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ABSTRACT Human parsing is important for image-based human-centric and clothing analyses. With the
development of deep neural networks, some deep human parsing methods were recently proposed, which
substantially improve the parsing accuracy. However, some localized small regions (such as sunglasses) are
not parsed well in these methods. In this paper, we propose a Part-based Human Parsing Cascade (PHPC)
to segment human images, imitating the observational mechanism of how people, when first looking at a
human image, quickly scan the entire photograph to first locate the face and then the body parts to see what
clothing the person is wearing. The observational mechanism of human vision is used to establish a cascade
relationship in designing our network, in which a head-parsing sub-network and a body-parsing sub-network
are integrated to the cascade of human parsing networks. The head- and body-parsing sub-networks focus on
the head and body classes, respectively, and add attention to the head and body in the final neural networks.
Comprehensive evaluations on the ATR dataset have demonstrated the effectiveness of our method.

INDEX TERMS Human parsing, deep learning, fashion parsing, image segmentation, image understanding,
convolutional neural networks.

I. INTRODUCTION
Due to its importance to both human-centric and clothing
analyses, human parsing has become an attractive subject for
research over the past few years. Human parsing involves seg-
menting the person in a fashion image into regions according
to their different body parts (e.g. face, left-arm, and right-leg)
and the clothing (e.g. upper-clothing, dress, and trousers) that
the person is wearing. Fig. 1 shows an example of human
parsing. After human parsing, each pixel of the input image
is given a label.

For human parsing research, researchers have mainly
adopted one of two approaches: (1) a bottom-up approach [1],
[2], where input images are first analysed using superpixel
technique, and conditional random fields (CRFs) are then
used to group and refine the initial superpixel results into
larger segments and labels; and (2) a top-down approach [2],
[3], where input images are first segmented into regions that
are further classified into given labels.

The associate editor coordinating the review of this manuscript and
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FIGURE 1. Example of human parsing: (a) Input image and (b) Parsing
ground-truth.

Following the bottom-up approach, Yamaguchi et al. [1],
[2] proposed to segment an image into superpixels and then
predicted the clothing labels for each superpixel using a CRF
model. This method performed quite well on the constrained
parsing problem, where test images are parsed given user-
provided tags that indicate the depicted clothing items. This
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approach was less effective at unconstrained clothing parsing,
however, where test images are parsed in the absence of any
textual information.

Following the top-down approach, another group of
researchers first aligned human parts by using the parselet
representation as building blocks for a parsing model [3].
Parselets are groups of parsable segments that can generally
be obtained from segmentation algorithms using low-level
features. Dong et al. [4] built a deformable mixture-parsing
model (DMPM) for human parsing to simultaneously handle
the deformation and multimodalities of parselets. A DMPM
seamlessly formulates the human parsing and pose estimation
problem within a unified framework via a tailored And-Or
graph, using parselets and a mixture of joint-group templates
as the semantic components. Their work is limited by the
suboptimal performance ofmany hand-designed intermediate
components, such as handcrafted feature extraction and pose
estimation [5].

Inspired by the remarkable improvement in accuracy intro-
duced by the use of deep networks, deep human parsingmeth-
ods have recently been proposed. Liang et al. [6] proposed a
contextualised convolutional network, a fully convolutional
network, to address the human parsing task. They integrated
the cross-layer and global image-level contexts within the
superpixel and cross superpixel neighbourhood contexts into
a unified network. To increase the network capability, they
incorporated Long Short-Term Memory (LSTM) layers into
the convotutional neural networks (CNNs) in their extension
work [7], which allowedmemorisation of previous contextual
interactions from local neighbouring positions and the whole
image in previous LSTM layers. However, these parsing
methods did not take into consideration of local and regional
information, which are fundamental important because some
items are so small that special attention must be drawn onto
specific part regions to identify and describe such items.

In this paper, we propose a new human parsing network
cascade that is inspired by the observational mechanism of
how people, when first looking at a human photo, quickly
scan the entire photograph to first locate the face and then
the body parts to see what clothing the person is wear-
ing. We propose in this paper a Part-based Human Parsing
Cascade (PHPC) of networks. To imitate human observation,
we integrate a head-parsing sub-network and a body-parsing
sub-network into a cascade of human parsing networks. The
head- and body-parsing sub-networks focus on the head
classes and body classes, respectively, and add the attention
to the head and body in the final neural networks. We choose
FCN-8s network [9] as our baseline network, as it is effi-
cient and has shown great improvement on semantic seg-
mentation. Semantic segment and human parsing are closely
related, which we will discuss in next section. To evaluate
the effectiveness of our PHPC method, we conducted several
experiments on the ATR dataset [8], which we also train our
PHPC model. For comparison purposes, we also trained a
FCN-8s model using the method proposed by Long et al. [9]
and a CRFasRNN model using the method proposed by

Zheng et al. [10]. We will also discuss the effectiveness of
super-pixel and CRF refinement in the discussion section.
The main contribution of our work is that we propose a novel
PHPC model that mimics human vision.

II. RELATED WORK
We review the related work of this study, including human
parsing and also some recent deep learning based develop-
ment on semantic segmentation – a research area closely
related to human parsing. Both semantic segmentation and
human parsing attempt to assign a label to each pixel in an
image.

A. SEMANTIC SEGMENTATION
There have been a wide range of approaches using deep
learning to tackle the semantic image segmentation. These
approaches can be categorized into two main strategies. The
first strategy to extract better meaningful features by improv-
ing mechanisms, such as using super pixels, multi-scale
image size and optimized filters, etc. Mostajabi et al. [12]
first obtained superpixels from the image and then used a
feature extraction process on each of them. Chen et al. [13]
combined CNN outputs from multiple scales image such
that each feature vector represents a large contextual window
around each pixel. Hariharan et al. [14] combine features
from the intermediate layers to enhance the feature extraction.
Yu and Koltun [15] proposed dilated convolutions to support
exponential expansion of the receptive field without loss of
resolution or coverage. Pinheiro and Collobert [16] employed
an RNN to model the spatial decencies during scene parsing.
Another strategy is to incorporate CRF into CNN to refine
the result. Chen et al. [17] exploited a pre-trained CNN to
generate deep features for CRF learning and illustrated that
CRF learning with CNN features yields astounding results.
Subsequent work [10], [18] have taken the idea further by
incorporating a CRF as layers within a deep network and then
learning parameters of both the CRF and CNN together via
back propagation. For example, Zheng et al. [10] formulated a
CRF as an RNN and then plugged into the network as a part of
a CNN.However, these approaches have not employed higher
order potentials, which have previously been shown to signif-
icantly improve segmentation performance. Arnab et al. [18]
combined object-detection based potentials and superpixels
based potentials into the CRF embedded within a deep net-
work.

B. HUMAN PARSING
Similar to semantic segmentation, human parsing is also to
predict the label of each pixel in the image, but focus on
human images, namely the segmentation of human body parts
and clothing region from the background. Much research has
devoted to human parsing in recent years. Most previous
methods often rely on much complicated preprocessing, such
as human pose estimation, bottom-up hypothesis and tem-
plate dictionary learning. For example, Yamaguchi et al. [2]
performed human pose estimation and attribute labeling
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FIGURE 2. Part-based human parsing cascade of networks (PHPC): (a) image-level parsing network; (b) head-part parsing sub-network; and
(c) body-part parsing sub-network.

sequentially and then used a retrieval-based approach to
improve clothes parsing. For a query image, they found sim-
ilar styles from a large database of tagged fashion images
and used these examples to parse the query. Their approach
combined parsing from pre-trained global clothing models,
local clothing models learned on the fly from retrieved exam-
ples and transferred parse masks (paper doll items trans-
fer) from retrieved examples. Similarly, Liu et al. [5] also
based on the retrieval-based method. They retrieved the
best matching clothing region of the test image from the
annotated-parsed human image corpus and then used convo-
lutional network to learn the inference and displacement coef-
ficients. Dong et al. [4] proposed to use Parselet hypotheses
to build the parsing model. Liang et al. [8] formulated the
human parsing as an active template regression problem,
where the template coefficients for each label mask and their
corresponding locations were predicted using convolutional
networks. But none of them is able to train in a fully end-
to-end way over raw image pixels. In the recent past, a few
methods have started using deep convolutional networks to
train the network from end-to-end. Liang et al. [6] based
on the fully convolutional network and proposed the contex-
tualized convolutional network, which integrated the cross-
layer context, global image-level context, within-superpixel
context and cross-superpixel neighborhood context into a
unified network. In their extension work [7], they incorpo-
rated short-distance and long-distance spatial dependencies
into the feature learning by a Local-Global Long Short-
Term Memory (LG-LSTM) layers. In [11], they split the
feature map into several cells and only consider the local
neighboring positions. So they proposed a Graph Long Short-
Term Memory (Graph-LSTM) network, which is more nat-
urally aligned with visual patterns in the image. However,
these methods have not considered effect of the scale and
localization of objects on parsing efficiency. Xia et al. [23]

proposed to detect objects and parts regions based on the
parsing results and then zoom into proper scales to refine the
parsing. Gong et al. [24] proposed a Part Grouping Network
(PGN), which jointly unify semantic part segmentation and
instance-level human parsing, in which these two correlated
task are able to mutually refine each other. Ruan et al. [25]
conducted a great deal of rigorous experiments to clarify
the properties affecting the performance of human parsing,
including feature resolution, global context information and
edge details, These methods actually has demonstrate the
effectiveness of focusing on part regions, but all attention at
the object level.

In sum, the existing methods of human parsing advance
substantially in segmentation accuracy, but with a known
drawback that not all fine-grained parts of the human are
segmented well by a single classifier [26].

III. THE PROPOSED PHPC NETWORKS
Fig. 2 shows the framework of the part-based human pars-
ing cascade (PHPC). As shown, the PHPC consists of three
networks: (1) an image-level parsing network, (2) a head-
parsing sub-network, and (3) a body-parsing sub-network.
These three networks were all built on the Fully Convolu-
tional Neural network (FCN) and generate three featuremaps.
In Fig. 2,wh and hh indicate the width and height of head-part
feature map, while wb and hb correspond to width and height
of body-part feature map. Lastly, we combined these feature
maps to refine the parsing results.

First, our image-level parsing network (a) generates an
initial parsing result for the whole image. Second, based on
the initial result, we detect the head and body regions of the
image. Third, we input the head part and body part into our (b)
head-parsing sub-network and (c) body-parsing sub-network,
respectively. To capture the details for small items, the head
and body sub-images are scaled up and double the original
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image size for sub-networks (b) and (c). Finally, we combine
all of the feature maps.

In sections III-A and III-B, we introduce in detail the
image-level parsing network and the head- and body-parsing
sub-networks. In section III-C, we introduce the fusion of all
the networks.

A. IMAGE-LEVEL PARSING NETWORK
For the image-level parsing network, we used the FCN pro-
posed for semantic segmentation by Long et al. [9]. Com-
pared with ordinary CNNs, FCN replaces all of the fully
connected layers with convolutional layers. The FCN can
therefore operate on an input of any size and produce an
output of the same size, so it can be trained end-to-end,
providing pixel-to-pixel labels from raw images.

In our method, we used the VGG 16-layer network [19]
as our base network. There are 13 convolutional layers with
Rectified Linear Units (ReLU), 5 pooling layers, and 3 fully
connected layers in the VGG-16 network. To use the network
for segmentation application, the 3 fully connected layers
were converted to convolutional layers, resulting in feature
maps that are 32 times smaller than the original size. The
number of feature maps (also called channels) is the same as
the number of class labels. Next, upsmapling and skip layers
are added to convert and fuse feature maps from different
convolutional layers to obtain the final feature maps with the
same size of the original image. In our method, inputs to the
image-level parsing network were 384 × 384 colour images,
passing through a stack of convolutional and pooling layers.

We defined loss (L) by averaging the cross-entropy loss
over all image pixels. More specifically, the loss function is
defined as follows:

L = −
1

W × H

N∑
k=1

W∑
j=1

H∑
i=1

yi,j,k log
_yi,j,k (1)

where _yi,j,k represents the likelihood for pixel (i, j) to belong
to label k, yi,j,k represents the ground-truth value if the label
of pixel (i, j) is k; N is the total number of labels, H and W
are the height and width of input image. The likelihood _yi,j,k
can be computed by the softmax function:

ŷi,j,k =
exp(zi,j,k )
N∑
i=1

exp(zi,j,k )

(2)

where z is the output of the last layer of the network. The
softmax function ensures a diffuse network output, so that
the class with a high probability score is highlighted and the
classes with lower scores are suppressed.

During training, the goal was to adjust the neural network
weights so that the predictions matched the ground truth by
updating the weights in the direction of a desceasing loss
function value. We trained the parameters of the network to
minimise the loss using Stochastic Gradient Descent (SGD),
a common optimising algorithm in network training. SGD
computes the gradient in every layer, updating the parameters

TABLE 1. Classes of image-level, head and body part networks.

layer by layer until the loss function (1) converges. The label
prediction for pixel (i, j) is obtained by argmax

k
yi,j,k .

B. HEAD AND BODY PARSING SUB-NETWORKS
By inputting an image into the image-level parsing network,
we obtained an initial parsing result, which provided a label
for each pixel. The feature maps generated by the image-
parsing level network provided 18 labelled parts, so the head
and body regions can be easily localised on the input image by
combining some of the labelled parts together. The head and
body parts of the image can be obtained using the smallest
rectangle bounding boxes to crop the image with all corre-
sponding classes. Table 1 shows the classes of each network.

The head and body part images are resized to double
the original size, and then input to the corresponding sub-
networks for training. The head- and body-parsing sub-
networks have the same design as the image-level parsing
network (discussed in section III-A), except that the output
layer is different because of the different ground-truth.

C. SUB-NETWORK COMBINATION
We obtain three feature maps from the image-level net-
work and the head and body parsing sub-networks. Let
zI
k,i,j
, zH

k,i,j
, zB

k,i,j
denote the feature scores from the image-

level FCN, head parsing sub-network and body parsing sub-
network, respectively, where pixel (i, j) belongs to the k-th
label. According to the locations of the head and body regions
of the images, recorded by the coordinates of bounding
boxes (xHstart , x

H
stop, y

H
start , y

H
stop) and (xBstart , x

B
stop, y

B
start , y

B
stop) ,

the head part feature maps zH and the body part feature maps
zB can be merged to the feature maps of image-level FCN zI

by the following formulae:

zI
xHstart +i,x

H
xstop+j,k

= zI
xHstart +i,x

H
xstop+j.k

+ zHi,j,k ,

k = 0, 1, 2, 3 (3a)

zI
xHstart +i,x

H
xstop+j,k+7

= zI
xHstart +i,x

H
xstop+j,k+7

+ zHi,j,k ,

k = 4 (3b)

zI
xBstart +i,x

B
xstop+j,k

= zI
xBstart +i,x

B
xstop+j,k

+ zHi,j,k ,
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FIGURE 3. (a) Input image (b) image-level output score maps: The first
score map is the background, and followed by hat, hair, sunglasses,
upper-clothing, skirt, dress, belt, trousers, left-shoe, right-shoe, face,
left-leg, right-leg, left-ram, right-arm, bag and scarf; (c) initial result of the
image-level parsing network; (d) head-parsing sub-network output score
maps: background, hat, hair, sunglasses and face; (e) body-parsing
sub-network output score maps: background, upper-clothing, skirt, dress,
belt, trousers, left-shoe, right-shoe, left-leg, right-leg, left-ram, right-arm,
bag and scarf; (f) feature score maps after combination; and (g) final
result of our method.

k = 0 (3c)

zI
xBstart +i,x

B
xstop+j,k

= zI
xBstart +i,x

B
xstop+j,k

+ zBi,j,k+3,

k = 1, . . . , 8 (3d)

zI
xBstart +i,x

B
xstop+j,k

= zI
xBstart +i,x

B
xstop+j,k

+ zBi,j,k+4,

k = 9, . . . , 13 (3e)

Fig. 3 shows the comparison results of the before and after
the combination of sub-networks. As shown in Fig. 3(b) and
Fig. 3(c), the heat map of sunglasses is not very obvious,
but after combination it becomes much more obvious (see
Fig. 3(f)) because of the fusion of the head parsing sub-
network (see Fig. 3(d)).

IV. CONFIGURATION AND IMPLEMENTATION DETAILS
A. DATA SET PARTITIONING AND PRE-PROCESSING
We trained the proposed PHPC on the ATR dataset [8]. This
dataset contains 7702 images, where each image is paired
with a ground-truth – a mask of pixels in 18 semantic labels.
We split the available data into two sets (as shown in Fig. 4):
the first set of 6898 images for training and the second set
of 804 images for testing.
We augment the training data by randomly mirroring

and cropping the images. The images are also normalised
by subtracting the mean RGB value of all the training
data. To balance computational efficiency and practicality
(e.g., GPU memory), all images are resized to a resolution
of 384x384 with 0 padding.

B. TRAINING DETAILS
The final network models, namely the image-level parsing
network (FCN), body and head sub-networks, were built
based on caffe and trained with mini batch stochastic gradient

FIGURE 4. Method used for generating training and test/validation set.

TABLE 2. Dataset partitioning and preprocessing for PHPC.

TABLE 3. Training parameter setup for PHPC.

descent with a momentum of 0.9, weight decay of 0.0005 and
fixed learning rate of 0.0001. The setup for training PHPC
networks is shown in Table 3.

To train the three sub-networks, we sped up the training
processing by fine-tuning on parameters pre-trained on Ima-
geNet dataset, and trained by phase, which is the same with
fine-tune strategy in the work of Long et al. [9]. We trained
the model on NVIDIA Tian X GPU for 30 epochs, and each
epoch meant one pass of the full training set. We did not
separate the images into batches for iterations. In other words,
each iteration contained one single image in the training set.

C. EVALUATION METRICS
Evaluation metrics were defined to assess the performance
of the network. We defined the Percentage of Correctly
Localised Parts (PCP) metric to evaluate the location accu-
racy for part detection as follows:

PCP =
Number of correctly localised parts

Number of all parts
(4)
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where the detection part is correctly localised if and only if
the overlap of the bounding box of the detection part and
bounding box of the ground-truth is over 50%. More than
50% overlap is used because the input to sub-networks needs
not to be very accurate and the sub-networks will parse the
detection region again.

In addition, three metrics commonly used for evaluat-
ing semantic segmentation performance, including per-pixel
accuracy, average per-class accuracy and mean accuracy on
intersection over union region (IoU) are used in this study.
The same metrics were also used in [9].

Let nij be the number of pixels of class i predicted as
belonging to class j, and ncl be the number of classes. There-
fore,

∑
j nij is the total number of pixels in class i. Per-pixel

accuracy is computed as follows:

Pixel acc =
∑

i
nii/

∑
i

∑
j
nij (5)

Mean per-class accuracy is computed as follows:

Mean acc = (1/ncl)
∑

i
nii/

∑
j
nij (6)

Mean accuracy of IoU is computed as follows:

mean IoU = (1/ncl)
∑

i
nii/(

∑
j
nij +

∑
j
nji − nii) (7)

We did not set aside a validation dataset in this study.
Instead, we trained the models over a set of epochs by updat-
ing the networks weights. The network weights are saved
after every epoch. Inference was carried out to yield pixelwise
predictions for the test data using all models optimised during
the training process. Fig. 5 shows the achieved mean IoU of
the test data set over every epoch. The mean IoU accuracy
appears to improve quickly during the first 5 epochs and
becomes stable (converged) after 10 epochs.

D. SUPERPIXEL AND CRFS REFINEMENT
As reviewed in section II, superpixel and CRF were reported
as effective strategy to refine the segmentation results.
We experiment to add superpixel and CRF as a post-
processing step to the final results of PHPC, as shown in
the dotted region of Fig. 1. To add superpixel and CRF
refinement, we used the Simple Linear Iterative Clustering
(SLIC) algorithm [20], a modified version of the K-means
algorithm, to calculate superpixels in the input images. The
SLIC algorithm segments image I to a set of superpixels
R = {R1,R2, . . . ,Rm}. Each superpixel Rm is associated with
the possible labels L = {l1, l2, . . . , lN }, Rm ∈ L. In the
last section, we obtained 18 label probability score maps.
Given image I , for every superpixel Rm, we computed the
probability score of Rm belong to label lk by averaging the
feature score for all inner pixels of Rm belong to label lk ,
as follows:

P(Rm = lk |I ) =
1
c

∑
(i,j)

zi,j,lk (8)

where c is the number of pixels within superpixel Rm. We
assigned superpixels to labels with the maximum probability
score P.

FIGURE 5. Evolution of the mean IoU accuracy of the test data set
calculated over all training epochs.

Considering the relationship between neighbouring super-
pixels, we also adopted a CRFmodel based on the superpixels
for better segmentation. Given an image I , our objective is to
minimise the following energy function:

E(R, I ) =
∑

m
ψm(Rm = ly |I )

+

∑
m,n
ψm,n(Rm = ly,Rn = ly′ |I ) (9)

where ψm is a unary energy involving the superpixel Rm, and
ψi,j is a pairwise energy involving a pair of superpixels Rm
and Rn, ly is the true label and ly′ is the prediction label. The
unary energy is compute by the following function:

ψm(Rm = ly |I ) =
exp(P(Rm = ly |I ))∑N
k=1 exp(P(Rm = lk |I )

(10)

The pairwise term ψm,n models the similarity between two
superpixels. We only adopted a pairwise term for adjacent
superpixels and considered the similar appearance for adja-
cent superpixels. The pairwise term is defined as follows:

ψm,n(Rm= ly,Rn = ly′ |I ) = u(ly,ly′ )k(fm, fn) (11a)

k(fm, fn)=ω exp(−
‖p(Rm)− p(Rn)‖2

δc
−
‖I (Rm)−I (Rn)‖2

δt
)

(11b)

where u(ly, ly′ ) = 1 if ly 6= ly′ and otherwise u(ly, ly′ ) =
0. The appearance kernel is inspired by the observation that
nearby pixels with similar colour are likely to have the same
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FIGURE 6. CRFasRNN network: with mean field iteration (a) within the
CRF processing (b).

label. The degrees of nearness and similarity are controlled
by the parameters ω, δc and δt .
We decided the most likely assignment ŷ = argmax

R
P(R

|I ), where P(R |I ) = E(R |I ). We minimised the CRF energy
(9) using alpha-expansion [21]. We trained the CRF model
for post-progressing using Pystruct tool.

E. COMPARATIVE STUDY
To evaluate the effectiveness of our proposed PHPC net-
work, we conducted a comparative study. We compared
the accuracy of PHPC (Fig. 2) with two other networks:
(1) basic FCN-8s image-level parsing model (Fig. 2(a)) and
the CRFasRNN network proposed by Zheng et al. [10],
as shown in Fig. 6.

For comparative purposes, we describe the CRFastRNN
model here. As shown in Fig. 6, CRFasRNN refines the
coarse segmentation from the FCN by integrating CRF opti-
misation into the model for an end-to-end training.

Let Xi be the variable associated with pixel i, where Xi ∈ L.
Given an image I, the probability score of pixel i being
assigned to li is initialised from the outputs of FCN, that is

P(Xi = li) = Ui(li) (12)

where Ui is the i-th feature map of the outputs from FCN.
The best label assignment li is obtained by minimising the
total CRF energy function:∑

i
ψi(Xi = li |I )+

∑
i,j
ψi,j(Xi = li,Xj = lj |I ) (13)

With reference to Equation (9), both energy functions (9)
and (13) have the same formulation, including unary and
pairwise energies. The key difference is that in our PHPC,
CRF is based on the superpixel and modelled as a post-
processing step (see section IV-D), while the CRFasRNN is
based on every pixel and uses the mean-field approximation
to minimise the CRF energy for an end-to-end model.

For pixel-level formulation, the computation of pairwise
energy is very large. In view of this, mean-field inference is
used to approximate the distribution of P(X |I ) as a simpler
distribution Q(X |I ):

Q(Xi = li |I ) =
1
z
exp

{
−ψi(Xi = li |I ) −

∑N

i=0
u(li, lj)

×

∑M

m=1
ω(m)

∑
i6=j

k (m)(fi, fj)Q(Xj= lj) |I
}

(14)

The algorithm of the mean-field inference updating is
shown below:

Initialisation Q(Xi = li)←
exp(P(Xi=li|I ))∑
i exp(P(Xi=li|I ))

Do until converge
Message passing Q̂m(Xi = li)←

∑
i6=j k(fi, fj)

Q(Xj = lj |I ) for all m
Weighting filter
outputs Q̂(Xi = li)←

∑M
m=1 ω

(m)

Q̂m(Xi = li)
Compatibility
transform Q̂(Xi = li)←

∑N
i=1 u(li, lj)

Q̂(Xi = li)
Adding unary
potentials Q̂(Xi = li)← ψi(Xi = li |I )

−Q̂(Xi = li)
Normalisation Q(Xi = li)←

exp(Q̂(Xi=li))∑
i exp(Q̂(Xi=li))

The above algorithm shows that the updated equation of
mean-field inference of a DenseCRF model can be broken
into a series of small steps, as neural network operations.
The message parsing step involves a bilateral filter, which
can be viewed as convolutional. The weighting filter outputs
and compatibility transform steps can be viewed as convo-
lutions with 1 × 1 kernels. The adding unary potential step
is a common operation in neural networks. The initialisation
and normalisation steps are both equivalent to the softmax
operation.

Fig. 6(a) illustrates the equivalent network layers of a
mean-field iteration. By performing multiple mean-field iter-
ations (Fig. 6(b)), where the output of one iteration becomes
the input of the next iteration, the mean-field inference algo-
rithm can be formulated as an RNN. Therefore, the model
is called CRFasRNN network, and it is able to provide
end-to-end training. We compared our PHPC networks with
FCN-8s [9] and this CRFasRNN (Fig. 6), and the detail
results are discussed in the next section.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
We evaluate the proposed PHPC networks in this section. For
comparative purposes, we also trained FCN-8s and CRFas-
RNN on the ART dataset using the same data partitioning and
preprocessing, as outlined in section IV-A. We evaluated the
overall effectiveness of PHPC networks in this section using
the metrics defined in section IV-C.

The core idea of our PHPC lies in the detection of the
head and body regions of the image, so we first evaluated the
part detection performance on the test dataset in section V-A.
In section V-B, we used the trained networks to inference
pixelwise predictions on the test data. To do so, the weights
determined in the training were first loaded into the network
and then the inference was applied. Finally, the output pre-
diction metrics were evaluated and compared. We evaluated
the effectiveness of our PHPC without refinement and com-
pared the results with the inference results of the FCN-8s
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TABLE 4. Localisation accuracy PCP of the head and body parts.

TABLE 5. Comparison of overall accuracy achieved (%) by our PHPC
model and two state-of-the-arts paring models when testing on ATR
dataset.

and CRFastRNN networks. We discuss the effectiveness of
superpixel and CRF refinement in section V-C.

A. EVALUATION OF HEAD AND BODY PART DETECTIONS
We calculated the PCP for all the test data using Equation (4).
Table 4 shows the localisation accuracy for the head and body
parts of our PHPC model and that of FCN-8s. As shown,
the head localisation accuracy of FCN-8s and our PHPC is
close to 100%while body part localisation accuracy of PHPC
is higher 1.37% than FCN-8s for test data. This illustrates that
our PHPCmethod is effective in localising/ detecting the head
and body regions of the input images.

B. EVALUATION OF HUMAN PARSING RESULTS
The per-pixel accuracy (pixel acc), per-class accuracy (mean
acc) and mean accuracy on intersection over union region
(mean IoU) are calculated by inference the trained PHPC
model on the test data and listed in Table 5, which also
compares the metrics of the FCN-8s and CRFasCNNmodels.
As shown, the proposed PHPCmodel achieves the best results
in all performance metrics. In comparison to FCN-8s and
CRFasRNNmodels, themean IoU of our PHPChas improved
by 4.58% and 3.49%, respectively, and the mean acc has
improved by 3.21% and 3.02%, respectively.

Table 6 also shows per-class mean accuracy on intersection
over union region (mean IoU) comparison of our PHOC
model, FCN-8s and CRFasCNN. It is obvious that our PHPC
significantly improves the IU score in every category, as com-
pared to FCN-8s and CRFasRNN. In particularly, the accu-
racy of small items improves significantly. For example,
the accuracy of sun-glasses is 11.433% greater than that
of FCN, and 7.278% greater than that of CRFasRNN. For
another example, the accuracy of belt is 3.430% greater than
that of FCN-8s and 3.416% greater than that of CRFasRNN.
Also, compared to the CRFasRNN, the accuracy of scarf
has improved by 5.938%. The reason why our model per-
forms better than FCN-8s and CRFasRNN is that our model
strengthens the attention of head and body part, and combines
the parsing result of subnetworks (focusing attention to local
parts) into the image-level parsing result.

TABLE 6. Comparison of per-class mean IoU accuracy (%) between
proposed PHPC model and two state-of-the-arts models FCN-8s and
CRFastRNN.

FIGURE 7. Comparison of parsing results: (a) input images, (b) results
from FCN-8s, (c) results from CRFasRNN, (d) results of our PHPC
networks, and (e) ground-truths.

TABLE 7. Comparison of average running time per image.

Fig. 7 shows some parsing results generated by the dif-
ferent models. As shown in Fig. 7 row (i), both FCN-8s

160108 VOLUME 7, 2019



Y. Zhou et al.: Part-Based Deep Neural Network Cascade Model for Human Parsing

TABLE 8. Comparison of overall accuracy (%) for PHPC models with and
without refinements.

TABLE 9. Comparison of per-class mean IoU accuracy (%) for models
with and without refinements.

and CRFasRNN do not detect the sunglasses, but our PHPC
model parses them accurately. Fig. 7 row (ii) also shows that
our PHPC model performs better on parsing the belt than
FCN-8s and CRFasRNN. Fig. 7 row (iii) shows that FCN-8s
and CRFasRNN confuse upper-clothing and dress, but our
PHPC model segments the upper-clothing and trousers prop-
erly. In Fig. 7 row (iv), the skirt was not accurately parsed by
FCN-8s and CRFasRNNmodels, but our PHPCmodel parsed
the skirt well.

We also compare the speed of the three networks in Table 7.
As shown, compared with FCN-8s and CRFasRNN, the run-
ning time needed to parse an image using our PHPC networks
is much longer. This is because our PHPC networks contain
three networks in total and these networks are arranged as
a cascade and process the input image in turn. The output

FIGURE 8. Comparisons of parsing results with and without refinement:
(a) input images, (b) results of PHPC without refinement, (c) results of
PHPC with superpixel refinement, (d) results of PHPC with superpixel and
CRF refinement, and (e) ground-truths.

of the image-level parsing network is used to generate the
input of the head- and body-parsing sub-networks, which
substantially extends the running time needed.

C. EVALUATION OF HUMAN PARSING RESULTS
As discussed in section IV-D, we experimented on using
superpixel and CRF as a post-processing step to further refine
the results. A comparison of the overall accuracy of our PHPC
models with and without superpixel and/or CRF refinements
is shown in Table 8. Although the literature reported that
superpixel and CRF could improve the segmentation accu-
racy [1], [2], [10] our results do not show improvements in
accuracy. Instead, the overall pixel accuracy, overall per-class
accuracy and mean IoU accuracy all dropped after refine-
ment process, while the CRF refinement results in a bigger
drop than only using superpixel for refinement. Therefore,
for PHPC model, we think superpixel and CRF as post-
processing is not effective, so such refinement (dotted region)
are not suggested in Fig. 2.
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By looking at the per-class mean IoU comparison
in Table 9, we can see that the accuracy of big items, such as
upper-clothing, trousers and dress increased, but the accuracy
for small items decreased. This demonstrates that the pro-
posed superpixel and/or CRF refinement is only effective for
big items. The accuracy of small items may have decreased
because that the superpixel and CRF model we used is
only a post-processing step (as discussed in section IV-D),
not an end-to-end model like CRFasRNN. Fig. 8 shows
some of the parsing results of the models with and with-
out refinement. The post-processing step may incorrectly
update or group small item pixels into the groups of large
items.

To conclude, the CRF refinement based on superpixel as
a post-processing step for the final results in the current
model, it appears that this refinement does not improve
the parsing accuracy for small items because the CRF
model was not integrated or trained end-to-end. We will
improve the refinement model and integrate all of the com-
ponents of our method as a unified network in our future
work.

VI. CONCLUSION
In this paper, we proposed a novel part-based human pars-
ing cascade (PHPC) of networks for the parsing of human
images, which consisted of an image-level parsing network,
two part-based paring networks and a combination module.
The inputs to the part-based parsing networks are partial
images detected based on the results from the image-level
parsing network and then scaled up to double the orig-
inal size. We have demonstrated this network design is
beneficial for extracting more detailed features from input
images. By doubling the partial raw image in localised area
of interests, the part-based parsing sub-networks decreased
the impact of the background and improved the pars-
ing accuracy of small items. The experimental results
have demonstrated the effectiveness of the proposed PHPC
networks.

The proposed PHPC networks do, however, have some
known limitations. First, the inputs for the part-based pars-
ing sub-networks rely on the output of image-level pars-
ing network: the image-level and part sub-networks do not
share any parameters. As a result, the running speed of the
PHPC is slow in comparison to other end-to-end parsing
models.
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