
A Hierarchical Consensus Protocol for Mobile Ad Hoc Networks

Weigang Wu1, Jiannong Cao1, Jin Yang1, Michel Raynal2

1 Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
2 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

{cswgwu, csjcao, csyangj}@comp.polyu.edu.hk raynal@irisa.fr

Abstract

Mobile ad hoc networks (MANETs) raise new
challenges in designing protocols for solving the
consensus problem. Among the others, how to design
message efficient protocols so as to save resource
consumption, has been the focus of research. In this
paper, we present the design of such an efficient
consensus protocol. We consider the system model for
MANETs with host crashes, but equipped with Chandra-
Toueg’s unreliable failure detectors of class P. At most
f hosts can crash where f < n/2 (n is the total number of
the hosts). The protocol adopts the coordinator rotation
paradigm to achieve consensus. Unlike existing
consensus protocols, the proposed protocol is based on
a two-layer hierarchy with hosts associated with proxies.
At least f+1 hosts act as proxies and each host is
associated with one proxy host. The messages from
and/or to the local hosts of the same proxy are merged
so as to reduce the message cost. Moreover, the
hierarchical approach can improve the scalability of the
consensus protocol. Performance analysis shows that
the proposed protocol can significantly save cost
compared existing protocols.

1. Introduction

The advent of wireless networking and portable
device technologies has engendered the new paradigm
of mobile computing. Wireless and mobile networks
have properties fundamentally different from traditional
wired networks in the aspects of communication,
mobility and resource constraints, which make the
development of algorithms for solving distributed
control problems much more difficult. In this paper, we
deal with the consensus problem in the context of
mobile computing environment. Consensus is
fundamental for many distributed computing
applications, e.g. atomic commitment, atomic broadcast,
files replication [10][9][13]. We consider mobile ad hoc
networks (MANETs), where each mobile host (MH)
plays the same role and directly interact with each other.

Communications between MHs are peer-to-peer and
multi-hops in nature. Also, the topology of a MANET is
very arbitrary and can change dynamically.

Informally speaking, the consensus problem is for a
set of processes/hosts to agree on a value proposed by
one or more of the processes/hosts [1]. In this paper, we
use “process” and “host” interchangeably. A process is
said to be correct if it behaves according to an agreed
specification. Otherwise, a failure is said to occur. There
are three correctness properties for a consensus
protocol:

i) Termination: Every correct process eventually
decides some value;

ii) Agreement: All the decisions are equal;
iii) Validity: Any decision should be equal to the

value proposed by at least one process.
If there is no failure, the consensus problem is easy

to solve, but in cases of process failures, it becomes very
difficult [2][3][4]. As a matter of fact, in asynchronous
distributed systems, consensus is unsolvable even with
only one host crash [4]. To overcome this impossibility
result, Chandra and Toueg introduced unreliable failure
detectors (FD) [5]. In their system model, every pair of
processes is connected by a reliable communication
channel, and the processes can fail by crashing. A FD
can be conceived as a distributed oracle that gives
(possibly incorrect) hints about which process may have
crashed so far. The FDs can be classified according to
their accuracy and completeness properties. The
accuracy property restricts the mistakes a FD can make,
while completeness represents the capacity of
suspecting an actually crashed process.

Based on unreliable FDs, some consensus protocols
have been proposed [5][10][11][12]. However, the
characteristics of mobile computing introduce new
challenges [1][2] and the existing consensus protocols
for traditional distributed networks need to be adapted
or even redesigned for being used in the new
environments. Resource constraint, including low
bandwidth, limited power supply, low process
capability, is one prominent feature of wireless
environments. Since fewer messages mean consuming

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

less bandwidth, power and computation resources, one
important issue in the design of consensus protocols for
mobile environments is to reduce the message cost.

 In this paper, we propose a message efficient
consensus protocol for MANETs. To our knowledge,
this is the first consensus protocol designed for
MANETs. The proposed protocol is based on a versatile
consensus protocol proposed by Hurfin, Mostefaoui,
and Raynal [12] (HMR for short). HMR is extended to a
hierarchical approach for accommodating the design
requirements for MANETs. In the original HMR
protocol, the coordinator of each round sends a proposal
message to all the hosts and then each host sends an
echo message to the decision makers and agreement
keepers. Since each pair of the hosts corresponds to one
proposal/echo message, the message cost is very high.
To cope with this problem, we introduce a two-layer
hierarchy into the consensus protocol. Some hosts in the
system are selected to act as the proxies, and each MH is
associated with one proxy. Only proxy hosts can be the
coordinators, decision makers or agreement keepers. A
coordinator sends a proposal message to each proxy host
which forwards the proposal to its associated hosts. On
the other hand, the echo messages from the hosts
associated with the same proxy are merged into one
message at the proxy host before being sent to the
coordinator. In this way, the message cost can be
significantly reduced. However, adding such a hierarchy
is not trivial. The messages may be lost or missed due to
proxy failures and/or host movements. This may make
the HMR protocol invalid. To address this problem, we
develop mechanisms to send redeeming messages.

The reminder of the paper is organized as follows. In
section 2 we present a brief overview of the related
work, describing existing consensus protocols for
mobile environments. Section 3 introduces the basis of
our work, i.e. the HMR protocol. Following this, in
Section 4 we describe our proposed protocol, including
system models, data structures and the protocol itself.
Section 5 presents the proof of the correctness of the
proposed protocol. The result of the performance
analysis is reported in section 6. Finally, Section 7
concludes this paper and describes future works.

2. Related works

Although some efforts have been made to solve the
consensus problem in mobile computing systems, all the
existing protocols are designed for infrastructured
networks, where each MH can communicate only with
its local mobile support station (MSS).

The protocol in [6] is based on the CT protocol [5].
During the execution of the protocol, each MSS collects
initial values from its local hosts and at the same time

the CT protocol is executed among all the MSSs. After
the MSSs achieve consensus, they propagate the
decision to MHs. The main idea of the protocol is that
the MSSs act on behalf of the MHs to execute the CT
protocol. A handoff mechanism is used to handle the
movements of MHs. Since a MH can send its initial
value to more than one MSS, the handoff procedure is
very simple. When a MH migrates between two MSSs,
the new and the previous MSSs just need to update their
MH lists and the new MSS will request the MH to send
the initial value if it does not know the value yet.

A general framework for solving the consensus
problem in infrastructured wireless networks was
proposed in [7]. Like in [6], the MSSs act on behalf of
the MHs and the consensus protocol is executed among
the MSSs. However the dynamism of the set of MSSs
was considered. A MSS may join and leave the
consensus protocol session when some MHs move into
or out of its corresponding cell. A solution is proposed
by modeling the dynamism as the group membership
problem in which the set of concerned MSSs is regarded
as a dynamic group. The two protocols, the membership
protocol and the consensus protocol, are executed
concurrently while the membership protocol has a
higher priority. While the group constitution is
changing, the consensus protocol must be temporarily
hung up until a stable configuration is reached. Since the
group membership problem can also be solved by a
consensus protocol [8], the authors indicated that there
can be two consensus protocols involved.

All the solutions described above rely on the help of
MSSs. The principle is to shift the workload from the
MHs to the MSSs. In MANETs, however, there is no
MSS and all the works have to be done by individual
MHs. In the next section, we propose a message
efficient protocol for MANETs.

3. The HMR protocol

As mentioned before, our work is based on the
versatile protocol HMR [12]. There are n hosts and the
maximum number of hosts that can crash is f (f < n/2).
The protocol is executed in asynchronous rounds. Each
round of the protocol is divided into two phases. HMR
presents a unifying approach based on two orthogonal
versatility dimensions: the class of the underlying FDs
(class S or S) and the message exchange pattern (from
centralized pattern to fully distributed pattern) in each
round. Since the protocol proposed in this paper is
developed based on the HMR with FDs of class S, we
only describe the HMR with FDs of class S.

In the first phase of round r, the coordinator host mcc
where cc=coord(r), sends its current estimate estcc to
each other host with the proposal message PROP(r,

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

estcc). A host mi (i cc) waits for the estimate value
from mcc unless mcc is suspected. When a PROP(r, estcc)
is received, mi updates its own estimate value esti and
timestamp tsi, and then enters the second phase. In the
second phase, the message exchange pattern is
determined by two sets of hosts, D and A. D stands for
Decision-makers. It is the set of hosts that need to check
the decision status, i.e. whether or not they can decide in
the current round. The set A stands for Agreement
keepers. Since different hosts may decide in different
rounds, A is used to ensure that once a value has been
decided in a round by some host, no other value can be
adopted as the decision value in later rounds.

After entering the second phase of round r, each host
sends an echo message ECHO(r, esti, tsi) to all the hosts
in A D. Each host mi in A D waits until it receives
ECHO(r, esti, ts) messages from no less than n-f hosts.
If mi is not the coordinator, it sets esti to the value
carried by the ECHO message with highest timestamp.
Then each host md in sets D checks to see whether it can
make decision in this round. If md receives f+1 ECHO
messages whose timestamps are equal to md’s current
round number r, md decides, broadcasts the message
DECISION(est) using a reliable broadcast mechanism,
and then stops participating in the protocol.

4. The proposed protocol

4.1. System model and definitions

The consensus problem is considered in a MANET
that consists of a set of n (n>1) MHs, M = {m1, m2,…,
mn}. MHs communicate by sending and receiving
messages. Every pair of MHs is connected by a reliable
channel that does not create, duplicate, alter, or lose
message. A MH can fail by crashing, i.e. prematurely
halting, but it acts correctly until crashes. The maximum
number of hosts that can crash, f, is bounded by n/2, i.e.
f < n/2. The system is equipped with an unreliable FD of
class P which has the following properties:

Strong Completeness: Eventually, every crashed host
is permanently suspected by every correct process.
Eventually Strong Accuracy: After some time, correct
hosts are not suspected by any correct host.

4.2. Data Structures and Notations

The main data structures and notations used by a MH
mi are listed below.

fli: the flag indicating whether mi has made the
decision or not. The initial value of the flag is false.

ri: the serial number of the current round that mi is
participating in.

phi: the phase number of the current phase that mi is
participating in.

esti: the current estimate of the decision value.
Initially, it is set to the value proposed by mi.

tsi: the timestamp of esti. The value is the number of
the round in which mi receives the esti proposed by the
coordinator host. The update of tsi is entailed by the
reception of estimate from a coordinator.

4.3. Messages Used in the Proposed Protocol
The messages used in the protocol are classified into

the folloing types.
PROP(r, estcc): the proposal message sent from the

coordinator to all the other proxy hosts and from a proxy
to its local hosts in round r. estcc is the current estimate
kept by the coordinator. For each round r, the
coordinator tries to impose estcc as the final decision by
sending proposal messages.

ECHOL(r, esti, tsi): the echo message from mi to its
local proxy host in the round r. esti is the estimate of mi
and tsi is the timestamp of esti.

ECHOG(r, v, tsv, x, y): the echo message from one
proxy host to all the other proxy hosts in the round r.
ECHOG(r, v, tsv, x, y) is constructed by merging the
ECHOL messages from its local hosts. v is the estimate
carried by the ECHOL with the highest timestamp and
tsv is the timestamp of v. x is the set of the hosts that
send the ECHOL with tsv. y is the set of the hosts that
send ECHOL with other timestamps.

LEAVE(r, sn): the informing message sent to the
local proxy by a host which wants to disassociate from
the current local proxy. sn is the serial number to
distinguish different LEAVE messages from the same
host.

JOIN(ri, sn): the message sent by a common host to
its new proxy during handoff. sn is the serial number to
distinguish different JOIN messages from the same host.

DECISION(est): the message broadcasted by a host
that has made decision. est is the decision value.

PROPH(r, estcc): same as a PROP message except
that this proposal is for handoff procedure.

4.3. The Protocol

A two-layer logical hierarchical structure is imposed
on the network of MHs:

Proxy layer: consists of a set P of MHs which act as
proxy hosts to exchange messages on behalf of other
hosts. Only the hosts in set P can be the coordinators.
To guarantee the termination of protocol, at least one
correct host is included. So, P contains at least f+1 MHs.

Host layer: consists of a set M of all the MHs,
including those in set P.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

P can be initialized randomly or according to some
measurement, e.g. the load level and/or power level of a
MH. Then each host chooses the nearest unsuspected
host in P as its proxy. A host in P chooses itself all the
time. The host that is associated with a proxy is called
“local host” of the proxy host and correspondingly, the
proxy is called “local proxy” of its local hosts.

Fig. 1 the proposed protocol—Task 1and Task 2
The proposed protocol consists of four tasks. We first

describe the Task 1 (achieving consensus) and Task 2
(reliable broadcast of the decision), which correspond to
the two tasks in HMR respectively. The pseudocode of
Task 1 and Task 2 is shown in Fig. 1.

Task 1 consists of two phases. At the beginning of
round r, the current coordinator pcc sends PROP(r, estcc)

to the hosts in set P. A proxy p waits for the proposal
message from pcc. If the PROP(r, estcc) message is
received, p sends the message to all its local hosts;
otherwise if p suspects host pcc before receiving
PROP(r, estcc), p sends a PROP(r,) message to its
local hosts, where “ ” is a value that can never be
proposed or adopted. A host mi waits until a PROP(r, -)
message is received from its local proxy or the local
proxy is suspected. The symbol “–” in the message
means any possible value. If a PROP(r, v) message with
v is received, mi updates its estimate value to v and
timestamp to r. If the local proxy is suspected, mi
invokes the handoff procedure, which will be presented
late. Then Phase 1 is finished.

In Phase 2, each host first sends an echo message
ECHOL(ri, esti, tsi) to its local proxy. If the host itself is
not a proxy, it enters the next round r+1. Each proxy
waits for an echo message ECHOL(r, -, -) from each of
its local hosts if the host is not suspected. Then each
proxy constructs an echo message by merging the
collected ECHOL(r, -, -) messages. v is the estimate
value carried by the ECHOL(r, -, -) message with the
highest timestamp and tsv is the timestamp. x is the set of
the hosts that send the ECHOL(r, -, -) messages with tsv.
y is the set of the hosts that send ECHOL(r, -, -)
messages with other timestamps. The proxy host then
sends the echo message ECHOG(r, v, tsv, x, y) to all the
other proxy hosts. Each proxy waits for the ECHOG
messages from other proxies until: 1) the ECHOG(r,-,-,-
,-) messages received can “represent” not less than (n-f)
hosts, or 2) an ECHOG(-,-,tsv,-,-) with tsv>r is received.
Here, the “represent” means a host is included in the set
x or y of the ECHOG message. A proxy updates its
estimate to the value carried by the ECHOG message
with the highest timestamp, but the timestamp is not
changed. Finally, a proxy host checks whether it can
decide in the current round. If there are (f+1) or more
hosts in the x sets of the ECHOG(r, v, tsv, x, y) messages
with tsv=r, it can make the decision and broadcasts the
final value.

Task 2 is the simple broadcast mechanism. When a
host, which has not decided, receives a DECISION
message, it makes decision and forwards the DECSION
message to all other hosts except the sender.

Besides the two tasks corresponding to the tasks in
HMR, two additional tasks are added in the proposed
protocol: handoff and handling late ECHOL messages.
Fig. 2 shows the pseudocode of these two tasks.

The handoff procedure is invoked when a host mi
suspects its current proxy p or p is no longer the nearest
proxy. Let q be the new proxy. First, mi sends a leave
message LEAVE(ri, sn) to p and a join message JOIN(ri,
sn) to q. Upon reception of the leave message, p deletes
mi from local host list. Upon reception of the join

--------------------------------Task 1: Consensus-------------------------------
// The code executed by each host, mi

BEGIN:
(1) ri 0; esti vi; tsi 0; fli false;
(2) while (fli true){
(3) ri ri+1; phi 1;

---------- Phase 1 of round ri: from mcc to all proxies -------------
 // let cc denote coord(ri),

//P denote the set of proxies and p denote the local proxy of mi

(4) if(i=cc) send PROP(ri, esti) to P;
 if(i P) {
(5) wait until (PROP(ri, estcc) is received or pcc suspectedi);
(6) if(PROP(ri, estcc) message received from pcc)
 broadcast (PROP(ri, estcc) locally;
(7) else broadcast (PROP(ri,) locally;
 // is a value can not be accepted;
 }//endif
(8) wait until PROP(ri, v) from p is received or p is suspected;
(9) if(PROP((ri, v) is received and v){esti v; tsi ri;}

-----------Phase 2 of round ri: from all to P --------------------------
phi 2;

(10) send message ECHOL(ri, esti, tsi) to P;
 if (mi P) {
(11) wait for ECHOL(ri, estj, tsj) from each local host mj or

mj suspectedi;
(12) merge the ECHOL messages{

tsv the highest timestamp of all the ECHOL;
 v the estimate of the ECHOL with highest timestamp;
 x the set of the hosts that send ECHOL with tsv;
 y the set of the hosts that send other ECHOL;
 }
(13) send ECHOG(r, v, tsv, x, y) to P;
(14) wait until (()of ECHOG(ri, v, tsv,x,y)includes
 at least n-f hosts) or (an ECHOG(-, -, >ri,-,-) received);
(15) if(i cc) esti the est received with the highest ts;
(16) if((mi P) (ECHOG messages with (ts= r=ri) represent
 at least (f+1) hosts){
 fli true;
(17) j i: send DECISION(esti) to mj;
 }//endif
 }//endif
 }//endwhile
---------------------------Task 2: Reliable broadcast -------------------------
(18) upon reception of DECISION(est) from host mk:
 fli true; j i, k: send DECISION(est) to mj;
END

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

message, q adds mi to local host list. If a PROP(rq, estcc)
has been received, q sends PROPH(rq, estcc) to mi;
otherwise q sends PROPH(rq,) to mi.

Fig. 2 the proposed protocol—Task 3 and Task 4
Upon reception of the PROPH(rq, w) message from

q, the behaviours of host mi can be classified into 3
cases. 1) (ri< rq) or (ri = rq, phi =1): mi updates round
number to rq and sends ECHOL(rr, esti, tsi) to q where
tsi rr<rq. If w , mi sets its estimate to w and
timestamp to rq. mi then resumes the normal execution
by entering phase 2 of round rq. 2) (ri > rq, phi =1): mi
sends ECHOL(rr, esti, tsi) to q where tsi rr<ri and then
resumes the normal execution by continue the phase 1 of

round ri. 3) (ri = rq, phi =2) or (ri > rq, phi =2): mi sends
ECHOL(rr, esti, tsi) to q where tsi rr ri and then
resumes the normal execution by entering the next
round ri+1.

Another task added is handling the late ECHOL
messages. An ECHOL message that arrives at a proxy
after the proxy has sent out an ECHOG message for the
corresponding round is a “late” ECHOL message. This
happens when a proxy p suspects a correct local host or
a host mi joins a new proxy host with a round number
greater than the ts of mi. The hosts in set P may be
blocked forever if a late ECHOL message is ignored. To
avoid this, when a proxy p receives an ECHOL(ri, esti,
tsi) with (ri < rp) or (ri = rp but p has sent out a ECHOG
for the round ri), p constructs a redeeming ECHOG for
mi and sends it to all the proxy hosts.

5. Correctness

The validity property of the proposed protocol is
obvious. The proofs for the termination property and
agreement property are given in this section. In the
proof, we use “indirect suspicion” to refer to the
situation that a host itself does not suspect the current
coordinator but it receives a PROP(r,) from its proxy.

5.1. Termination

Lemma 1. If no host decides in the round r’ r, then all
the correct hosts enter the round r+1.
Proof. The proof is by contradiction. We assume that no
host decided in a round r’ with r’<r, where r is the
smallest number of a round in which a correct host mi is
blocked forever. mi can only be blocked in a wait
statement, i.e. line 5, line 8, line 25, line 11 or line 14.
We analyze the cases for these lines one by one.

Case 1: mi is blocked at line 5. Obviously, mi P. If i
=cc, mi can not be blocked (it receives the proposal
message sent by itself). If i cc, then either pcc crashes
or pcc is correct. In the former case, mi eventually
suspects pcc ; in the later case, mi receives the proposal
message from pcc eventually. Therefore, mi can not be
blocked forever at line 5.

Case 2: mi is blocked at line 8. If mi is a proxy, it is
the local proxy of itself, Since mi can not be blocked
forever at line 5 and mi can receive the PROP(r,-)
message sent by itself at line 6 or 7. If mi is not a proxy,
on the other hand, there are two possible situations: the
local proxy crashes or not. If the local proxy does not
crash, it eventually sends out a PROP(r, -) message (the
proxy can not be blocked at line 5 forever) and mi
eventually receives it. If the local proxy crashes, mi
eventually suspects it and invokes a handoff procedure.
So, mi can not be blocked at line 8 forever.

--------------------Task 3: Handling Late ECHOL------------------------
// The code executed by each proxy p;
while (fli true){
(19) wait for ECHOL (r,v,ts) with (r<ri);
 construct a ECHOG for the ECHOL and send it to P;
}//endwhile
-----------------------------------Task 4: Handoff: -------------------------
// A host mi need to change its local proxy p

--------Task 4.1: Handoff code executed by a host mi ------------
(21) while(fli true and (p suspectedi or p is not the nearest one)) {
(22) q the nearest correct proxy;
(23) send a LEAVE(ri, sn) to p;
(24) send JOIN(ri, sn) to q;
(25) wait until a PROPH(rp, v) is received or q suspectedi;
 if (PROPH(rp, v) is received){
 if(ri< rp){
(26) ri rp;
(27) for(tsi rr<ri) send ECHOL(rr, esti, tsi) to q;
(28) if(v){ esti v; tsi ri;}
(29) GOTO (10); //resume the normal execution;
 }else if (ri = rp){
 if(phi =1){
(30) for(tsi rr< ri) send ECHOL(rr, esti, tsi) to q;
(31) if(v){esti v; tsi ri;}
(32) GOTO (10); //resume normal execution;

 }else if (phi =2){
(33) for(tsi rr ri) send ECHOL(rr, esti, tsi) to q;
(34) ri ri+1; GOTO (4);//resume normal execution;}
 }else if(ri > rp){
 if(phi =1){
(35) for(tsi rr< ri) send ECHOL(rr, esti, tsi) to q;
(36) GOTO (4); //resume normal execution; }

 else if (phi =2){
(37) for(tsi rr ri) send ECHOL(rr, esti, tsi) to q;
(38) ri ri+1; GOTO (4);//resume normal execution;}
 }//endif
 }//endif
 }//endwhile
 ----------Task 4.2: Handoff code executed by a proxy p---------
 while(fli true){
 Upon reception of LEAVE(ri, sn) from host mi{
(39) delete mi from local host list;}
 Upon reception of JOIN(r, sn) from host mi {
 add mi to local host list;
(40) if(PROP(rp, estcc) received from pcc)

 send PROPH(rp, estcc) to mi;
(41) else send PROPH(rp,) to mi;}
 }//endwhile;

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

Case 3: mi is blocked at line 25. Obviously, the
handoff procedure has been invoked. There are two
possible cases. If the local proxy crashes, mi eventually
suspects it and invokes the handoff procedure again.
Since there are no less than f+1 hosts in set P and at
most f hosts can crash, mi can eventually find a correct
proxy (by the eventually strong accuracy of underlying
FDs). This case turns to be the second one. In the
second case, the local proxy does not crash, so it
eventually sends out a PROPH(r,-) message to mi (no
host is blocked at line 5 forever) and mi eventually
receives it. So mi can not be blocked at line 25 forever.

Case 4: mi is blocked at line 11. mi is a proxy and is
waiting for the ECHOL messages from its local MHs.
All its local hosts can be categorized into three classes:
crashed hosts, correct hosts that have left mi and other
hosts. For the crashed hosts, mi eventually suspects them
and no longer waits for them. For the correct hosts that
have left, each of them must have sent a leave message
to mi before it left (line 23). mi eventually receives the
leave message and stops waiting for the corresponding
host. For the other local hosts, since they can not be
blocked at line 5, line 8 or line 25, mi eventually
receives an ECHOL from each of them. So, mi can not
be blocked at line 11 forever.

Case 5: mi is blocked at line 14. Obviously mi P.
There are two possible conditions to unblock mi: 1) mi
receives ECHOG messages that can represent no less
than n-f hosts; 2) mi receives an ECHOG message with
timestamp ts>r. We now prove that at least one of the
two conditions is satisfied eventually. Since at most f
hosts can crash, there are at least n-f correct hosts. Since
r is the smallest round in which a correct host is blocked
forever, all these n-f correct hosts eventually proceed to
the round r and execute line 10 in round r eventually.
Then we categorize all the correct hosts into two classes:
i) the hosts with correct proxies when they execute line
10 in round r; ii) the hosts with incorrect proxies when
they execute line 10 in round r. For a host mj in class i),
the local proxy of mj eventually receives mj’s ECHOL
message and includes mj in an ECHOG message to mi.
For a host mj in class ii), after the local proxy of mj
crashed, mj eventually suspects the proxy and invokes
the handoff procedure. As proved before, mj eventually
find a correct proxy p after one or more handoff and it
eventually receives a PROPH(rp,-) message from p.
Then, we consider different situations according to the
tsj: a) if tsj r, an ECHOL(r,estj, tsj) is sent to p at line
27, 30, 33, 35 or 37; b) if tsj>r, an ECHOL(-,-,>r) is sent
to p at line 27, 30, 33, 35 or 37. Considering p is a
correct host, it eventually includes mj in an ECHOG to
mi. If some host belongs to b), mi eventually receives an
ECHOG(-,-,>r,-,-) and consequently condition 2) is
satisfied; otherwise all the n-f correct host belong to i) or

a), and mi eventually receives enough ECHOG(r,-,-,-,-),
i.e. the condition 1) is satisfied. So, mi can not be
blocked at line 14 forever.
Lemma 2. For any round r, if the coordinator cr sends
out a PROP(r, v) at time tr and less than n-f hosts
suspect cr directly or indirectly in Phase 1 of r, then
no PROP(r’, v) with r’>r can be sent out before tr.
Proof. In proving the lemma, “v” is a value not equal to
. The proof is by contradiction. We assume that at least

one PROP(r’, v) with r’>r has been sent out by the time
tr. Let rm be the greatest round number of all the
PROP(r’, v) messages issued out by time tr, then rm>r
and rm-1 r. Obviously the coordinator of round rm,
crm must have finished line 14 in round rm-1. Since rm is
the greatest round number in the PROP(r’, v) messages,
and the timestamp of the estimate at any host can only
be changed at line 9, 28 or 31, crm can not receive a
ECHOG with ts>rm-1 in round rm-1. So, at least n-f
hosts sent out ECHOL(rm-1,-,-) in round rm-1 before
time tr, which means that at least n-f hosts finished
phase 1 of round rm-1 before time tr. Since rm-1 r, at
least n-f hosts finished phase 1 round r before the
PROP(r,v) is sent out in round r. So at least n-f hosts
suspected cr directly or indirectly in the phase 1 of
round r, which is a contradiction to the assumption in
the beginning. So the lemma holds.
Corollary 1. In any round r, if the coordinator of r+1,
cr+1 receives an ECHOG message with ts>r, then at
least n-f hosts directly or indirectly suspect cr+1 in round
r+1.
Proof. In the proof, the “v” is a value not equal to . In
any round r, the timestamp ts of the estimate at any host
can only be updated to r at line 9, 28 or 31, which
means a PROP(r, v) has been sent out by the
coordinator and delivered by the local proxy before the
update. By the assumption, the cr+1 receives an ECHOG
with ts>r at line 14 in round r, so some host must has
sent out the PROP(ts, v) before cr+1 finishes line 14 of
round r. Then we consider the status of cr+1 in round
r+1. 1) cr+1 crashes before it sends out PROP(r+1, v) in
round r+1, all the correct hosts (at least n-f hosts)
suspect it eventually in round r+1. The corollary
obviously holds. 2) cr+1 sends out PROP(r+1, v) in
round r+1. In this case, so some host sent out a
PROP(ts, v) with ts>r before PROP(r+1, v) is sent out.
By Lemma 2, at least n-f hosts suspect cr+1 in round r+1.
The corollary holds.
Theorem 1. If a host is correct, it eventually decides.
Proof. If one host decides, all correct hosts eventually
decide due to the reliable broadcast mechanism (line 17
and 18). So, we just prove “at least one host decides”.

The proof is by contradiction. We assume that no
host decides. According to the accuracy and

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

completeness of the underlying FD, there is a time t
after which all the correct hosts are never suspected by
any correct host and all the crashed hosts are
permanently suspected by every correct host. After time
t, there is at least one correct host, say mx, in set P, and
every correct host is associated with a correct proxy. Let
r be the first round coordinated by mx and started after t.
By the assumption (no process decides) and the Lemma
1, all the correct hosts eventually enter the round r.
Since no new suspicion occurs after time t and at most f
hosts can crash, there are at least n-f correct hosts
execute the round r. By Corollary 1, mx can not receive
a ECHOG with ts>r at line 14, so mx, eventually decide
in round r, which contradicts the assumption that “there
is no process decides”. So the theorem holds.
5.2. Agreement
Lemma 3. Let r with r 1 be the first round in which
(f+1) hosts send ECHOL(r, v, r) and r’ be any round
that r’ r. We have:

1) No host decides before r;
2) If the coordinator of r’ sends a proposal message,

then this message carries the estimate v (i.e. the
message is PROP (r’, v)).
Proof. Proof for 1): We prove it by contradiction. If no
host decides at line 16, no host can decide at line 18, so
we only consider the decision at line 16. We assume that
some host mj decided at line 16 in some round s before
r, i.e. s < r and the decision value is u. To decide at line
16 in round s, mj has to receive enough ECHOG
messages carrying a timestamp equal to s and the union
set of the x sets carried by the ECHOG message
includes at least f+1 hosts. Since all the ECHOG
messages are constructed based on ECHOL messages, at
least f+1 ECHOL(s, u, s) must have been sent out. From
the definition of r (“…first round in which…”), we have
r s, which contradicts to s<r. So the part 1) holds.

Proof for 2): In any round r, the timestamp ts of the
estimate at any host can only be changed to r at line 9,
28 or 31, which means that a PROP(r, v) has been sent
out by the coordinator of round r. So, cr must have sent
out the PROP(r, v) message before the f+1 ECHOL(r, v,
r) messages are sent and at least f+1 hosts did not
suspect cr in phase 1 of round r. Let tp be the moment
that the coordinator cr sent out the PROP(r, v) message.
Since n-(f+1)<n-f, by Lemma 2, all the PROP(r’, -)
messages with r’>r must be sent out after time tp. Let R
be the list of the round numbers of all the PROP(r’, -)
messages with r’>r. Without loss of generality, we
assume R=(r0=r, r1, r2, r3,…ri,…), where the round
numbers are sorted in the ascending order of the
moments when they are sent out. Now, we prove that for
each round ri listed in R, the proposal value carried by

PROP(ri, u) is equal to v, i.e. u=v. The proof is by
induction on the serial number i.

Base case: i=0 and i=1. If i=0 the lemma obviously
holds. For i=1, we consider the cr1 at line 14 of round r.
By the definition of R, r1 is the first round that a
coordinator sends out PROP(r’,-) message with r’>r,
there is no ECHOG message with ts>r before cr1 finishes
the execution of line 14 in round r, i.e. r is the highest
timestamp then. So, cr1 must receive ECHOG messages
with round number r and representing at least n-f hosts.
By the assumption in the lemma, at least f+1 hosts sent
ECHOL(r, v, r), so at least one ECHOL(r, v, r) has been
merged into a ECHOG message received by cr1 and the
ECHOG is with timestamp r and estimate value v. At
the end of line 14, cr1 updates its estimate to the value
carried by the ECHOG with the highest timestamp, i.e.
v. The lemma holds.

Inductions case: Let us assume that the lemma holds
for any round ri such that 0 i k, we show that the
lemma holds for round rk+1. By the induction
assumption, for each PROP(ri, w) message with 0 i k
we have w=v. Now, we define two sets of hosts.

The set G includes all the hosts that have received a
PROP(ri, w) or PROPH(ri, w) message with 0 i
k. mj G: estj =w= v and tsj=ri that 0 i k. Since
f+1 hosts send ECHOL(r, v, r), so |G| f+1.
The set B includes the hosts mj that have not
received a PROP(ri, w) message with 0 i k.
Consequently, mj B: tsj < r. So, all the
timestamps of the hosts in set B are less than those of
the hosts in set G.
Now we consider the behaviours of host crk+1 in

phase 2 of round (rk+1)-1. Since crk+1 P, it waits for the
ECHOG messages at line 14. There are two conditions
to end the execution of line 14. 1) crk+1 receives an
ECHOG(-, u, tsm, -, -) with tsm >(rk+1)-1. Then crk+1
updates its estimate to the value u at line 15. In fact the
value u must come from a ECHOL(-, u, tsm), so the
sender of this ECHOL must have received a PROP(tsm,
u). By the definition of R and the induction assumption,
we have tsm {r0, .., rk}, so u=v. 2) crk+1 receives
ECHOG messages with round number (rk+1)-1 that can
represent at least n-f hosts, i.e. at least n-f
ECHOL((rk+1)-1, -, -) messages are merged. Let X
denote the hosts that sent these ECHOL messages.
Obviously, |X| n-f. At line 15, crk+1 updates its estimate
to a value u which is carried by the ECHOG with the
highest timestamp tsm. Of course, this u comes from a
ECHOL((rk+1)-1, u, tsm) message. Since |X| n-f and
|G| f+1, we have G X . So, the ECHOL((rk+1)-1, u,
tsm) message must be sent by a host in G. By the
definition of G, we have u=v. For the both case 1) and
2), the estimate value of crk+1 is updated to v in round

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

(rk+1)-1 and consequently in round rk+1, crk+1 sends out a
PROP(rk+1, v). So the lemma holds for the round rk+1.
Theorem 2. No two hosts decide differently.
Proof. If a host decides a value at line 18, then this
value must have been decided by another host at line 16.
So we only consider values decided at line 16.

Let mi be a host that decides vi in the round ri. As mi
decides in ri, it received ECHOG(ri, vi, ri, -, -) messages,
which means the coordinator of round ri sent a PROP(ri,
vi). Similarly, if another host mj decides on the value vj
in round rj, the coordinator of round rj must have sent
PROP(rj, vj). Let r be the round characterized in Lemma
3 (the first round in which f+1 hosts send ECHOL(r, v,
r)). By Lemma 3, we have r ri, r rj, so v=vi=vj.

6. Performance analysis

In this section we analyze the performance of the
proposed protocol in comparison with the HMR
protocol in respect of the message cost. Since the two
protocols rely on FDs of class P and class S
respectively, we first compare these two classes of FDs.
6.1. P vs S

Among all the eight classes, S (eventually strong) is
the weakest one (W is equivalent to S) but strong
enough to be used to solve the consensus problem
[5][15]. Nearly all the existing protocols are based on
the class S FDs. It has been proved that class P and
class S are equivalent in the power of solving the
consensus problem [16]. However, many people have
implemented the FDs of class P [5][17]. Though P is
stronger than S, the existing implementations of P are
not more complex than those of S. The difference is
that P may take more time to reach a stable state.
Though P can not tolerate more failures than S, we
can still use it to design more efficient protocols.

6.2. Message Cost
First, in a MANET, the concepts of “message” and

“hop” must be distinguished. In traditional distributed
systems, the performance is computed in terms of the
number of messages, where one “message” means one
“end-to-end” message. However, one message may take
one or more hops to reach the destination in the
underlying network. One “hop” means one network
layer message, i.e. the point-to-point message. In
traditional systems, messages that cost different number
of hops are regarded as messages with the same cost.
However, in a MANET, where the resource constraint is
serious, the number of hops can reflect the message cost
more precisely. Since a MANET can be represented by

a graph, the average number of hops of an end-to-end
message is related to the diameter of the graph. We
adopt the value logn [14] as the average number of hops
of an end-to-end message.

Since it is impossible to analyze the total number of
rounds of the execution, we just consider the message
cost per round. To make the HMR comparable with the
proposed protocol, let |D A| = |P| = k. Of course, k
should be greater than f, i.e. f<k. Let NHHMR and NHHier
denote the number of hops per round in HMR protocol
and the proposed protocol respectively. Obviously,
NHHMR = (n+n*k)*logn. For the proposed protocol,
NHHier depends on distance between the common hosts
and proxies. Let l be the average number of hops of one
message between a host and its proxy. In the first phase,
the number of hops is k*logn+n*l; in the second phase,
the number of hops is n*l+k2*logn. Then we have NHHier
= 2n*l+(k2+k)*logn. We regard each proxy and its local
hosts as a sub-network, we have l = log(n/k), where n/k is
the number of hosts in a sub-network. Then, NHHier=2n*
log(n/k)+(k2+k)*logn = (2n+k2+k)*logn - 2n* logk The
difference is:

Table 1 the message cost of HMR and the proposed protocol
 k/n=5% k/n=10% k/n=20% k/n=33% k/n=40% k/n=50%

n NHHMR NHHier

NHHier/
NHHMR NHHMR NHHier

NHHier/
NHHMR NHHMR NHHier

NHHier/
NHHMR NHHMR NHHier

NHHier/
NHHMR NHHMR NHHier

NHHier/
NHHMR NHHMR NHHier

NHHier/
NHHMR

4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 24 20 83%

8 N/A N/A N/A N/A N/A N/A N/A N/A N/A 88 52 59% 101 61 61% 120 76 63%

12 N/A N/A N/A N/A N/A N/A 146 85 58% 215 101 47% 250 132 53% 301 175 58%

16 N/A N/A N/A N/A N/A N/A 269 128 48% 405 167 41% 474 232 49% 576 320 56%

20 N/A N/A N/A N/A N/A N/A 432 179 42% 663 251 38% 778 364 47% 951 515 54%

24 242 220 91% 374 197 53% 638 239 38% 990 354 36% 1166 530 45% 1431 763 53%

28 323 258 80% 512 237 46% 888 308 35% 1391 477 34% 1642 731 45% 2019 1066 53%

32 416 297 72% 672 280 41% 1184 385 33% 1867 620 33% 2208 968 44% 2720 1424 52%

48 911 460 51% 1555 474 30% 2842 791 28% 4557 1405 31% 5415 2293 42% 6702 3447 51%

64 1613 634 39% 2842 709 25% 5299 1357 26% 8576 2549 30% 10214 4255 42% 12672 6464 51%

96 3667 1013 28% 6701 1308 19% 12770 3000 24% 20861 5985 29% 24907 10217 41% 30976 15680 51%

128 6630 1438 22% 12365 2087 17% 23834 5361 23% 39125 11035 28% 46771 19047 41% 58240 29376 50%

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

=NHHMR-NHHier = (n+n*k)*logn – ((2n+k2+k)*logn

- 2n*logk) = (n*k-n- k2- k)*logn + 2n*logk

Table 1 shows numerical evaluation of NHHMR and
NHHier under various conditions. The percentage of
proxy hosts varies from 5% to 50%. To show the
advantage of the proposed protocol clearly, the ratio of
NHHier to NHHMR is also computed. From the table we
can see that the proposed protocol can save message
cost significantly. The larger the system scale (the
number n) is, the more the cost saved is. This is easy to
understand. When the system scale is large, each proxy
has many local hosts and consequently many messages
are merged together. So, more cost is saved. This feature
shows that the scalability of proposed protocol is very
good.

The parameter k also affects the performance but
the effect is more complicated. Roughly, when the k is
in the medial, the advantage of the proposed protocol is
great. If k is very little, one proxy needs to take care of
many hosts. The number of hops of a message between
proxy and local hosts becomes great and accounts for
most part of the total cost. Even though some cost is
saved by reducing the global messages, the total cost is
not reduced much. On the other hand, if k is great, few
hosts are associated with one proxy. So, few messages
can be merged like the situation where the n is little.

In the discussion above, the overhead of handoff and
late ECHOL messages is not considered. Obviously this
is hard to analyze theoretically. However, as mentioned
in many papers, most of the cases are good cases, where
no or few hosts crash during the execution of consensus
protocol. Such overhead should be little.

7. Conclusions
In this paper, we proposed the first consensus

protocol for MANETs. The protocol is based on
Chandra-Toueg’s unreliable FDs of class P. It is
assumed that at most f hosts can crash where f < n/2 (n is
the total number of the hosts). The coordinator rotation
paradigm is adopted to achieve consensus. To reduce
the message cost, we introduced a two-layer hierarchy
into the protocol. At least f+1 hosts act as proxies and
each host is associated with a proxy host. A coordinator
only needs to send one proposal message to each proxy
host and the proxy host forwards the proposal to its
local hosts. On the other hand, the echo messages from
the local hosts of one proxy host are merged into one
message and sent to the coordinator. So, the message
cost is reduced significantly. Moreover, the hierarchy
can improve the scalability of the consensus protocol.
All these features make the protocol suitable for
MANETs. The performance analysis shows that the
proposed protocol can save message cost significantly.

In future, we will carry out extensive simulations to
evaluate the performance of the proposed protocol in
dynamic environments. The overhead caused by
handoffs and late ECHOL messages would be included.
We will also extend the protocol with the help of
“clustering” algorithms, so as to make the protocol
adaptable to system states, e.g. load level, power level.

Acknowledgements
This research is partially supported by Hong Kong

University Research Grant Council under the CERG
grant PolyU 5075/02E and Hong Kong Polytechnic
University under the ICRG grant A-PF77.

References
[1] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:

Concepts and Design (third edition), Addison-Wesley, 2001.
[2] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.
[3] M. Fischer, The Consensus Problem in Unreliable Distributed

Systems, Research Report YALE/DCS/RR-273, Yale Univ., 1983.
[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of

Distributed Consensus with One Faulty Process, J. of the ACM,
Apr. 1985.

[5] T. D. Chandra and S. Toueg, Unreliable Failure Detectors for
reliable distributed Systems, journal of the ACM, Mar. 1996.

[6] N. Badache, M. Hurfin, and R. Macedo, Solving the Consensus
Problem in a Mobile Environment, Proc. of IPCCC, 1999.

[7] H. Seba, N. Badache, A. Bouabdallah, Solving the Consensus
Problem in a Dynamic Group: an Approach Suitable for a Mobile
Environment, Proc. of ISCC, 2002.

[8] R. Gueraoui, A. Schiper, The Generic Consensus Service, IEEE
Transactions on Software Engineering, Jan. 2001.

[9] R. Guerraoui, M. Huifin, et al., Consensus in Asynchronous
Distributed Systems: A Concise Guided Tour, LNCS 1752, 2000.

[10] M. Hurfin, and M. Raynal, A Simple and Fast Asynchronous
Consensus Protocol Based on a Weak Failure Detector, Distributed
Computing, Sep 1999.

[11] A. Schiper, Early Consensus in an Asynchronous System with a
Weak Failure Detector, Distributed Computing, Oct 1997.

[12] M. Hurfin, A. Mostefaoui, and M. Raynal, A Versatile Family of
Consensus Protocols Based on Chandra-Toueg’s Unreliable
Failure Detectors, IEEE Trans. on Computers, Apr 2002.

[13]R. Guerraoui, and A. Schiper, Consensus: the Big
Misunderstanding, the Sixth IEEE Workshop on Future Trends of
Distributed Computing Systems, 1997.

[14]Mukesh Singhal, A Taxonomy of Distributed Mutual Exclusion,
Journal of Parallel and Distributed Computing, 18, 1993.

[15] T. Chandra, B. Hadzilacos, and S. Toueg, The Weakest Failure
Detector for Solving Consensus, J. of ACM, vol.43(4), July 1996.

[16] R. Friedman, A. Mostefaoui, M. Raynal, On the Respective Power
of P and S to solve One-Shot Agreement Problems, Technical
Report of IRISA, No. 1547, July 2003.

[17]M. Larrea, A. Fernandez, and S. Arevalo, On the Implementation
of Unreliable Failure Detectors in Partially Synchronous Systems,
IEEE Trans. on Computers, vol.53(7), July 2004.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 16, 2009 at 00:40 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

