timeout | | oshonseStart] Time

Interfaces '
requestStart responseknd

U.S. Patent Jan. 8, 2019 Sheet 5 of 10 US 10,178,204 B2

FIG. 7a

Web Server+OWPscope T"WZ T'\{'”

Pure

X ACK
MI [

MI2 MI,

\

NT/RT/HRT - -~ Time
Timeout
Interfaces

T'mit

FIG. 7b

Web Server+OWPscope ™I T™I2

l l
@ Pure
ACK
M ><
\> TIMH AZ MIZ

@"" Client
Y

NT/RT/HRT - N —
interfaces Timeout

U.S. Patent Jan. 8, 2019 Sheet 6 of 10 US 10,178,204 B2

FIG. 7¢
' Web Server+OWPscope T Tz
< i]
Sit Pure
>< >< VT ACK

NT/RT/HRT <w-->| Time
interfaces Timeout
FIG. 8

' Resource Server+OWPscope
5

Rg2
Pure
ACK

W/

NT/RT/HRT :
Interfaces requestStart responseStart= Time
responsekEnd

(.

U.S. Patent Jan. 8, 2019 Sheet 7 of 10 US 10,178,204 B2

FIG 9
Measurement component
NT/HRT-based RT/HRT-based <;f>
measurement measurement =
»
-
Y :
(]
@
Packet handling component §
=
Packet Packet 8
transmission capture g
S
3
. Incoming e
Probing/ ackets =
padding P
packets [libnetfilter_queue
) Linux
netfilter J
kerne!
Network device
FIG. 10
: Normal seenaris Wik 25% CPU Isad
B {sms : 3 b : kit ixB 10 53 108 38
LFF NT | OUBF0R42 | G2/0476 Q0337038 | LOGFIOSYE | 0.433/0.482 | 0110415 03370482 $.033/0.482
LOH NT | 0.033/0,657 0.233/0616 0 0.267/0.68 Q.2/0.6 DIB7S0572 1 QAB7/0.718 1.333/0,537 0.533/0.67

LOH KT | 01065 L O067/0.358 . 0.3/0.526 0.267f0.529 | 0033/0.652 | 0.362/0.657 $hIGTE5T §.3/8,526
W 8T | DIBFA0.373 | (AM458 0 GA33/066Y | 0.857/0.898 | B.333ML537 | D.364/0.482 0.033/0.18 $.233/0.36%
W CH NI 0.3/1.969 B2/0.6 | DBET/L6L | -L062/6.573 | 1.8/0.763 | 8.033/0.547 | -2.533/4.200 0.1/0.539
W CH RT! 0.087/6.68 [O363/L816 1 ORGT/LTAL | -1.233/0.803 | D.AR3/0.562 1 -8,133/0.921 -3.8/7.786 A.440.952
WIE_NT | -36.833/5.869 -38,6/12.005 -32.533/24.838 | 41.3/38.569 | -32.4/5.851 | -37.267/9.465 | ~45.633710.543 | -54.9/34.388
WOE_#Y | 013970305 | 0.067/0.359 . -DAIIM.IES | 0.067/0.892 | 0.133/0.218 | 9.13370.427 0.1f0.873 -0.533/3.082

U.S. Patent Jan. 8, 2019 Sheet 8 of 10 US 10,178,204 B2

FIG 11

Croes traffiy
Resource Server . B Web Server
+ OWPScope

Measurement traffic + OWPScope

ITG Receiver

Client(Browser)

FIG. 12a

=Backward pathg
==Forward path |
0.8 .« Round trip

ECDF

0.2b

S0 % 20 1o o 10 20 30 40
Delay jitter (ms}

U.S. Pat

Jitter {ms)

Jitter (ms)

ent

Jan. 8, 2019 Sheet 9 of 10 US 10,178,204 B2

FIG. 12b

300

Period 1 i Penod 2
AQDE e 8 IR

B OV S e e A NNV 458 N VSN NS N S e o

SQO'_ e .,_4..;:

Fo:ward~path jitter
Forward-—path packet !oss_ i

24 hours 86 400 000 ms

_.ﬁf?*ﬁ?

2 4 6 8 10 12 14 18 18

Time {(ms} x 10"

FIG. 12¢

500 et e

3008 -

200k

400bm”w.ﬁm.ww.ﬁmm

BN KR M B e s e e e e e e e NN R s Mo e e s e e

Béckward -path }itter 3 ; 1
Backward path packet iass

24 hours 88 400, ODG ms , |
Per;od'! Peﬁodz

U.S. Patent Jan. 8, 2019 Sheet 10 of 10 US 10,178,204 B2

FIG. 13

S

\ Cummunication 400

‘1 vr Device

Information
200‘\4 Memory («—» Processor <« processing _—300
device

Peripherals

10(}\/

500 7T

US 10,178,204 B2

1
INFORMATION PROCESSING METHOD
AND DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the priority of the Chinese
Patent Application No. 201410584882.0, entitled “INFOR-
MATION PROCESSING METHOD AND DEVICE,” filed
on Oct. 27, 2014, which is hereby incorporated by reference
herein in its entirety.

TECHNICAL FIELD

In various embodiments, the present disclosure relates to
the field of communications, and in particular to an infor-
mation processing method and device.

BACKGROUND

With the rapid development and considerable diversity of
1P services, it is very important to ensure the quality of data
transmission over the IP network.

The asymmetry of Internet paths stimulates the one-way
path measurement because of the asymmetric. Characteriz-
ing one-way path metrics from a web server is invaluable to
online services (e.g., video streaming and CDN (Content
Delivery Network)), because such knowledge allows the
providers to adaptively tune their services for improving
QoE (Quality of Experience) and better understand the
conditions of network paths between their client devices and
themselves. For instance, knowing one-way path perfor-
mance from a set of servers to a client device, a CDN
controller can direct the client device to the most suitable
server. Such information can also facilitate streaming ser-
vices to select a proper bitrate for a client device and help
service providers differentiate ISPs’ performance and diag-
nose network faults.

SUMMARY

According to an aspect of the disclosure, it is provided an
information processing method. It is received a request for
service data from a client device. In response to the request
for service data, it is sent at least two probing packets which
contain the service data to the client device on a forward
path which is from a server to the client device. It is obtained
timing information, which includes: a time stamp corre-
sponding to the service data, a time stamp corresponding to
the request for the service data, and time stamps correspond-
ing to at least two backward-path packets sent by the client
device on a backward path, the backward path being from
the client device to the server. It is determined according to
the timing information a one-way path metric.

According to another aspect of the disclosure, it is pro-
vided an information processing device. The device includes
one or more processors; and a memory coupled to the one or
more processors; program modules stored in the memory,
the program modules being executable by the one or more
processors to: receive a request for service data from a client
device; in response to the request for service data, send at
least two probing packets which contain the service data to
the client device on a forward path which is from the server
to the client device; obtain timing information, which com-
prises: a time stamp corresponding to the service data, a time
stamp corresponding to the request for the service data, and
time stamps corresponding to at least two backward-path

10

15

20

25

30

35

40

45

50

55

60

65

2

packets sent by the client device on a backward path which
is from the client device to the server; and determine
according to the timing information a one-way path metric.

According to another aspect of the disclosure, it is pro-
vided a non-transitory computer-readable storage medium
storing instructions thereon for execution by at least one
processing circuit. The instructions includes: receiving a
request for service data from a client device; in response to
the request for service data, sending at least two probing
packets which contain the service data to the client device on
a forward path which is towards the client device; obtaining
timing information, which include: a time stamp corre-
sponding to the service data, a time stamp corresponding to
the request for the service data, and time stamps correspond-
ing to at least two backward-path packets sent by the client
device on a backward path which is from the client device
to the server; and determining according to the timing
information a one-way path metric.

This section provides a general summary of the disclo-
sure, and is not a comprehensive disclosure of its full scope
or all of its features. Further areas of applicability will
become apparent from the description provided herein. The
description and specific examples in this summary are
intended for purposes of illustration only and are not
intended to limit the scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, embodiments of the present disclosure
will be discussed with reference to drawings. It should be
understood that the drawings illustrate generally, by way of
example, but not by way of limitation, various embodiments
discussed in the present disclosure.

FIG. 1 is a flow chart of an information processing
method according to an embodiment of the present disclo-
sure.

FIG. 2 is a schematic diagram illustrating the structure of
an information processing device according to an embodi-
ment of the present disclosure.

FIG. 3 is a schematic diagram illustrating a client device
according to an embodiment of the present disclosure.

FIG. 4 is a schematic diagram illustrating an application
scenario of selecting a suitable CDN server according to an
embodiment of the present disclosure.

FIG. 5 shows the measurement process according to an
embodiment of the present disclosure.

FIG. 6a shows the process of detecting the first probing
packet on the forward path is lost according to an embodi-
ment of the present disclosure.

FIG. 65 shows the process of detecting the second probing
packet on the forward path is lost according to an embodi-
ment of the present disclosure.

FIG. 6¢ shows the process of detecting both the first and
second probing packets on the forward path are lost accord-
ing to an embodiment of the present disclosure.

FIG. 7a shows the process of detecting the first backward-
path packet is lost according to an embodiment of the
present disclosure.

FIG. 75 shows the process of detecting the second back-
ward-path packet is lost according to an embodiment of the
present disclosure.

FIG. 7¢ shows the process of detecting both the first
backward-path packet and the second backward-path packet
are lost according to an embodiment of the present disclo-
sure.

US 10,178,204 B2

3

FIG. 8 shows the process of detecting forward-path
packet reordering according to an embodiment of the present
disclosure.

FIG. 9 shows the architecture of OWPScope according to
an embodiment of the present disclosure.

FIG. 10 shows approximation accuracy of using NT/RT in
different OS/browsers w/o intentionally introduced CPU
load, each cell contains the average value in millisecond and
the standard deviation, in which L: Linux; W: Windows; FF:
FireFox; CH: Chrome; IE: Internet Explorer, FireFox (v26)
does not support RT.

FIG. 11 shows the topology of the testbed.

FIG. 124 shows one-way delay jitter and round-trip delay
jitter.

FIG. 1256 shows forward-path delay jitter and packet loss.

FIG. 12¢ shows backward-path delay jitter and packet
loss.

FIG. 13 shows a structure of a server according to an
embodiment of the disclosure.

DETAILED DESCRIPTION

Despite its usefulness, measuring one-way metrics from a
web server is very challenging and existing solutions suffer
from the following limitations.

1) Few Low-level One-way Path Metrics

Low-level one-way metrics (e.g., packet loss, packet
reordering, jitter, and capacity, etc.) are indispensable for
characterizing path properties, because they directly affect
online services through factors like throughput, QoE, etc.
However, existing systems (e.g., speedtest, boomerang
(http://yahoo.github.io/boomerang)) can only measure a few
metrics, such as, round-trip time (RTT), TCP bulk-transfer
capacity, etc., and the accuracy is limited by their incapa-
bility to access low level information.

Packet loss may be referred to those lost during transmis-
sion over a one-way path. Packet reordering may indicate
that the sequence of packets arriving at a receiver is different
from the sequence of packets sent from a sender.

2) Deployment Issues

Most existing systems require installing specific soft-
wares or plugins at the client device side. Although they may
simplify the measurement, not all client devices are willing
to install such software/plugins due to security consider-
ations, limiting their popularity. As such, most existing
systems are only applied for client devices who require low
security (e.g., client devices without firewalls, or client
devices with firewalls which are in weak security). For client
devices with high security requirements, it may be impos-
sible to perform one-way path measurement since it is not
allowed to install specific software or plugins at the client
device side.

3) Heavy Overhead

Existing systems usually perform individual measurement
for each metric and therefore, cause heavy network overhead
when measuring multiple metrics. It is desirable to measure
multiple metrics simultaneously to reduce the impact of the
measurement on network paths.

4) Restricted Usage Due to Client-Device-Side Firewalls

Many existing systems conduct measurement by sending
special packets (e.g., ICMP (Internet Control Messages
Protocol)) instead of packets carrying application data to
induce responses from remote hosts. Although they do not
require software installation at remote hosts, they are unsuit-
able for server-side measurement because client devices’
perimeter firewalls usually filter out all these unsolicited
packets.

10

15

20

25

30

35

40

45

50

55

60

65

4

To overcome one or more of these limitations, embodi-
ments of the present disclosure provide an information
processing method, capable of obtaining timing information,
and based on which determining one or more metrics.

Referring to FIG. 1, an information processing method
according to an embodiment of the present disclosure
includes steps 101-103 which may be implemented for
example at a server.

At step 101, it is received a request from a client device
for service data, and then the requested service data are
encapsulated into at least two probing packets, afterwards
the at least two probing packets are sent out via a forward
path.

In an example, the probing packet carry real application
data, that is, the requested service data is the payload of the
probing packet.

At step 102, timing information is obtained.

Since the probing packet is carried with service data (for
example, a web object such as a picture), the browser in the
client device can store a timestamp when the probing packet
arrives at the client device. As such, a timestamp can be
gathered through Javascript in the browser page.

The timing information may include a timestamp corre-
sponding to a piece of service data, a timestamp correspond-
ing to a request for service data, a timestamp corresponding
to a packet which is sent from a client device via a backward
path (referred to as backward-path packet). There may be at
least two backward-path packets.

In some examples, the client device may use Resource
Timing and High Resolution Time (RT/HRT) or NT and
HRT (NT/HRT) to obtain the time stamp when the request
is sent and the time stamps when the probing packets are
received, and then send the backward-path packets carrying
these obtained time stamps to the server. In some examples,
these obtained time stamps may be contained in the headers
of the backward-path packets.

The forward path and backward path have opposite trans-
mission directions. In an example, the forward path is from
the server to the client device and the backward path is from
the client device to the server.

The service data may be referred to data of various
applications. For example, the service data may be web
page, and a web object of the web page may be encapsulated
into the probing packet. That is, the probing packet carries
real application data, so that can penetrate the firewalls of
the client device. In another example, the service data may
be streaming media data.

At step 103, a one-way path metric is determined accord-
ing to the obtained timestamps. The one-way path metric can
characterize a transmission property of the one-way path.

The one-way path metric for the forward path may
include forward-path packet loss which is for example used
to determine a packet loss rate, forward-path packet reor-
dering, forward-path jitter and forward-path capacity. The
one-way path metric for the backward path may include
backward-path packet loss which is for example used to
determine a packet loss rate, backward-path packet reorder-
ing, backward-path jitter and backward-path capacity.

In an example, there may be two probing packets. The
request service data are encapsulated into a first probing
packet and a second probing packet. There is a first acknowl-
edge number included in (for example, the header of) the
first probing packet and a second acknowledge number
included in (for example, the header of) the second probing
packet. The second acknowledge number is equal to a sum
of the sequence number of the request for service data and

US 10,178,204 B2

5

the length of the payload. The first acknowledge number is
smaller than the second acknowledge number.

The following will elaborate how to determine the one-
way path metric.

1) Forward-path Packet Loss

Since packets in the client device cannot be captured, for
each piece of service data (e.g., a web object of a web page),
the embodiments of the present disclosure use two time-
stamps to detect the forward-path packet loss, i.e., a first
time stamp when a first byte of the piece of the service data
is received (the first byte of the piece of the service data is
always carried in the first probing packet), and a second time
stamp when the piece of the service data is completely
received (i.e., the last byte of the piece of the service data is
received).

If the first probing packet is lost, the client device will
receive the second probing packet firstly. The time stamp
when the client device receives the retransmitted first prob-
ing packet is the time stamp when the client device receives
the first byte of the piece of the service data, is also the time
stamp when the client device receives the complete service
data.

In the case the difference between the second time stamp
and the first time stamp corresponds to the server’s retrans-
mission timeout (RTO), it is indicated the second probing
packet is lost on the forward path.

In the case the difference between the second time stamp
and the first time stamp corresponds to the RTT, it is
indicated both the first and second probing packets are lost
on the forward path.

2) Backward-path Packet Loss

After receiving the two probing packet, the client device
will send back two packets over the backward path, i.e., a
first backward-path packet and a second backward-path
packet.

Let a third time stamp denote the time when the first
backward-path packet is received, and let a fourth time
stamp denote the time when the second backward-path
packet is received.

Both the third and fourth time stamps correspond to
backward-path packets sent from the client device over the
backward path.

It is determined the arrival sequence of the first and
second backward-path packet.

In the case the second backward-path packet arrives at the
server before the first backward-path packet, and the differ-
ence between the fourth time stamp and the third time stamp
corresponds to the RTO of the client device, it is indicated
the first backward-path packet is lost.

In the case the first backward-path packet arrives at the
server before the second backward-path packet, and the
difference between the fourth time stamp and the third time
stamp corresponds to the RTO of the client device, it is
indicated the second backward-path packet is lost.

In the case the first backward-path packet arrives at the
server before the second backward-path packet, and the
difference between the fourth time stamp and the third time
stamp corresponds to a first sum, it is indicated both the first
and second backward-path packets are lost. The first sum is
equal to the RTO of the client device plus a first difference
value. The first difference value is equal to the difference
between the timestamp when the second backward-path
packet is received and the timestamp when the first back-
ward-path packet is received in the case none of the first and
second backward-path packets is lost.

10

15

20

25

30

35

40

45

50

55

60

65

6

3) Forward-path Packet Reordering

It is determined whether the server receives an ACK
packet whose ACK number is equal to the sequence number
of the first probing packet, if yes, it is determined forward-
path packet reordering occurs.

4) Backward-path Packet Reordering

On the other hand, it is easier to detect packet reordering
on the backward path because the server can capture all
packets from the client device.

In case the second backward-path packet is received
before the first backward-path packet and the difference
between the third time stamp and the fourth time stamp is
much smaller than the RTO of the client device (e.g., the
ratio of the difference between the third time stamp and the
fourth time stamp to the RTO of the client device is smaller
than a preset threshold), it is determined packet reordering
on the backward path occurs.

5) Forward-path Capacity

The forward-path capacity may be determined as a ratio
of the length of the probing packet to a second sum. The
second sum is equal to the difference (i.e., a second differ-
ence) between the second time stamp and the first time
stamp plus the noise.

To raise the accuracy of the forward-path capacity, we
may, for example, dispatch Nu (Nu is an integer =1) padding
packets between the two probing packets. Padding packets
have TTL (Time To Live) values less than the TTL values of
probing packets, so as to make them not arrive at the client
device. In this example, the forward-path capacity is deter-
mined as a ratio of a first product to the second sum. The first
product is equal to the length of the probing packet multi-
plied by (Nu+1).

To raise the accuracy of the calculation of the forward-
path capacity, we may, for example, filter out biased sample
from the timing information before calculating the forward-
path capacity. The biased sample may be referred to those
time stamps associated with a piece of service data which is
requested by the client device.

6) Backward-path Capacity

The backward-path capacity may be determined as a ratio
of the length of the backward-path packets to a third
difference value. The third difference value is equal to the
difference between the fourth time stamp and the third time
stamp.

To raise the accuracy of the calculation of the backward-
path capacity, we may, for example, filter out biased sample
from the timing information before calculating the back-
ward-path capacity.

7) Forward-path Jitter

The forward-path jitter may be determined as a difference
between a fifth difference value and a fourth difference
value.

The fourth difference value is equal to a difference
between a time stamp when the client device sends the
request for the i? (i is an integer equal to or greater than 1)
service data (in case the webpage is requested, the request
for the i” service data is to request the i” web object in the
webpage) and a time stamp when the server sends a corre-
sponding probing packet (containing the service data corre-
sponding to the request for the i service data) for the initial
time. The fifth difference value is equal to a difference
between a time stamp when the client device sends the
request for the (i+1)” service data and a time stamp when the
server sends a corresponding probing packet (containing the
service data corresponding to the request for the (i+1)”
service data) for the initial time.

US 10,178,204 B2

7

When a web page is requested, the request for the i
service data points to the i web page in the requested web
page.

When a request for the (i+1)™ service data from the client
device is received, the difference between a time stamp
when a probing packet is sent and a time stamp when the
probing packet is received is equal to the fourth difference
value.

8) Backward-path Jitter

Let a difference between a time stamp when the client
device sends the request for the i service data and a time
stamp when the server receives the request for the i service
data as a sixth difference value. Let a difference between a
time stamp when the client device sends the request for the
(i+1)” service data and a time stamp when the server
receives the request for the (i+1)” service data as a seventh
difference value. The backward-path jitter is equal to the
difference between the seventh difference value and the sixth
difference value.

The embodiments of the present invention further pro-
vides an information processing device, including a first
packet-processing unit 21, an obtaining unit 22 and a deter-
mining unit 23, as shown in FIG. 2.

The first packet-processing unit 21 is configured to:
receive a request for service data from a client device; in
response to the request for service data, send at least two
probing packets which contain the service data to the client
device on a forward path.

The obtaining unit 22 is configured to obtain timing
information, which include: a time stamp corresponding to
the service data, a time stamp corresponding to the request
for the service data, and time stamps corresponding to at
least two backward-path packets sent by the client device on
a backward path.

The determining unit 23 is configured to determine a
one-way path metric according to the timing information.

As can be understood, the information processing device
can implement the information processing method of each
embodiment of the present disclosure.

The embodiments of the present disclosure further pro-
vide a server, including the information processing device as
shown in FIG. 2. The server may be for example shown as
FIG. 13.

In the scenario of CDN network, the information process-
ing device as shown in FIG. 2 may be located in a web server
and/or a resource server.

The embodiments of the present disclosure further pro-
vide a client device, including a second packet-processing
unit 31 and a measurement unit 32, as shown in FIG. 3.

The second packet-processing unit is configured to: send
a request for service data to a server, and send to the server
at least two backward-path packet carrying timestamps
obtained by the measurement unit 32.

The measurement unit 32 is configured to: obtain a time
stamp when the request for the service data is sent, time
stamps when the client device receives the probing packets,
time stamps when the client device sends backward-path
packets after receiving the probing packets.

In an example, the measurement unit 32 uses RT/HRT to
obtain these timestamps or uses NT/HRT to obtain these
timestamps.

In some examples, each unit of the information process-
ing device may be implemented as the microprocessor.

The embodiments of the present disclosure further pro-
vide an information processing system, including the server
and the client device as described herein.

10

15

20

25

30

35

40

45

50

55

60

65

8

In the following embodiments of the present application,
the information processing device is referred to as OWP-
Scope.

OWPScope consists of two key components: (i) a server-
side measurement module that sends crafted probing packets
and inspects packets from client devices to compute the
metrics and (ii) a piece of javascript as) code running in a
client device’s browser to collect required timestamps
through HTMLS interfaces. FIG. 4 illustrates one applica-
tion scenario of OWPScope, where it is deployed to a web
server and other resource servers in a CDN (content delivery
network) network. When a client device visits the front page
of the web server (step 1), the js code will be downloaded
and executed in the client device’s browser (step 2), some
embedded web objects (e.g., images) will be fetched from
other resource servers (steps 3, 4, 3', 4"). After the browser
receives probing packets carrying these web objects, which
are sent by OWPScope, the js code collects a set of timing
information and sends them back to the web server (step 5).
By processing such data, OWPScope obtains the one-way
performance between the client device and each resource
server and can redirect the client device to the most suitable
server (e.g., a server with the highest data transmission
speed).

The OWPScope empowers web servers to simultaneously
measure four low-level one-way path metrics, i.e., packet
loss, packet reordering, capacity, and jitters. OWPScope
exploits only standard features in HTMLS, HTTP, and TCP
without requiring specific software/plugins installed at the
client device side. With specially crafted probe packets in an
established TCP connection, OWPScope can penetrate cli-
ent-device-side firewalls and perform measurement with
low overhead by correlating information gleaned from the
application and the TCP levels. Moreover, OWPScope uses
packets carrying real application data (i.e., probing packets)
to conduct representative measurement.

Three HTMLS5 features, i.e., Navigation Timing (NT),
Resource Timing (RT) and High Resolution Time (HRT),
can be used by OWPScope to collect timing information on
the client device side. NT and HRT are W3C’s recommen-
dation (i.e., standard) and supported by major browsers,
while RT is W3C’s Candidate Recommendation and cur-
rently supported by IE and Chrome.

Specifically, NT provides an interface to obtain time-
stamps in millisecond resolution for a set of events during a
web page’s loading cycle. Meanwhile, RT offers an interface
to collect timing information associated with each resource
within a document. From NT (or RT), OWPScope collects
three timestamps: (1) requestStart, denoted as T _,, the time
immediately before the browser sends a request for a web
page (or a resource) (in other words, the time when the
browser sends a request for a web page (or a resource)); (2)
responseStart, denoted as T,,, the time immediately after the
browser receives the first byte of a web page (or a resource)
(that is, the time when the browser receives the first byte of
a web page (or a resource)); (3) responseEnd, denoted as
T,., the time immediately after the browser receives the last
byte of a web page (or a resource) (that is, the time when the
browser receives the last byte of a web page (or a resource).
In addition, OWPScope relies on HRT to obtain the current
time in sub-millisecond resolution, which is not subject to
system clock skew or adjustments.

FIG. 5 illustrates OWPScope’s measurement process and
the collected timing information when RT is available. The
forward path is from a server to a client device and the
backward path is from a client device to a server. At the
beginning, the client device (i.e., C) sends a request (i.e.,

US 10,178,204 B2

9

Rq_P) for a web page (i.e., Rp_P) that contains several small
web objects (like figures) and OWPScope’s js code. In some
examples, these web objects (i.e., resources in the resource
server), to be fetched by the client device, are in the same
server as the web page. In other examples, these web
objects, to be fetched by the client device, are in one or more
resource servers while the web page is in the web server, as
shown in FIG. 5.

Let W be one web object requested by C through Rq,
whose sending time is recorded in T .. In some example, the
client device or the client device’s browser runs the js code
and uses RT and HRT to record the sending time of Rq. On
the arrival of Rq, OWPScope logs its arrival time Ty, and
replies with 2 probing packets, which carry the content of W,
and Nu (Nuzl) padding packets, which are dispatched
between 2 probing packets. Padding packets are the same as
probing packets except that they have limited TTL values so
that they will be routed through the same path as probing
packets and dropped by a router a few hops away from C.
Sending padding packet is to increase the accuracy of a
one-way path metrics (will be explained below). In some
examples, there may be no padding packets (i.e., Nu=0).

Let Tg,, and T, be the sending time of Rp, and Rp,, and
T'g,1 and T'g,, denote the time when they reach C. The
browser records the time when Rp, (or Rp,) is delivered to
it in T, (or T,,) before rendering W. When Rp_P has
multiple web objects, the browser will record each object’s
T, T, and T,,. Finally, the js code in the web page fetches
the stored values through RT and sends them along with
padded content (may be any content) to OWPScope. The
padded content is long enough so that the client device will
send back 2 packets (i.e., MI;, and MI,), whose sending
times and arriving times are denoted as T", ;, and T, ,, (Which
may be obtained by C through the RT/HRT) respectively.
After a predefined delay, the web page will be automatically
reloaded for another round of measurement.

If the browser only supports NT, OWPScope regards the
requested web page (rather than resources of the web page)
as W. The browser will also record the arrival time of Rp,
(or Rp,) in T, (or T,,).

The following will discuss metric measurement methods.

1. One-way Packet Loss

1) One-way Packet Loss on the Forward Path

It is challenging to detect the loss of probing packets
because we cannot capture packets in C. OWPScope
addresses this issue by driving C to generate different
responses in the presence or the absence of probing packets.
More precisely, OWPScope instructs Rp1 to acknowledge
partof Rql. Let SN, and L, (which may be contained in
the header of Rql) denote the sequence number and the
length of Rql, respectively. OWPScope sets Rp, ’s acknowl-
edge number to SNy, +Lz,,/2 and that of Rp, to SN, +
Lggi-

1.1) Rql is Lost

A client device sends Rq1 to a resource server for request-
ing the web object W. The resource server sends probing
packets Rpl and Rp2 containing W to the client device.

As shown in FIG. 6a, if Rpl is lost, Rp2 triggers a pure
ACK packet. The server starts timing when sending Rp1, if
an ACK packet whose ACK number is SN, +Lz,,,/2 is still
not received when timeout occurs, the server retransmits
Rp1 after timeout, denoted as RpT, and then C sets T, and
T, with the same value (sometimes there may be negligible
difference due to noise). Because of the request-response
nature of HTTP, C can only send out Rq2 for next web object
through the same TCP connection after Rpl has been
received.

10

15

20

25

30

35

40

45

50

55

60

65

10

1.2) Rp2 is Lost

IfRp2 is lost as shown in FIG. 64, a pure ACK will be sent
after the delayed ACK timer (starting timing at the moment
when receiving Rp1) expires, indicating that Rp1 has been
received. Since Rp1 only acknowledges part of Rql, C will
retransmit the unacknowledged portion, denoted as RqT'.
The server will retransmit Rp2 after timeout (i.e., Rp2).
Therefore, the difference between Tpe and Tps approximates
to the server’s retransmission timeout (RTO). The new
request (i.e., Rq2) will be dispatched after Rp2 is received.

1.3) Both Rql and Rq2 are Lost

If both Rpl and Rp2 are lost, the client device will
retransmit the whole request (i.e., Rql) again, as shown in
FIG. 6(c). The interval between the arrival time of Rql and
that of Rql is around C’s RTO. The server will first
retransmit Rp1 (i.e., Rp1) that will trigger a pure ACK, and
then retransmit Rp2 (i.e., Rp2) after receiving the pure ACK.
Then, the difference between Tpe and Tps approximates to
RTT. Another request (i.e., Rq2) will be sent after Rp1 and
Rp2 arrive.

2) One-way Packet Loss on the Backward Path

FIG. 7a to FIG. 7c¢ illustrate how to detect backward-path
packet loss. It is easy as two packets will be returned and
OWPScope can capture them.

2.1) M1, is Lost

Referring to FIG. 7a, if MI, is lost, OWPScope first
observes MI, and then retransmit MI,. We use d,~IT,,.—
T, to differentiate it from the scenario when MI, and MI,
are reordered, because in the former case d,, is close to C’s
RTO whereas in the latter case d,, is usually much smaller.

2.2) Ml, is Lost

Referring to FIG. 7b, if MI, is lost, OWPScope first
observes MI1 and d,, is close to C’s RTO.

2.3) Both M1, and MI, are Lost

Referring to FIG. 7¢, if both packets are dropped and
retransmitted, (T,,,-T",,,) approximates to its normal
value plus C’s RTO.

2. One-way Packet Reordering

1) One-way Packet Reordering on the Backward Path

It is straightforward to detect packet reordering on the
backward path because OWPScope captures all packets
from C.

2) One-way Packet Reordering on the Forward Path

It is nontrivial to detect forward-path packet reordering
since OWPScope cannot capture packets in C.

This problem may be tackled by letting in-order probing
packets trigger responses different from that caused by
out-of-order probing packets. As shown in FIG. 8, the arrival
of Rp2 will induce a pure ACK packet whose acknowledge
number is equal to the sequence number of Rpl. After
receiving Rpl, C sends out a new request Rq2. Note that
OWPScope can distinguish the forward-path packet reor-
dering from forward-path packet loss according to Rq2
before retransmitting any packet, because C cannot send it
until receiving Rpl and Rp2 to the current request (i.e.,
Rql). This method is effective because the time lag of
reordered packets is quite small compared to the minimal
one-way delay (for example, the ratio of the two is less than
a preset threshold).

As shown in FIG. 8, a client device sends Rql to a server
for requesting W. SN, and L, , is the sequence number
and length of Rql, respectively. R,,’s ACK number is
SNg,1+Lz,1/2 and R ,’s ACK number is SNy, +Lz ;. Inthe
case out-of-order occurs (that is, Rp1 is sent before Rp2 but
Rp2 arrives at the client device first), the client device sends
back a pure ACK packet after receiving Rp2. The ACK
number of the pure ACK packet is equal to the sequence

US 10,178,204 B2

11

number of Rp1, according to which OWPScope determines
Rp2 is received first. In the case Rpl and Rp2 arrives at the
client device in sequence, the OWPScope will receive Rq2
rather than the pure ACK whose ACK number is equal to the
sequence number of Rpl.

3. One-way Capacity

1) One-way Capacity on the Forward Path

Let C; be the maximum number of bits that can be
transmitted on the j* link. The one-way path capacity is
equal to Q=min{C,},j=1, 2, .. . L, where L is the number of
links that compose the path. In FIG. 5, OWPScope uses
packet train to measure the forward-path capacity by send-
ing N=2+Nu packets (2 probing packets and Nu padding
packets) of size S bytes back-to-back. The packet dispersion
observed by C is 8,~1"zp>— 1"z, . However, they cannot be
obtained by OWPScope because we do not control C.
Instead, in an example, 3, may be estimated by using

Tpe—T}?S and then the capacity can be computed by Eq.(1)
following.
1 M
g W-bs_ 7R
F= Sy +& _6N+‘9’
NN

where & denotes the noise due to the approximation, S is
the size of the probing packet/padding packet.

The rational behind this packet train based approach is
three-fold.

First, the resolution of NT/RT (i.e., millisecond) limits the
minimal d,,that that can be measured and, thus, the maximal
capacity that can be measured by a packet-pair based
method (i.e., N=2). In contrast, 8,,can be increased by a long
packet train.

Second, the approximation may be biased by the noise
from OS/browser. Eq.(1) shows that the effect of noise can
be mitigated by increasing N.

Third, although a packet train measures the average
dispersion rate (ADR) in the presence of severe cross traffic,
ADR has two good properties: it is independent of the length
of packet train (i.e., N) so that OWPScope can increase N to
mitigate the effect of noise; the effect of cross traffic can be
alleviated by increasing the sending rate of probing packets.

In an example, the minimum-delay-sum principle can be
further employed to filter out biased samples. Let d, =T~
Tgpi and dp=T, ~Tg .. The principle specifies that if the
probing packets are affected by cross traffic, the sum of
packet delays will be increased. Therefore, in an example,
only samples that fulfill Eq.(2) should be used to compute
the forward-path capacity, so as to improve the accuracy of
forward-path capacity.

min{dn+dp}=min{dp }+min{d, }

2) One-way Capacity on the Backward Path

OWPScope use packet pair to measure backward-path
capacity as shown in Eq.(3), because it can capture packets
from C with high-resolution timestamp.

@

Qp=5/Tyr~Tasy' 3

where S denotes the size of the packet sent by the client
device (equal to the size of the probing packet).

In a similar example, we define d,,=T,,,-1",, and
d,,=T, ;-1 and use Eq.(4) to select unbiased samples
for calculating the backward-path capacity, so as to improve
the accuracy of backward-path capacity. 1',, may be
obtained through HRT.

min{d,,+dy, }=min{d,, }+min{d,,}

Q)

20

25

40

45

50

60

65

12

4. One-way lJitter

Let D=T -Tg,, and D,=T, -T, . Note that D,and D,
are not one-way delays, because the server and the client
device are usually not synchronized. Given a sequence of D
and D, samples, forward-path jitter and backward path jitter
can be computed using Eq.(5.1) and Eq.(5.2).

0,()=Di+1)-Di) 5.1)

0,(D)=Dp(i+1)-Dy (i) (5.2)

Since the clock skew in typical computer is around 1 part
per million (ppm), if the interval between samples is small
(e.g., 100 ms), the error in jitter measurement due to clock
skew is negligible (i.e., 0.1 us). Otherwise, the relative clock
skews may be removed by for example using the methods as
described in “Remote Physical Device Fingerprinting”.

FIG. 9 illustrates the architecture of OWPScope’s server-
side module according to an embodiment of the present
disclosure, which consists of three components. The mea-
surement component will conduct RT-based or NT-based
measurement depending on their availability. The former is
preferred since RT allows us to conduct multiple measure-
ments through several web objects in one web page.

The packet handling component sends probing/padding
packets through raw socket and capture incoming packets
through libnetfilter queue.

The management component forwards parameters and the
js code to the measurement component and then obtains the
raw measurement results (i.e., a sequence of timing infor-
mation for each web object) from it. After processing the
raw data (e.g., compute the loss rate, capacity, etc.), the
management component will make decision according to
service logic (e.g., redirect a client device to the most
suitable server in the CDN scenario) and store the results.

Since T,,-T,, is used to approximate to dy (i.e., T'gpy—
T'zp1), the following will evaluate its approximation accu-
racy.

Approximation Accuracy of Using NT/RT

The approximation accuracy is evaluate in two settings,
including a Linux machine (i3 CPU 2.4 GHZ and 8 GB
memory) running Ubuntu 12.04 with FireFox (v26) and
Chrome (v32), and a Window machine with the same
hardware running Windows 7 with IE (v11), FireFox (v26)
and Chrome (v32). We delay Rp2 by B (BE{30,50,100,
150}ms) to evaluate packet dispersion and use WireShark to
capture Rp1 and Rp2 at the client device side for calculating
T'zps—T'zp; - For each setting, we run the experiment for 30
times and calculate the mean and the standard deviation.
Moreover, we also examine the result after introducing 25%
CPU load to the PC.

FIG. 10 shows that the majority of the differences are
within [-1, 1]ms. It is acceptable as OWPScope can further
increase N to mitigate the effect of noise as shown in Eq.(1).
The difference obtained in Linux is usually smaller than that
in Windows. The largest difference was observed when
using NT within IE in Windows. In contract, the difference
is not significant when RT is used in IE. It may be due to the
implementation deficiencies as both NT and RT are new
standards. By studying the source codes of FireFox and
Chrome, we did observe some implementation issues,
including:

(1) Chrome records responseStart after processing an
HTTP header while Firefox does it before processing the
header. It may be the reason why Chrome’s difference
increases with additional CPU load;

US 10,178,204 B2

13

(2) In Windows, Chrome uses the function timeGet
Time() to retrieve the system time in milliseconds while
Firefox uses the function QueryPerformanceCounter() for
retrieving timestamp with higher resolution. It may be the
reason why Chrome has worse performance than FireFox;

(3) To ensure the timestamp increases monotonically,
Chrome introduces a set of functions that will adjust the raw
timestamp. These functions may introduce additional noise;

(4) Some issues in Chrome might have been discovered.

14
servers are deployed in Amazon EC2, which are located in
Singapore (SG), California (US), Tokyo (JP), and Sao paulo
(BR), individually. OWPScope is deployed on those servers
and uses RT to perform the measurement. We run IE 11 on
window 8.1 and Chromium 32.0 on Ubuntu 12.04 from a
residential network to visit the web server’s front page,
which includes images in different resource servers. The
download capacity of the residential network is 10 Mbps
(i.e., the forward-path capacity). Due to limited pages, we

For example, we fognd a “FIXME” comment in the function 10 only report the result for forward-path capacity as shown in
responseStart() saying that the time of responseStart may be Table 3. Since the estimated capacity of the four Internet
delayed. . paths are all around 10 Mbps, the bottleneck may be the
Many experiments are conducted to evaluate advantages residential network. As the web server has smaller capacity
the OWPScope. . (i.e., 5 Mbps), it becomes the bottleneck of that path. Table
1. Cont.rolled Experlment.s . 13 3 shows that the estimation accuracy increases with N,
We Vahdate.OWPScope in a testbed shown in FIG',H’ which is in consistent with Eq.(1), and two browsers lead to
where server-side modules of OWPScope are deployed in a similar results.
resource server and a web server. A MikroTik router is used
to limit the network capacity and D-ITG is employed to TABLE 3
generate cross traffic. 20
Packet Loss and Packet Reordering The estimated forward-path capacity (in Mbps) of five Internet paths.
To validate the detection of packet losses, we intentionally Each cell has two average values obtained from Chrome and IE.
drop Rp1 and/or Rp2. To emulate packet reordering on the X G Us » BR e
forward path, we let OWPScope send Rp2 before Rpl. The N
responses from the client device in these scenarios follow 25 32 11.27/10.99 11.25/10.69 10.98/10.68 11.07/11.15 5.55/5.27
what described before. 42 1030/10.10 10.49/10.84 10.40/11.02 10.27/10.61 5.25/5.40
Capaci 52 1033/10.24 10.07/1032 9.96/10.11 9.61/10.05 5.22/5.21
pacity
To evaluate OWPScope’s capability of measuring capac-
ity, we change the capacity of the path between the client For comparison, we use other tools, including Speedtest,
device and the resource server, and adjust the packet train’s 30 NPad, Netalyzr and Boomerang, to estimate the capacity
length (i.e., N). We run the experiment 30 times for each from their servers to the same client device. Speedtest
setting and list the mean and the standard deviation of selects one of its servers in the same region. NPad’s server
estimated capacities in Table 1. The results show that is hosted by M-Lab and Netalyzer has its own server. Since
OWPScope can accurately estimate the capacity with small boomerang requires the user to set up a server, we deploy it
standard deviation. Moreover, a longer packet train leads to 35 on an EC2 host in US. For each tool, the measurements were
better estimates, thus validating Eq.(1). repeated for 10 times and the average values for the traffic
TABLE 1
Capacity measurement in the testbed. N is the length
of packet train and Qg is the estimated capacity.
2 Mbps 5 Mbps 10 Mbps
N 10 30 30 50 50 100
Qp 217019 207005 561037 535015 100902 10.02/0.07
System Load volume, number of packets, and the estimated capacity are
We use siege (www.joedog.org) to simulate visitors to the computed and shown in Table 4.
resource server, who generate different number of packets 50
(i-e., 10, 30, 100). For each setting, siege runs for 10 minutes TABLE 4
and we log the average load at the end of each minute. Table
2 lists the mean of the ten results, showing that OWPScope Other systems' results and their traffic consumption.
introduces light overhead to the hosting server. N Tool Traffic Volume (MB) Number of packets @, (Mbps)
TABLE 2 speedtest 38.6 40,336 9.14
npad 30.7 21,826 8.12
Load of the resource server. netalyzr 98.86 198,936 9.29
boomerang 2.06 2,111 1.78
Number of users 10 packets 30 packets 100 packets 6
50 0.04 0.046 0.08 While Speedtest and Netalyzr can achieve better perfor-
100 0.045 0.056 0.085 mance in capacity measurement than NPad and boomerang,
their accuracies are still lower than that of OWPScope.
2. Internet Experiments Speedtest generated around 40 MB traffic for estimating
Capacity 65 RTT and upload/download speed. In contrast, OWPScope

Following FIG. 4, a web server is set up in a campus
network with limited capacity of 5 Mbps and four resource

can measure multiple one-way path metrics with much
fewer packets. Although boomerang only generated around

US 10,178,204 B2

15

2 MB traffic, its estimation is not reliable. Since Netalyzr
conducted many other measurements besides capacity esti-
mation, it generated almost 200 MB traffic, consuming much
bandwidth.

Path Performance Over Time

We deploy OWPScope and a web server on an EC2 host
in US, and launch a Chrome browser in the campus network
to periodically visit the server for two days. As shown in
FIG. 12(a), the forward-path jitter does not have the same
distribution as the backward-path jitter and the round-trip
jitter. Note that knowing one-way jitter is useful for services
sensitive to it (e.g., online streaming). FIG. 12(5) and FIG.
12(c) show the time sequence of one-way jitter and packet
loss. Both metrics demonstrate a diurnal pattern (e.g., period
1 and period 2 in both figures). Moreover, there is an obvious
correlation between jitter and packet loss (i.e., larger jitter
accompanied with more packet loss). Note that the forward
path and the backward path exhibited different performance.

NT and/or RT have been quickly adopted by the industry.
For example, Google uses them to measure “perceived
latency” and provides site speed reports. Yahoo adds the
support of NT in boomerang. However, to our best knowl-
edge, OWPScope is the first system exploiting NT/RT for
measuring low-level one-way path metrics.

Although several server-side measurement systems have
been proposed, none of them can measure one-way metrics
like OWPScope.

While some non-cooperative tools have been developed
to measure one-way metrics, the majority of them were
designed as a client-device-side tool without considering the
requirements of server-side measurement. For example,
client device’s firewall will filter out unsolicited TCP/UDP/
ICMP packets and thus renders some tools useless. Some
tools only support one or two types of one-way metrics (e.g.,
Sting for packet loss, CapProbe for packet reordering).
Although TRIO can measure one-way capacity on top of
OneProbe, the estimation of forward-path capacity may be
affected by the noise in the reverse path. In summary, none
of these tools has the same capability as OWPScope.

Thus, the major advantages of the present disclosure
include:

1) The OWPScope empowers web servers to simultane-
ously measure four low-level one-way path metrics, i.e.,
packet loss, packet reordering, capacity, and jitters;

2) OWPScope exploits only standard features in HTMLS5,
HTTP, and TCP without requiring specific software/plugins
installed at the client device side;

3) With specially crafted probe packets in an established
TCP connection, OWPScope can penetrate client-device-
side firewalls and perform measurement with low overhead
by correlating information gleaned from the application and
the TCP levels;

4) OWPScope uses packets carrying real application data
(i.e., probing packets) to conduct representative measure-
ment, avoiding causing heavy overhead.

When implemented in form of a software functional
module and sold or used as an independent product, a
module/unit of an embodiment of the present disclosure may
also be stored in a non-transitory computer-readable storage
medium. Based on such an understanding, the essential part
or a part of the technical solution of an embodiment of the
present disclosure contributing to prior art may appear in
form of a software product, which software product is stored
in storage media, and includes a number of instructions for
allowing a computer equipment (such as a personal com-
puter, a server, a network equipment, or the like) to execute
all or part of the methods in various embodiments of the

10

15

20

25

30

35

40

45

50

60

65

16

present disclosure. The storage media include various media
that can store program codes, such as a U disk, a mobile hard
disk, a Read-Only Memory (ROM), a magnetic disk, a CD,
and the like. Thus, an embodiment of the present disclosure
is not limited to any specific combination of hardware and
software.

Accordingly, an embodiment of the present disclosure
further provides a non-transitory computer storage medium
storing instructions (which may be executed by a processing
circuit) thereon for executing any information processing
method according to any embodiment of the present disclo-
sure.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “specific embodiment,” or the like
in the singular or plural means that one or more particular
features, structures, or characteristics described in connec-
tion with an embodiment is included in at least one embodi-
ment of the present disclosure. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment,” “in a
specific embodiment,” or the like in the singular or plural in
various places throughout this specification are not neces-
sarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined in any suitable manner in one or more embodi-
ments.

The terminology used in the description of the invention
herein is for the purpose of describing particular examples
only and is not intended to be limiting of the invention. As
used in the description of the invention and the appended
claims, the singular forms “a,” “an,” and “the” are intended
to include the plural forms as well, unless the context clearly
indicates otherwise. Also, as used in the description herein
and throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. It will also be understood that the term “and/or”
as used herein refers to and encompasses any and all
possible combinations of one or more of the associated listed
items. It will be further understood that the terms “may
include,” “including,” “comprises,” and/or “comprising,”
when used in this specification, specify the presence of
stated features, operations, elements, and/or components,
but do not preclude the presence or addition of one or more
other features, operations, elements, components, and/or
groups thereof.

While the foregoing disclosure discusses illustrative
aspects and/or embodiments, it should be noted that various
changes and modifications could be made herein without
departing from the scope of the described aspects and/or
embodiments as defined by the appended claims.

The invention claimed is:

1. A method applied in a server having one or more
processors and a memory for storing program modules that
are executed by the one or more processors, the method
comprising:

receiving a request for service data from a client device;

in response to the request for service data, identifying

service data corresponding to the request and encapsu-
lating the identified service data into at least two
probing packets including a first probing packet and a
second probing packet;

sending the at least two probing packets which contain the

service data to the client device on a forward path
which is from the server to the client device;
obtaining, from the client device, at least two backward-
path packets sent by the client device after receiving the
at least two probing packets on a backward path from
the client device to the server, the at least two back-

2 <

US 10,178,204 B2

17

ward-path packets carrying timing information at least
partially based on the at least two probing packets,
which comprises: a time stamp corresponding to the
service data including a first time stamp indicating the
time when the client device receives the first probing
packet and a second time stamp indicating the time
when the client device completely receives the second
time stamp, a time stamp corresponding to the request
for the service data, and time stamps corresponding to
the at least two backward-path packets sent by the
client device; and

determining according to the timing information a one-

way path metric, further comprising:

determining that the first probing packet is lost on the

forward path when the first time stamp is equal to the
second timestamp;

determining that the second probing packet is lost on the

forward path when a difference between the second
time stamp and the first time stamp corresponds to a
Retransmission TimeOut (RTO) of the server; and
determining that both the first probing packet and second
probing packet are lost on the forward path when a
difference between the second time stamp and the first
time stamp corresponds to a Round-Trip Time (RTT).

2. The method according to claim 1, wherein when there
are two backward-path packets consisting of a first back-
ward-path packet and a second backward-path packet, the
time stamp corresponding to at least two backward-path
packets sent by the client device on a backward path
comprises a third time stamp indicating the time when the
first backward-path packet is received and a fourth time
stamp indicating the time when the second backward-path
packet is received,

wherein in the case the one-way path metric is backward-

path packet loss, the determining according to the

timing information a one-way path metric comprises:

determining the first backward-path packet is lost,
when the second backward-path packet arrives
before the first backward-path packet and a differ-
ence between the fourth time stamp and the third
time stamp corresponds to the RTO of the client
device;

determining the second backward-path packet is lost,
when the first backward-path packet arrives before
the second backward-path packet and a difference
between the fourth time stamp and the third time
stamp corresponds to the RTO of the client device;
and

determining both the first backward-path packet and
second backward-path packet are lost, when the first
backward-path packet arrives before the second
backward-path packet, and a difference between the
fourth time stamp and the third time stamp corre-
sponds to it normal value plus the RTO of the client
device.

3. The method according to claim 1, wherein in the case
the one-way path metric is forward-path packet reordering,
the determining according to the timing information a one-
way path metric comprises:

determining whether an acknowledge (ACK) packet

whose ACK number is equal to the sequence number of
the first probing packet is received; and

in the case it is, determining forward-path packet reor-

dering occurs.

20

25

35

40

45

50

60

65

18

4. The method according to claim 1, wherein in the case
the one-way path metric is forward-path capacity, the deter-
mining according to the timing information a one-way path
metric comprises:

determining the forward-path capacity by dividing a size

of the probing packet by a sum of a difference between
the second time stamp and the first time stamp plus a
noise.

5. The method according to claim 4, wherein there are Nu
padding packets dispatched between the first and second
probing packets, wherein Nu is an integer greater than 0,
wherein each padding packet has a Time To Live (TTL) less
than the TTL of each of the first and second probing packets,

wherein the forward-path capacity is determined by divid-

ing a product of Nu-1 and the size of the probing
packet by a sum of a difference between the second
time stamp and the first time stamp plus the noise.

6. The method according to claim 5, wherein biased time
stamps are filtered out before determining the forward-path
capacity.

7. The method according to claim 1, wherein there are two
backward-path packets consisting of a first backward-path
packet and a second backward-path packet, the time stamp
corresponding to at least two backward-path packets sent by
the client device on a backward path comprises a third time
stamp indicating the time when the first backward-path
packet is received and a fourth time stamp indicating the
time when the second backward-path packet is received,

wherein in the case the one-way path metric is backward-

path capacity, the determining according to the timing
information a one-way path metric comprises:

determining the backward-path capacity by dividing a

size of the backward-path packet by a difference
between the fourth time stamp and the third time stamp.
8. The method according to claim 7, wherein biased time
stamps are filtered out before determining the backward-
path capacity.
9. The method according to claim 1, wherein in the case
the one-way path metric is forward-path jitter, the determin-
ing according to the timing information a one-way path
metric comprises:
determining the forward-path jitter by subtracting a fourth
difference value from a fifth difference value,

wherein the fourth difference value is equal to a difference
between a time stamp when the client device sends the
request for the i” service data and a time stamp when
the server sends a corresponding probing packet for the
initial time,

wherein the fifth difference value is equal to a difference

between a time stamp when the client device sends the
request for the (i+1)” service data and a time stamp
when the server sends a corresponding probing packet
for the initial time.

10. The method according to claim 1, wherein in the case
the one-way path metric is backward-path jitter, the deter-
mining according to the timing information a one-way path
metric comprises:

determining the backward-path jitter by subtracting a

sixth difference value from a seventh difference value,
wherein the sixth difference value is equal to a difference
between a time stamp when the client device sends the
request for the i” service data and a time stamp when
the server receives the request for the i” service data,
wherein the seventh difference value is equal to a differ-
ence between a time stamp when the client device

US 10,178,204 B2

19

sends the request for the (i+1)* service data and a time
stamp when the server receives the request for the
(i+1)” service data.

11. A non-transitory computer-readable storage medium
storing instructions thereon for execution by at least one
processing circuit, the instructions comprising:

receiving a request for service data from a client device;

in response to the request for service data, identifying

service data corresponding to the request and encapsu-
lating the identified service data into at least two
probing packets including a first probing packet and a
second probing packet;

sending the at least two probing packets which contain the

service data to the client device on a forward path
which is towards the client device;

obtaining, from the client device, at least two backward-

path packets sent by the client device after receiving the
at least two probing packets on a backward path from
the client device to the server, the at least two back-
ward-path packets carrying timing information at least
partially based on the at least two probing packets,
which comprise: a time stamp corresponding to the
service data including a first time stamp indicating the
time when the client device receives the first probing
packet and a second time stamp indicating the time
when the client device completely receives the second
time stamp, a time stamp corresponding to the request
for the service data, and time stamps corresponding to
the at least two backward-path packets sent by the
client device; and

determining according to the timing information a one-

way path metric, further comprising:

determining that the first probing packet is lost on the

forward path when the first time stamp is equal to the
second timestamp;

determining that the second probing packet is lost on the

forward path when a difference between the second
time stamp and the first time stamp corresponds to a
Retransmission TimeOut (RTO) of the server; and
determining that both the first probing packet and second
probing packet are lost on the forward path when a
difference between the second time stamp and the first
time stamp corresponds to a Round-Trip Time (RTT).

12. The non-transitory computer-readable storage
medium according to claim 11, wherein in the case the
one-way path metric is forward-path packet reordering, the
determining according to the timing information a one-way
path metric comprises:

determining whether a ACK packet whose ACK number

is equal to the sequence number of the first probing
packet is received; and

in the case it is received, determining forward-path packet

reordering occurs.

13. The non-transitory computer-readable storage
medium according to claim 11, wherein in the case the
one-way path metric is forward-path capacity, the determin-
ing according to the timing information a one-way path
metric comprises:

determining the forward-path capacity by dividing a size

of the probing packet by a sum of a difference between
the second time stamp and the first time stamp plus a
noise.

10

15

20

25

30

35

40

45

50

55

20

14. The non-transitory computer-readable storage
medium according to claim 13, wherein in the case the
one-way path metric is forward-path jitter, the determining
according to the timing information a one-way path metric
comprises:
determining the forward-path jitter by subtracting a fourth
difference value from a fifth difference value,

wherein the fourth difference value is equal to a difference
between a time stamp when the client device sends the
request for the i” service data and a time stamp when
the server sends a corresponding probing packet for the
initial time,

wherein the fifth difference value is equal to a difference

between a time stamp when the client device sends the
request for the (i+1)” service data and a time stamp
when the server sends a corresponding probing packet
for the initial time.

15. A device applied in a server, comprising:

one or more processors; and

a memory coupled to the one or more processors;

program modules stored in the memory, the program

modules being executable by the one or more proces-

sors to:

receive a request for service data from a client device;

in response to the request for service data, identifying
service data corresponding to the request and encap-
sulating the identified service data into at least two
probing packets including a first probing packet and
a second probing packet;

send the at least two probing packets which contain the
service data to the client device on a forward path
which is from the server to the client device;

obtain, from the client device, at least two backward-
path packets sent by the client device after receiving
the at least two probing packets on a backward path
from the client device to the server, the at least two
backward-path packets carrying timing information
at least partially based on the at least two probing
packets, which comprises: a time stamp correspond-
ing to the service data including a first time stamp
indicating the time when the client device receives
the first probing packet and a second time stamp
indicating the time when the client device com-
pletely receives the second time stamp, a time stamp
corresponding to the request for the service data, and
time stamps corresponding to the at least two back-
ward-path packets sent by the client device; and

determine according to the timing information a one-way

path metric, further comprising:

determining that the first probing packet is lost on the

forward path when the first time stamp is equal to the
second timestamp;

determining that the second probing packet is lost on the

forward path when a difference between the second
time stamp and the first time stamp corresponds to a
Retransmission TimeOut (RTO) of the server; and
determining that both the first probing packet and second
probing packet are lost on the forward path when a
difference between the second time stamp and the first
time stamp corresponds to a Round-Trip Time (RTT).

#* #* #* #* #*

