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ABSTRACT Virtual reality (VR) is commonly regarded as one of 5G killer-applications. Transmission
efficiency and quality of experience (QoE) are the most concerning issues for VR video streaming in 5G
networks. Several multicast approaches were proposed to address these issues regardless of variance of
personal viewports. In this paper, we explore a novel scheme combining multicast and unicast sessions in
heterogeneous cloud-radio access networks (H-CRAN), in which a basic version of the video is transmitted
to all users through the g-NB in a multicast session, and tiles of enhanced-version are transmitted to each
viewer in a unicast session through its stationed remote radio head (RHH). To ensure the real-time content
delivery, a user’s viewport is predicted using amethod based on historical trajectories and similarity ofmotion
behavior, and then the tiles of predicted viewport in a version dependent on the channel quality are sent to the
user in the unicast session. The scheme is formulated into a mixed-integer nonlinear problem (MINLP), and
two near-optimal solutions are proposed to solve it by applying greedy approach and approximate approach,
respectively. The simulation results show that our proposed scheme ensures better QoE under constrained
bandwidth, and the proposed near-optimal solutions can efficiently solve the problem with low complexity
and comparable performance.

INDEX TERMS VR video, quality of experience (QoE), resource allocation, cellular network, multicast,
unicast, H-CRAN.

I. INTRODUCTION
Recently, as the popularization of virtual reality (VR),
increasing people are able to experience VR capabilities on
affordable head-mounted display (HMDs) (e.g., HTCVIVE).
VR makes use of 360-degree panoramic videos with high
resolution (higher than 4K), high frame rate (60–90 fps)
and low delay (less than 20 ms) to provide an immersive
environment for the user to interact with the virtual world
[1]. However, streaming bandwidth-intensive VR video over
current network is quite challenging. First, compared to tra-
ditional video, its larger size and higher resolution lead to
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approving it for publication was Xiaodong Xu.

intensive bandwidth demand. Second, unlike traditional
video viewing, where screens are often shared (e.g., fam-
ily watching TV together), HMD screens cannot be shared
and each HMD requires the same content need to be deliv-
ered separately [2]. Third,compared to communication delay
(source provider to user equipment) for current network
(e.g.,10∼200ms for LTE), motion-to-photon (MTP) latency
for VR is quite critical (i.e.,less than 20ms) [2]. Therefore,
the increase of end-to-end latency will degrade the QoE
significantly [3]. Moreover, only portion of the panoramic
VR video is watched at a certain time due to the limitation
of viewer’s field of view (FOV), which causes significant
wasting of bandwidth resource. Consequently, streaming high
quality 360-degree videos efficiently is one of the most criti-
cal issues for current VR applications.
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Optimization of VR video transmission is actively under
exploration. In order to reduce bandwidth demand, tile based
adaptive streaming is proposed [4], which partitioned the
panorama into independent tiles, enabling various content
rate adaptable to the desired viewport of viewers. Based on
tiling scheme, multiple approaches has been proposed to
improve the quality of experience (QoE) [5], [6]. However,
these approaches always transmit panorama videos to viewers
in a unicast manner, e.g, streaming a VR video to millions
of viewers, which is not efficient even though tiling can
helpwith bandwidth reduction.Meanwhile, latency is another
critical issue for adaptive streaming, since HMD updates the
viewport data with a frequency between 60Hz and 120Hz [8]
(which means the latency for data input should be less than
20ms). Hence, viewport prediction based prefetching strategy
is generally adopted, which significantly reduce the latency as
well as the transmission bandwidth. However, the accuracy of
historical motion based prediction [10] will decrease sharply
along the time. Once the prefetched quality-foveated tiles
is mismatched with the real viewport, QoE of viewer will
be degraded noticeably. Recently, a few attempts to utilize
multicast scheme to serve a huge number of viewers con-
suming the same VR content simultaneously [7]–[9]. The
multicast solutions significantly improve the efficiency of
VR video transmission. However, it fails to fulfill individual
demand of viewers with respective of viewport (i.e., one has
to compromise to view low quality of VR video due to the
user grouping for spectral efficiency improvement).

As for the underlying technology, 5G heterogeneous cloud-
radio access networks (H-CRAN) has shown as a promising
solution for VR video transmission in the near future [11].
At early stage of VR application, most of VR videos
are downloaded in advance and viewed locally by mov-
ing the viewport in real-time. Recently, an increasing num-
ber of people prefer to experience VR at any time and
any place through portable HMDs integrated with power-
ful Graphics Processing Unit (GPU), which is also referred
as Mobile VR. Unsurprisingly, Mobile VR is predicted as
one of 5G killer-applications [3]. H-CRAN facilitated with
mobile-edge computing (MEC) [12], together with dual radio
architecture [22] are envisioned to be typical in 5G systems.
Heterogeneous networks with massive densification of small
cells and C-RANs are combined in one network structure
to improve spectral efficiency, resource management and
energy efficiency. Naturally, those make bandwidth-intensive
VR video streaming over H-CRAN feasible.

In 5G H-CRAN, dual connectivity (DC) allows users
to be simultaneously served by a macro and a small cell
operating at different carrier frequencies [10]. By exploit-
ing the DC, a multimedia multicast transmission scheme
through macro/small BS cooperation is presented in [10],
in which multicast streaming and patching streaming is deliv-
ered by macrocell base station (MBS) and small-cell BS
(SBS), respectively. Notice that the multicast can signifi-
cantly improve the transmission efficiency but it will degrade
the viewers’ QoE. By contrast, the QoE can be guaranteed

by unicast but it will result in ineffective transmission, espe-
cially when considerable number of people are request same
VR content simultaneously (e.g. a popular VR film). Is it
possible to transmit VR video by taking advantage of multi-
cast for transmission efficiency and unicast for QoE improve-
ment ? Motivated by this idea, in this paper, we explore
VR video streaming in 5G H-CRAN through cooperative
multicast and unicast (CMU) by macro (i.e., g-NB) and small
cell (i.e., RRH), respectively. More specifically, a certain ver-
sion of panoramic tiled VR video is transmitted to all viewers
through g-NB in a multicast manner. Meanwhile, based on
cross user viewport prediction, a portion of enhanced tiles
in the predicted viewport is transmitted to respective viewers
in a unicast manner through corresponding RRH. In order to
improve the accuracy of viewport prediction for unicasting
enhanced tiles, we explore the viewport prediction based on
historical trajectories and similarity of cross viewer motion
behavior. Furthermore, with proactive caching and real-time
transcoding paradigms in MEC, the end-to-end latency is
reduced significantly as that pushes the data close to the user
equipments (UEs).

Our main contributions are described as follows:

• In order to achieve better transmission efficiency and
QoE improvement, we proposed the cooperative mul-
ticast and unicast with viewport prediction (CMU-VP)
scheme for VR video streaming in H-CRAN.

• Viewport prediction based on historical trajectories and
similarity of cross viewer motion behavior is proposed
for better accuracy.

• To solve the mixed-integer nonlinear problem (MINLP),
two near-optimal solutions with low complexity and
comparable performance are presented by explor-
ing the greedy approach and approximate approach,
respectively.

• Plenty simulations are conducted to verify that CMU-VP
scheme ensures better QoE under limited band-
width, and the near-optimal solutions can efficiently
solve MINLP with low complexity and comparable
performance.

The remainder of the paper is organized as follows.
Section II provides an overview of related work. System
model is presented in Section III. Cross user viewport pre-
diction and proposed CMU-VP scheme are described in
Section IV. Problem formulation and Solutions are repre-
sented in Section V. Evaluations are performed in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK
A. ADAPTIVE VR STREAMING
Aiming at reducing the bandwidth consumption, video cod-
ing solutions are widely adopted for VR video stream-
ing in the literature. Among these approaches, tile-based
and viewport based are the most common approaches for
adaptive streaming, which common strategy is to trans-
mit portion of panoramic video in high quality while the
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rest in lower quality. Tile based adaptive streaming is
first proposed by Patrice et al. [4], in which a greedy
approach is adopted to solve the optimization of tile selection.
Furthermore, the impact of tiling scheme on quality of
transmission is evaluated. Based on tiling scheme, multiple
approaches has been proposed to improve QoE [5], [6].

Viewport based adaptive streaming is typical represented
by Facebook, a VR video is transformed and encoded
into multiple versions towards different perspectives. And
a viewer requests one of the video versions according to
the orientation. However, such scheme produces high redun-
dancy of contents (e.g., Facebook creates 150 versions for
one VR video) which require huge amount of storage and
bandwidth.

B. MOBILE VR STREAMING
The previous studies focused on wireline VR video transmis-
sion or offline delivery for local viewing on HMD. However,
with the growing capacity ofmobile network and increasingly
popular of Mobile VR, the demand of transmission high
qualityVRvideo efficiently overmobile network is becoming
ever urgent [15]. To cater for data intensive VR video delivery
over mobile network, Qian et al. [16] proposed a cellular-
friendly VR video streaming scheme that transmits only vis-
ible portion of video based on head movement prediction.
Similar approach is also presented for mobile VR [14], which
improvement is to complement the viewport based method
by adding foveated provision within each view. While these
approaches heavily depend on viewport prediction, the QoE
will degrade dramatically once the transmitted data mismatch
the real Field of View (FOV). Furthermore, the chunks of data
stream has to be segmented relatively short to keep peace with
frequent viewer’s viewport changes. Consequently, the effi-
ciency of transmission with short chunks is low because of
ineffective compression and heavy cost of data synchroniza-
tion. An efficient User-Generated Content (UGC) VR video
transmission scheme over cellular network is represented in
our previous work [25], in which only one representation of
each tile is generated for uploading based on optimization of
uplink resource allocation under the consideration of quality
of content (QoC) contribution, then directly transmitted to
viewer without transcoding.

However, transmitting a bandwidth-intensive VR video
to multiple users over resource-limited mobile network in
unicast manner is an inefficient way. Hence, a few researches
explore VR video multicast for the objective of transmis-
sion efficiency. Bao et al. [8] designed a bandwidth-efficient
scheme that combines multicast and unicast by sending par-
tial of VR video based on motion prediction, to decide
whether to use one multicast or multiple unicasts when a
certain viewing area on the sphere is required by multiple
viewers. In addition, margins are added to the predicted FOV
in order to handle prediction errors. In order to improve
spectral efficiency of VR video multicast. Jounsup et al. [7]
proposed a multi-session multicast approach for VR video,
in which user grouping, wireless resource allocation and tile

TABLE 1. List of symbols.

rate selection were jointly optimized with spectral efficiency
maximization. Inspired by the similar motivation, a multicast
DASH-based tiled streaming solution was presented in [2],
and a heuristic algorithm was proposed to solve the tile rate
adaptation problem. In addition, a QoE-aware deep learning-
aided VR multicast framework was presented by Cristina
Perfecto et al. [17], in which the future FoV of VR users
were predicted by a deep neural network. Based on prediction
FOV, proactive multicast resource scheduling was performed.
And the problem was formulated as a request admission
maximization problem and was solved by a low complexity
matching algorithm. Furthermore, Athul Prasad et al. [18]
discussed the challenges for VR broadcast using 5G small cell
network, solutions in terms of usage of single frequency net-
work (SFN) type of deployments and unlicensed millimeter
wave (mmW) bands were considered. Recently, they pro-
posed a D2D assisted VR broadcast scheme that enabled
radio resource efficient delivery VR video using broadcast
transmission [19].

III. SYSTEM MODEL
The system considered in this work is depicted in Fig. 1,
which consists of three part: VR content Server, MEC Server
and H-CRAN. The detail of the system are described as
follows:

The VR content Server is responsible for storing the
encoded VR video. With motion-constrained tile sets
(MCTS) coding [5], the VR video is spatially split into rect-
angular, independently decodable, non-overlapping tiles after
Equirectangular Projection (ERP) [8] to facilitate viewport
cropping, which are denoted by t ∈ T . And the stream of
each tile is then segmented into chunks temporally. Generally,
multiple representations for each tile are generated at the
content Server to facilitate further adaptive streaming, and the
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FIGURE 1. VR video streaming in 5G H-CRAN.

FIGURE 2. MEC-based transcoding module for CMU.

bitrate representations are denoted as {R1t , ..R
Q
t }, where t

is represented the tile index, R1t and RQt represent the pre-
defined minimum and maximum encoding rate of t-th tile,
respectively. In addition, a cross user viewport prediction
module is designed at the VR content sever to utilize the sim-
ilarity of user viewport motion, then the result of prediction
is fed back to MEC server for CMU scheduling.

The MEC server is located at the edge of H-CRAN, which
enables proactive caching and real-time transcoding for
request content. When users within the coverage of H-CRAN
request the VR content from the content server, the request
data will be retrieved from the MEC server. We assume that
the only one representation of a VR video with the highest
quality is proactively cached at the MEC server. To pro-
vide appropriate tile representations for CMU, a real-time
transcoding module is designed in this paper, as shown
in Fig. 2. Viewport tiles for each unicast links and transcoded
entire VR video for multicast link are re-encoded based on the
proactive cached representation, and the appropriate quan-
tization parameters (QPs) for unicast stream and multicast
stream are selected according to the optimization of CMU
scheduling.

Two-tier H-CRAN are considered in this work, where
a macro 5G base station (i.e., g-NB) are underlaid with
small cells (i.e., RRHs), the g-NB and small cell RRHs

are connected to a centralized baseband-unit (BBU) pool
through backhaul links and fronthaul links, respectively [11].
The BBU pool executes upper layer functions and base-
band signal-processing, whereas, the RRHs perform as radio-
frequency (RF) transceivers and only perform basic RF
functions. Software defined network (SDN) is adopted to
support the separation of data and control information, which
divides the control information into g-NB and data informa-
tion into RRHs [12]. The g-NB is mainly responsible for
the delivery of control information and multicast service. For
the simplicity of index, the RRHs and g-NB are uniformly
denoted by n ∈ N . To protect the control information and
multicast signal, spectrum of g-NB and RRHs are assigned
at different frequencies. In addition, the spectrum assigned
to RRHs are reused at each RRH. Moreover, cyclic prefix
OFDM (CP-OFDM) [11] is considered as multiple access
technique in our presented architecture.

Furthermore, consider V randomly viewers consuming
one VR video simultaneously. DC is supported for all user
equipments (UEs) (i.e., viewer HMDs in our system). The
signal interference to noise ratio (SINR) corresponding to
unicast link and multicast link are estimated from the uplink
sounding reference signals that are periodically broadcasted
from theUE. Based on the link quality and predicted viewport
information, optimization of CMU scheduling is performed
at the MEC server. The optimization results will be sent
to the UE, and the UE request the appropriate quality of
viewport tiles and entire transcoded VR video according to
the optimization result. Finally, the MEC server performs the
transcoding task and send the proper chunk of tiles by CMU
through g-NB and RRH, respectively.

IV. CROSS USER VIEWPORT PREDICTION AND
PROPOSED CMU-VP SCHEME
A. CROSS USER VIEWPORT PREDICTION
Cross user viewport prediction is proposed, in which, K most
similar users is first selected based on similarity of historical
motion, then the K users’ fixation is used to amend the
prediction result achieved by linear regression approach.

Tile based adaptive streaming has shown as a promising
way to transmit VR video efficiently [4]. However, due to
the delay sensitive feature of VR application (e.g., motion to
photon latency should be less than 20ms), it is highly imprac-
ticable to transmit high quality of video at current viewport
area immediately. Thus, viewers has to keep relative large
buffer for proactively pre-fetching tiles to ensure continuous
playback, and it is necessary to predict the viewport for the
reason of quality enhancement on portion of pre-fetching
tiles. Motion-based [8] and content-based [13] approaches
are most widely adopted for viewport prediction. However,
prediction accuracy of motion-based approach drops quickly
along with the time, and content-based approach is probably
not reliable since how texture and motion of video content
influences on the user motion are not fully investigated [20].
Recently, Ban et al. [14] exploited cross user behavior to
predict viewport by K-Nearest-Neighbors (KNN) method,
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FIGURE 3. Cross user viewport prediction.

which achieved considerable performance. However, KNN
method fails to consider the similarity between cross user
motion behaviors, since the K nearest fixation of other users
is used to amend the prediction result based on historical
trajectories. While motion behavior of the prediction user is
probably quite different from the K users’ (i.e., each user can
potentially view a VR video in a unique fashion, under this
situation, using the K nearest fixation to amend the prediction
result will lead to larger errors). On the other hand, some
research have already shown that users in virtual environment
have certain similar viewing patterns whenwatching the same
VR video [21].

Based on the aforementioned analysis, we intend to utilize
the similarity of user motion behaviors for higher accuracy
of viewport prediction. The demonstration of proposed pre-
diction approach is shown as Fig.3, where the viewport is
first predicated based on historical trajectories, then the pre-
diction result is amended by exploiting similarity of motion
behaviors of cross users. The similarity of motion behaviors
between two user is defined as (1), where t0 represents system
time, δ is sampling index of historical trajectories, D is the
time window of similarity measurement, �tδ {v, j} represents
the overlapped number tiles between two users’ viewport at
time tδ . v and j are the index of two different user, and v, j ∈ V .
2tδ {v} represents number of tiles in viewer’s viewport at
time tδ .

Sim{v, j} =
D∑
δ=0

�tδ {v, j}
2tδ {v} +2tδ {j}

(1)

Similar strategy as KNN approach is adopted in our work,
top K of most similar motion behaviors of users are selected
for amending the historical trajectories based prediction.

For historical trajectories based prediction, a linear regres-
sion (LR) model in window (S0 − 1, S0) is trained to predict
viewport in future time t0+0, which can be formulated as (2),
where S0 and 0 denote the chunk index at t0 and the time
duration of chunk, respectively. OLR represents the estimated
fixation predicted by LR, andωLR is the regression coefficient
of LR.

OLR(t0+0) = ωLR0 + OLR(t0) (2)

We adopt the vote mechanism which considering fixation
weights and tile’s viewed times by the K of most similar
users. Furthermore, the votes for a certain tile ξt can be
written as (3), where WLR and WSM represent weights of LR
prediction and weights of similar user fixation, respectively.
OkSM denotes the fixations ofKmost similar cross-users.F(O)
indicates the covering field of each fixation represented by
a T -dimension vector, where T represents the tile number
indexed in raster-scan order, and F(O) = 1 means the tile
is viewed, 0 otherwise.

ξt = WLR · Ft (OLR)+
K∑
k

WSM · Ft (OkSM ) (3)

Finally, viewing probability of each tile pt for the user can
be written as (4), i.e.,normalizing votes for each tile.

pt =
ξt∑T
t ξt

(4)

B. PROPOSED CMU-VP SCHEME
The scheme with reasonable tradeoff between transmission
efficiency andQoE is proposed for efficient VR video stream-
ing. Streaming entire tiled video to users in unicast manner
wastes significant network bandwidth, because users can only
watch a portion of video at a time through the HMDs, while
the rest of transmitted video outside the user viewport is
wasted. Multicasting VR content to large number of users
who consuming sameVR video simultaneously is an efficient
way. However, it would lead to part of users with lower QoE,
since it fails to enhance content quality within respective
viewport of users. To utilize DC feature in H-CRAN, we take
both advantages of unicast on QoE improvement and mul-
ticast on transmission efficiency, i.e. cooperative multicast
and unicast with viewport prediction, which is referred as
CMU-VP in this paper. Specifically, a certain version of
entire tiled VR content is transmitted to all viewers through
g-NB in a multicast manner, while portion of enhancement
tiles are transmitted to each viewer based on predicted view-
port through corresponding RRH in a unicast manner. For
each viewer, after receiving multicast and unicast data, then
merges them into a new version of VR content for future
display.

The detail of CMU-VP is summarized as follows: 1)Tiled
VR video with the highest representation is proactively
cached at the MEC server, when users within the cov-
erage of H-CRAN request the content from the content
server, the request data will be retrieved from the MEC
server. 2) Meanwhile, viewport prediction is performed at the
VR content sever according to our proposed cross user view-
port prediction method, then the result of prediction is fed
back to MEC server for CMU scheduling. 3) Once VR con-
tent server receive the consuming requests of VR video from
viewers, it creates a multicast service at Broadcast Multicast
Service Center (BM-SC), which is responsible for multi-
cast sessions management [23]. Meanwhile, a unicast stream

VOLUME 7, 2019 134191



J. Yang et al.: CMU-VP for VR Video Streaming in 5G H-CRAN

is also maintained with each UE for transmitting enhance-
ment tiles. 4) Optimization of CMU scheduling are performed
jointly considering probability of tile viewing, the channel
quality of multicast link and unicast links. Then a certain
version of entire tiled video and enhancement tiles responding
to each predicted viewport are generated through the real-
time transcoding. 5) With the assistance of SDN, the cer-
tain version of entire tiled video and enhancement tiles are
distributed into g-NB for multicast and RRHs for unicast,
respectively. 6) With DC supported, UEs receive multicast
stream from g-NB and unicast stream from corresponding
RRH. Finally, multicast and unicast streams are merged (i.e.,
the lower representation of the tiles received from both uni-
cast and multicast streams is discarded) in buffer of UEs to
achieve a high quality of VR content.

Note that the objective of CMU-VP is to optimize QoE for
all the viewers. Thus, the version of entire tiled video (i.e.,
tiles with which representations) for multicast, and unicast
enhancement tiles (i.e., which tiles and with which represen-
tations) to respective viewer need to be determined for that
purpose. Thus, the problem of VR video streaming through
CMU-VP is formulated as a QoE optimization problem, and
detail of problem formulation and solution are given in next
section.

V. PROBLEM FORMULATION AND SOLUTIONS
A. PROBLEM FORMULATION
In this paper, we adopt QoE metric for VR video streaming
in [7], and utility of a tile is defined as (5), where Rv,t
and RQt represent the encoding rate of t-th tile transmitted
to v-th UE and the pre-defined maximum tile encoding rate,
respectively. And α and β are the coefficients of utility model.
The utility is strictly concave function of received video rate,
and also marginally decreasing as the increase of video rate.
These features of utility function which can model the quality
of user experience well as the received video rate increasing.
For tile based VR video, the utility of a tile is used to model
the contribution of tile with certain bitrate to thewhole quality
of user experience.

Uv,t =

{
α log(βRv,t/R

Q
t ), Rv,tt > 0

0, Rv,t = 0
(5)

According to conventional multicast scheme [7], the trans-
mission rate of a group is determined by the user with the
worst channel condition in that group. Thus, themulticast rate
can be written as follows:

rm = Bmlog2

1+min
v∈V

(
P0E

{∣∣h0,v∣∣2}
σ 2 )

 (6)

where Bm represents bandwidth for multicast, P0 represents
transmission power of g-NB, E

{∣∣h0,v∣∣2} is the UE v average
channel gain from g-NB, and σ 2 is the power spectral density
of additive white Gaussian noise. Note that, in order to ensure

the transmission efficiency, only one user group is considered
in our scheme.

And the unicast rate of UE v associated n RRH can be
written as follows:

ruv = Bn log2

1+
PnE

{∣∣hn,v∣∣2}
σ 2

 (7)

where Bn represents available bandwidth of RHH n, Pn rep-
resents transmission power of RHH n, E

{∣∣hn,v∣∣2} is the UE
v average channel gain from RHH n.

Let xv,t ∈ {0, 1} indicates whether tile t is transmitted to
viewer v through unicasting. Ruv,t denotes the representation
of tile t transmitted to viewer v through unicasting, and Rmv,t
represents multicast representation of tile t . Note that each
viewer always chooses a better representation of tile if the tile
is received by viewer from both unicast andmulticast streams.
We adopt weighted utility function [4] to model the expected
QoE for VR video streaming in this paper, the utility of a tile
is used to model the contribution of tile with certain bitrate
to the whole quality of user experience, and weight pv,t is
the probability of tile t visible in the viewport of viewer v.
In order to maximize the whole QoE of all users under limited
bandwidth, the version of entire tiled video for multicast (i.e.,
Rmv,t ), and unicast which enhancement tiles with which bitrate
(i.e., xv,t , Ruv,t ) to respective viewer need to be determined
by CMU-VP scheduling. Consequently, CMU-VP schedule
problem with the objective of QoE maximization for all
viewers can be formulated as below:

P1 : Max
xv,t ,Ruv,t ,R

m
v,t

V∑
v

T∑
t

(
xv,tUu

v,t+(1− xv,t )U
m
v,t
)
pv,t

s.t.
T∑
t

Rmv,t ≤ r
m, ∀v ∈ V , ∀t ∈ T (8)

T∑
t

Ruv,t ≤ r
u
v , ∀v ∈ V , ∀t ∈ T (9)

Ruv,t ,R
m
v,t ∈ {R

1
t , ..R

Q
t }, ∀v ∈ V , ∀t ∈ T (10)

xv,t ∈ {0, 1}, ∀v ∈ V , ∀t ∈ T (11)

The constraint (8) limits the sum of multicast tiles rate in
bits/sec is less than the rate achieved from g-NB formulticast-
ing. (9) indicates that total transmitted tiles rate to each viewer
in a unicast manner should be less than the achievable rate of
each UE from associated RRH. (10) limits the muticast and
unicast tile rate is selected from pre-defined tile representa-
tions, respectively. (11) is binary constraint indicates whether
tile t is transmitted to viewer v in a unicast manner.

B. SOLUTIONS
The problem P1 is a MINLP, and is proved NP-hard in [24].
Due to high computation complexity of exhaustive search and
heuristics algorithms, we explore to derive two near-optimal
solutions for the problem, and details are given as follows.
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Algorithm 1 Greedy Algorithm
1: 2v: Predicted viewport of v th viewer
2: for v = 1; v ≤ V ; v++ do
3: for t = 1; t ≤ T ; t ++ do
4: // determine xv,t according to predicted viewport
5: if t ∈ 2v then
6: xv,t = 1
7: else
8: xv,t = 0
9: end if

10: end for
11: end for
12: for v = 1; v ≤ V ; v++ do
13: if xv,t = 1 then
14: // determine Ruv,t
15: apply greedy approach to solve P2
16: else
17: // determine Rmv,t
18: apply greedy approach to solve P3
19: end if
20: end for

1) GREEDY ALGORITHM
Greedy algorithm solve the problem by adopting greedy
approach after one variable xv,t is firstly determined accord-
ing to the viewport prediction. Note that there are three
variables(i.e., xv,t , Ruv,t , R

m
v,t ) need to be determined in the

P1, it’s highly impossible to simultaneously find the optimal
solutions for objective optimization. However, we notice that
once the xv,t is determined, and Ruv,t , R

m
v,t can be selected by

solving the P2 and P3, respectively. Fortunately, xv,t for each
viewer can be first determined based on viewport prediction
as we assuming that the FOV consists constant number of
tiles for each viewer. With the highest viewing probability tile
index, the tiles within the the predicated viewport is selected
for unicast to viewer.

With determined xv,t , for each viewer, the unicast and mul-
ticast schedule problem can be derived into two independent
sub-problems P2 and P3. While the similar problem has been
studied in our previous work [25], in which we adopted the
greedy approach to solve this type of problem. Therefore,
the problem P1 is finally solved by applying the greedy
approach, and the Algorithm 1 summarizes the details of our
approach, which is given as following:

P2 : Max
Ruv,t

V∑
v

T∑
t

xv,tUu
v,tpv,t

s.t.(9), (10)

P3 : Max
Rmv,t

V∑
v

T∑
t

(1− xv,t )Um
v,tpv,t

s.t.(8), (10)

It should be noted that Algorithm 1 achieves sub-optimal
solutions as we roughly derive P1 into two independent

problems P2 and P3 after the xv,t is determined. In addition,
utilizing the greedy approach to solve P2 and P3 separately
will also lead local optimal. Meanwhile, the computational
complexity of greedy approach is relatively high.

2) DECOMPOSING ALGORITHM
Decomposing algorithm solves the problem by decomposing
the P1 into two sub-problems. Note that, multicast and uni-
cast jointly scheduling makes the problem P1 prohibitively
difficult to solve. However, if the multicast schedule result
is first obtained, then the unicast schedule problem with the
multicast schedule result would be relatively easy to solve.
Inspired by this idea, we decompose the problem P1 into
two sub-problems P4 and P5, which can be described as
multicast schedule problem and unicast schedule problem
with the multicast schedule result, respectively.

P4 : Max
Rmt

T∑
t

Um
t pt

s.t.
T∑
t

Rmt ≤ r
m, ∀t ∈ T (12)

Rmt ∈ {R
1
t , ..R

Q
t }, ∀t ∈ T (13)

where pt is the average probability of tile t for all multicast
viewers, and Rmt = Rmv,t indicates that all the viewers received
same tile representation through the multicast stream.

P5 : Max
xv,t ,Ruv,t

V∑
v

T∑
t

(
xv,tUu

v,t+(1− xv,t )U
m
v,t
)
pv,t

s.t. (9), (10), (11)

The sub-problem P4 is a convex problem, which can be
solved efficiently by optimization toolbox or greedy algo-
rithm in our previous study [25].

After solving P4, P5 becomes a resource constrained
knapsack problem. The P5 can be solved by relaxing it
into a fractional knapsack problem then applying the greedy
approach [4]. Due to the computationally fast and elitism
strategy, we adopt APMonitor Modeling Language to solve
P5 [26], which provides real-time optimization, and is
freely available through MATLAB or Python interface. And
APOPT solver provided by APM solves the problem P5 with
obtained solution of P4 efficiently.

Note that more sophisticated algorithms can be applied
to solve the P1 optimally, however, it should be high
computation complexity cost. In contrast, according to our
strategy of problem solutions, the complexity is greatly
reduced and is easy to implement by adopting exist algo-
rithm or optimization toolbox. Furthermore, simulations also
show that the gap between proposed near-optimal solutions
and optimal solution is relatively small, and near-optimal
solutions can solve the problem efficiently with compa-
rable performance. And details will be explained in next
section.
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TABLE 2. Parameters of simulation.

VI. SIMULATIONS
In this section, we conduct plenty simulations to evaluate the
performance of our proposed solutions for the problem.

A. SETUP
A g-NB cell with 0.5 km radius is considered in the simula-
tion, where three RRHs is uniformly distributed within g-NB
cell. The users’ locations are randomly generated and UE
follow a Poisson Point Process (PPP) with density distributed
under g-NB coverage. The transmit power of g-NB andRHHs
are 46 dBm and 30 dBm, respectively, and system bandwidth
is set 10 MHz, 15 MHz, 20 MHz in different simulation
conditions,respectively. Note that bandwidth is divided into
two parts. one part is for multicast through g-NB, and the
rest part is for unicast through RHHs, respectively (i.e.,
6,9,12 MHz and 4,6,8 MHz in our simulation). And 60% of
g-NB bandwidth is used for multicast service [7]. Lognormal
shadowing with 8 dB standard deviation is implemented. The
noise power spectral density is assumed to be -173 dBm/Hz,
and more detail of simulation parameters is given in Table.2.

In order to fairly evaluate the proposed CMU-VP scheme
with near-optimal solutions (CMU Greedy, CMU Decom-
posing), few existing schemes are adopted for comparison:
1) CMU optimal solution with exhaustive search (CMU
optimal): CMU-VP scheme is adopted, and solved by
exhaustive search to obtain optimal solution. 2) CMU-VP
with equal tile bit rate (CMU equal): CMU-VP scheme is
adopted, while tile bit rate is distributed equally without
considering probability of viewing. 3) Multicast only [2]:
Tile based multicast scheme according to [2], which jointly
considers bandwidth constraint and tile weight. 4) Unicast
only [5]: Tile based unicast scheme according to [5], where
tile selection is based on viewport prediction.

4K resolution VR video (i.e., Freestyle Skiing) in [27] with
32 tiles is used for the simulation, and each tile is encoded
by open-source HEVC encoder Kvazaar with 10 different
representations: {0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.2, 1.5, 1.7, 2.0}
Mbps. And viewport trajectories of 48 users in dataset [27]
are divided into two part, the first part are used for view-
port prediction, while the other are adopted for performance
evaluation.

FIGURE 4. Comparison of viewport prediction accuracy.

For one certain user, K most similar users is selected
through the similarity measurement based on the first part
of viewport trajectories. meanwhile, viewport prediction for
next chunk is performed by LR based on historical trajectory.
viewport prediction is performed by our cross user viewport
predictionmethod. Then different streaming schemes are per-
formed with viewing probability of each tile pt for each user.
Finally, based on the second part of viewport trajectories,
we evaluates the QoE objectively according to tile bitrate
within each user’s viewport.

B. RESULTS
First, proposed viewport prediction method based on his-
torical trajectories and similarity between cross user motion
behaviors is evaluated. And conventional prediction method
linear regression (LR) and KNN-based Viewport Prediction
algorithm (KVP) in [14] are considered for comparison. For
fairness of comparison, the value ofK in our proposedmethod
is set as the same in [14], i.e., K = 5. Fig.4 shows that
accuracy of viewport prediction with different method along
the time. LR method performs the worst, especially for long-
term prediction. Because it performs prediction only based on
historical data, and viewer motion behavior probably become
quite different from that in former moment due to changes of
content. Compared to KVP, our proposed method improves at
least 6% higher accuracy, and maintains high accuracy over
80% even for the long-term prediction.

Fig.5 shows that normalized utility with different schemes
in different bandwidth conditions. We can observe that the
CMU-VP scheme always perform better than that without
CMU-VP scheme (e.g., Multicast only and Unicast only
approaches) in all bandwidth conditions. The Multicast only
approach performs worst among all the approaches, because
low tile bit rate is transmitted to viewers with the limited
multicast bandwidth. The utility of Multicast only approach
in average is 25% less than that achieved by CMU-VP
optimal. Compared to CMU-VP optimal approach, CMU-VP
proposed approach achieved comparable performance.While
CMU-VP equal performed much worse, about 13% less
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FIGURE 5. Normalized utility with V = 5.

FIGURE 6. Total UEs data rate over bandwidth with B = 10.

utility compared with CMU-VP optimal. As the resources for
transmission are equally distributed to each tile without con-
sidering probability of viewing, which leads the tile within the
viewport in low quality (i.e., lowV-utility value). AndUnicast
only performs steadily as the bandwidth increasing, however,
much of transmission bandwidth is wasted to transmit entire
of VR video to respective viewers in a unicast manner, which
leads to the worst efficiency.

Fig.6 shows the total achieved data rate of UEs over
total transmission bandwidth, which reflects the efficiency of
transmission schemes. Clearly, We can observe that schemes
with CMU(i.e., CMU optimal, CMU Greedy, CMU Decom-
posing, CMU equal) outperform schemes without CMU,
since the bandwidth resources are fully utilized for schemes
with CMU. And the unicast only performs the worst. Note
that the only difference among the schemes with CMU is the
strategy of tile rate allocation. However, tile rate allocation
is based on the achieved data rate of UEs, which is same for
schemes with CMU. Therefore, schemes with CMU has same
performance on transmission efficiency. In fact, the curves of
schemes with CMU are overlapped (i.e., CMU optimal in red,
CMU Greedy in green, CMU Decomposing in yellow, CMU
equal in blue) in Fig. 6.

FIGURE 7. CDF of V-utility with B = 10, V = 5.

TABLE 3. Comparisons of complexities.

Then, cumulative distribution function (CDF) of tile utility
in corresponding viewers’ viewport (V-utility) is measured
to evaluate the QoE objectively. As can be seen from Fig.7,
approaches with CMU perform better than these without
CMU. Furthermore, The gap between CMU optimal and
CMUproposed indicates that the proposed near-optimal solu-
tions are promising solutions with low complexity. Whereas,
due to lack of transmission bandwidth, we can see that 30%
of V-utility with Multicast only approach is below 0.1.

Finally, complexities of proposed algorithms are analyzed,
which are presented in Table.3. Complexity of the greedy
algorithm consists three part, the first part is the complexity
for xv,t determination, and the second and third part are the
complexity of greedy approach for P2 and P3, respectively.
Complexity of Decomposing algorithm is sum of the com-
plexity of greedy approach for P4 and P5 in the worst case,
and the complexity of approximate approach(i.e., AMP) for
P5 should be less than that with greedy approach. Exhaus-
tive search solve the problem by searching all the possible
options, therefore, the complexity is in order of multicast tile
rate select options times unicast enhancement tile options.

Table.3 shows the comparisons of complexities. CPU time
is also measured using Matlab in the condition with 10 MHz
system bandwidth. The greedy algorithm and Decomposing
algorithm take shorter time to complete the optimization than
the exhaustive search approach. The Decomposing algorithm
algorithm takes shortest time to obtain the solution, however
achieved utility is less than greedy algorithm.

Overall, the proposed scheme could significantly improve
QoE by utilizing the heterogeneous feature of H-CRAN. And
the proposed near-optimal algorithms (i.e., greedy algorithm
and decomposing algorithm) are promising solutions with
low complexity and comparable performance.

VOLUME 7, 2019 134195



J. Yang et al.: CMU-VP for VR Video Streaming in 5G H-CRAN

VII. CONCLUSION
In this paper, we explore viewport prediction based on his-
torical trajectories and similarity between cross user motion
behaviors. In order to achieve better transmission efficiency
and QoE improvement, we propose the CMU-VP scheme
for VR video streaming in H-CRAN. Furthermore, two near-
optimal solutions for CMU-VP schedule problem is pre-
sented. The simulation shows that the proposed CMU-VP
scheme with our proposed viewport prediction method can
improve at least 25% and 17% higher QoE compared with
muticast only scheme and unicast only scheme, respectively.
Notice that time window of similarity measurement in our
prediction method is a very important factor, which affects
the accuracy of prediction. It’s worth to careful study for
long-term viewport prediction. CMU-VP might be a promis-
ing way to stream VR video to a group of people in some
specific scenarios. For CMU scheduling, more sophisticated
algorithm with low complexity will be explored in our future
work.
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