
SPECIAL SECTION ON GREEN INTERNET OF THINGS

Received September 27, 2019, accepted October 20, 2019, date of publication October 30, 2019,
date of current version November 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2950443

Energy Consumption Optimization With a Delay
Threshold in Cloud-Fog Cooperation Computing
GUANGSHUN LI 1,2, JIAHE YAN 1, LU CHEN3, JUNHUA WU1, QINGYAN LIN 1,
AND YING ZHANG 1
1Department of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China
2Department of Computer, The Hong Kong Polytechnic University, Hong Kong
3Department of Information Security, Naval University of Engineering, Wuhan 430033, China

Corresponding author: Lu Chen (ieucl@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 61672321, Grant 61771289,
and Grant 61832012.

ABSTRACT With the rapid development of the Internet of Things (IoT), the number of mobile terminal
devices is increasing. Massive data are generated by mobile terminal devices, resulting in high delay and
high energy consumption. In most cases, however, a low delay means high energy consumption. To balance
energy consumption and delay, we adopt a tradeoff strategy that can realize optimal energy consumption
with a delay threshold in this paper. First, we introduce the role of the delay threshold in reducing delay.
Then, we describe the delay and energy consumption of the mobile terminal layer, fog node layer and cloud
server layer with queue theory. Nonlinear programming is used to solve the energy optimization problem
by calculating the optimal workload of each layer. We design a cloud-fog cooperation scheduling algorithm
to reduce energy consumption. A task offloading algorithm is also designed to complete tasks when their
nodes leave. The experimental results show that the energy consumption is reduced by approximately 22%,
while the delay is 12.5% less than the first come first served (FCFS) approach.

INDEX TERMS Energy consumption optimization, fog computing, tasks scheduling.

I. INTRODUCTION
With the development of the Internet of Things, the number
of mobile terminal devices shows a trend of exponential
increment [1]. Mobile terminal devices have restrictions in
size, battery life and computing capability, which results
in poor computing performance [2]. To alleviate the com-
puting burden on mobile terminal devices, the cloud-based
structure provides a promising opportunity. Computation-
intensive tasks can be transported to the cloud for execution
to improve the performance of applications and reduce the
energy consumption of mobile terminal devices [3]. The
traditional central cloud, such as the Amazon EC2 cloud,
Microsoft Windows Azure or Rackspace, has considerable
storage, rich computational resources and good service capa-
bility, [4], [5]. However, traditional cloud computing is far
from the terminal user, which results in degraded service for
delay-sensitive applications. Moreover, extraordinarily large
volume data generated by mobile terminal devices pose a

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wu .

heavy burden on traditional cloud computing, which results
in unbearable transmission delay [6]–[8].

To overcome the above disadvantages, Bonomi created the
term ‘‘fog computing’’ in 2012, also known as ‘‘cloud at
the edge’’ [9]. The fog layer acts as a bridge between the
mobile terminal layer and the cloud layer, which is composed
of fog nodes (such as routers and switches). Each fog node
is equipped with the facility of storage, computing, and
wireless communication [10]. Fog computing has advan-
tages of low delay, mobility support, and location/context
awareness [11], [12], which can meet the needs of applica-
tions with strict requirements of interactive response and high
resilience. However, fog nodes are limited in size, power,
capacity, and only serve a small portion of users [13]. There-
fore, fog computing is not a substitution but complements
cloud computing [1].

The requirement for cooperation between fog computing
and cloud computing is inspired by IoT applications [14]. For
example, fog nodes deployed at a highway can provide delay-
sensitive services to drivers. These fog nodes send delay-
tolerant but computation-intensive services to the cloud for
processing [15]. Running too many tasks on fog nodes can

159688 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6147-0637
https://orcid.org/0000-0001-9339-8545
https://orcid.org/0000-0002-4851-8410
https://orcid.org/0000-0002-4745-5243
https://orcid.org/0000-0003-2483-6980


G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

reduce delay but may increase the energy consumption of
fog nodes. However, transporting tasks to the cloud can save
energy of fog nodes but may increase delay. Therefore, it is
important to propose a tradeoff strategy between delay and
energy [4].

In this paper, we propose a tradeoff strategy between delay
and energy with a certain delay threshold. The main contri-
butions are as follows:

1) We model a mathematical framework of a fog-cloud
cooperation system with queue theory. We model the
energy consumption function and delay function of
three system layers and present a joint energy and delay
optimization problem.

2) To realize our joint optimization, we provide an easy
and universal method for minimizing the upper bound
of the delay threshold and use nonlinear programming
to calculate the optimal workload of each layer for
energy consumption optimization.

3) The cloud-fog cooperation scheduling algorithm is
designed to reduce energy consumption when consid-
ering new tasks generated by IoT application, and a
task offloading algorithm is designed to complete tasks
when their nodes leave.

4) The experimental results show that energy consump-
tion is reduced by approximately 22%, while the delay
is 12.5% less than the first come first served (FCFS)
approach.

The rest of this paper is organized as follows. In Section II,
we discuss the related work. We describe the mathematical
framework of the fog-cloud cooperation system in Section III.
In Section IV, we design a cloud-fog cooperation scheduling
algorithm. In Section V, we introduce the task offloading
algorithm. The experimental results and conclusions are pre-
sented in Section VI and Section VII, respectively.

II. RELATED WORK
The emergence of cloud computing had established a trend
of requesting services from cloud center. Singh et al. iden-
tified opportunities and obstacles in cloud computing [16].
To address the computational burden and transmission delay
of cloud computing, a paradigm named fog computing has
attracted great attention [17]. In [9], [10], Bonomi et al.
proposed fog computing and noted its critical roles in real
applications. Fog computing is not a substitution but comple-
ments cloud computing [1]. Recently, fog computing has been
expanded to a series of real applications scenarios, including
vehicular networks, smart grids, and smart cities.

In [18], the authors proposed HyFog, a new fog com-
puting hybrid task offloading framework in which devices
can choose three options for task execution, including local
mobile execution, device-to-device (D2D) offloading execu-
tion and cloud offloading execution. However, where to exe-
cute the tasks and how to allocate workload are attractive yet
challenging topics. In [19], Zhu et al. studied a task schedul-
ing problem and aimed to minimize energy consumption in
fog computing. A single objective optimization strategy has

been adopted in some studies. Ahn et al. studied the energy
consumption of fog computing and cloud computing, aiming
to improve energy efficiency [20]. Li et al. [21] proposed
a network architecture model that combines cloud comput-
ing and fog computing. They solved the delay optimization
problem using the Kruskal algorithm and Lagrangemultiplier
method. Li et al. [22] proposed a resource scheduling method
to improve the efficiency of resources in fog computing.
Li et al. [23] proposed a user-oriented spectral clustering
scheduling algorithm based on the k-means algorithm to
improve the satisfaction of users in a fog computing environ-
ment. Yu et al. proposed a connected k-coverage working sets
construction algorithm (CWSC) based on Euclidean distance
to prolong the lifetime of sensor networks [24]. Qi et al.
proposed a novel cloud service cost optimization method
named CS-COM by considering the user’s job size, service
invocation and service quality level [25]. In [26], Liu et al.
studied a mutiobjective optimization strategy in fog com-
puting, including delay, energy consumption, and equipment
offloading cost. The authors used a numerical conversion
algorithm to assign a weight factor to each objective goal
and formulated a joint optimization objective to minimize the
energy consumption, delay and equipment offloading cost.
However, equipment offloading cost optimization may have
negative effects on energy consumption optimization or delay
optimization. It is important to guarantee energy consumption
optimization and delay optimization in cloud and fog comput-
ing. In [27], Deng et al. studied the tradeoff strategy between
delay and energy when allocating tasks in cloud comput-
ing. They formulated a workload allocation problem and
approached this problem by decomposing the primal problem
into three subproblems. Hoang et al. proposed the fog-based
region and cloud (FBRC) framework [28]. The energy con-
sumption formula was taken as the objective function, and the
maximum delay was set as the constraint condition. To find
the appropriate upper bound of delay, they took delay as the
objective function again, which increased the complexity of
the problem.Meng et al.minimized energy consumptionwith
a given delay constraint and noted that delay is an uncertain
attribute and is related to many factors [29]. Therefore, it is
difficult to quantify and express the delay formula.

III. CLOUD-FOG COOPERATION SYSTEM
As shown in Fig. 1, we assume that the cloud-fog cooperation
system is composed of N mobile terminal devices, M fog
nodes, and K cloud servers. Each mobile terminal device can
communicate with others by wireless channels, a fog node
provides services for several mobile terminal devices and a
cloud server is responsible for several fog nodes. To save
communication cost, we assume that the monitoring center
responsible for scheduling tasks is in the cloud. Due to the dif-
ferent power and capacity, we consider the trafficmodel at the
mobile terminal device as an M/M/1 queue, the traffic model
at the fog node as an M/M/C queue, and the traffic model
at the cloud server as an M/M/∞ queue when we model the
cloud-fog system with queue theory [30]. If the task arrival

VOLUME 7, 2019 159689



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

FIGURE 1. The cloud-fog computing architecture.

rate is less than the service rate of the mobile terminal device,
then all of the generated tasks are processed at the mobile
terminal device. Otherwise, the mobile device offloads tasks
to the fog node for execution. If the task arrival rate is more
than the service rate of the fog node, the tasks are further
transported to the cloud server.

We assume that the tasks follow a Poisson process with
an average arrival rate of λ. We can describe a task by some
attributes, including the number of tasks t , the task input
length It , the deadline of the task dt , the task execution flag
ut , and ψt is the computing units required by the task. A task
can be described as the following tuple: 〈It , dt , ut , ψt 〉.

In this section, we introduce our cloud-fog cooperation
system. First, we introduce the role of the delay threshold.
Then, we describe delay and energy consumption with queue
theory. Finally, we present the optimization problem and use
nonlinear programming to solve it. Some important notations
used in this paper are summarized in Table 1.

A. DELAY THRESHOLD DEFINITION
If we require DTotal ≤ Dmax, we can minimize Dmax to
reduce delay. However, the value of Dmax will affect task

TABLE 1. Summary and notations.

FIGURE 2. Max delay comparison.

completion and workload allocation. We need to guaran-
tee task completion quality when we minimize Dmax. The
method for minimizing Dmax will determine the complex-
ity of the optimization problem. It is important to select
a low-complexity and feasible method. The scheduling to
minimize lateness (STML) algorithm is designed to min-
imize maximum delay, which adopts the greedy strategy
of the earliest deadline priority and has low complexity.
We conducted an experiment to show the role of STML.
From Fig. 2, we can see the maximum delay of different
scheduling algorithms. The maximum delay of STML is 38,
while the max delays of FCFS and shortest job first (SJF)
approaches are 49 and 40, respectively. The STML schedul-
ing algorithm can help us find the minimum Dmax. We
discuss task completion and workload allocation in detail
in Section VI.

In system initiation, every mobile terminal device sorts
the tasks in the queue according to the STML scheduling
algorithm and synchronizes its maximum delay with the
monitoring center. The monitoring center selects the largest
maximum delay as Dmax and broadcasts to every mobile
terminal device. In this way, we provide an easy and universal
method for minimizing the delay threshold.

B. DELAY DESCRIPTION AND ENERGY DESCRIPTION
1) MOBILE TERMINAL DEVICES
We assume that the service rate µ of a mobile terminal
device i follows the exponent process since its task queue
is M/M/1. Additionally, the tasks generated from mobile
terminal devices follow a Poisson process with an average
arrival rate λ. Pmt is the power of mobile terminal device i,
and Tmt is the working time. The energy consumption E imt for
processing tasks at mobile terminal device i can be described
as follows:

E imt = Tmt × Pmt =
X imt
µ− λ

× Pmt . (1)

Because tasks executed at mobile terminal devices have a
small communication delay, we only consider computing
delay. According to queue theory, the delay is expressed

159690 VOLUME 7, 2019



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

as follows:

Dimt =
λ

µ (µ− λ)
. (2)

2) FOG NODES
For a fog node j, its task queue is M/M/C. The energy con-
sumption of a fog node can be modeled by a function of the
number of computations, which is a monotonic increasing
and strictly convex function. The piecewise linear function
and quadratic function are two alternatives [1]. For simplicity
without loss of generality, we select a quadratic function. The
energy consumption of a fog node E jfog is a function related

to workload X jfog. We have

E jfog = aX j2fog + bX
j
fog + e. (3)

Next, we discuss the delay of fog nodes. The delay of fog
nodes is composed of computing delay and communication
delay. Assume that the computing delay Dcompfog is related to
the waiting time. According to queue theory, we have

Dcompfog =
Lq
λ
× X jfog, (4)

where X jfog is the workload assigned to fog node j, and Lq is
the average queue length. As long as the task is not executed
by mobile terminal devices, there will be communication
delay that is related to the input length of the tasks. We define
the transmission delay function as follows:

Fcomm(It ) =

{
γ It ut ∈ cloud
εIt ut ∈ fog

, (5)

where It is the input length of task t (γ � ε). Then,
the communication delay of the fog node is Dcommfog = εIt .The
delay of the fog node is composed of computing delay and
communication delay, which can be expressed as:

Djfog = Dcompfog + D
comm
fog . (6)

3) CLOUD SERVERS
For a cloud server k , its task queue is M/M/∞. When the
allocated workload increases, more cloud servers power on.
When the workload decreases, some servers turn off for
energy savings. The energy consumption of cloud server
Ekcloud is related to the on/off state, the on-state machine
number, and the workload, which is as follows.

Ekcloud = σknk (akX
k
cloud + bk ), (7)

where ak and bk are positive constants. σk denotes the on/off
state of the cloud server k , where 1 indicates that the cloud
server is on, and 0 represents off. And nk is the number of
on-state machines on the cloud server. Because cloud servers
have rich computational resources, the computing delay can
be ignored, so the delay is mainly the communication delay.
Refer to (5), we have

Dkcloud = γ Ii. (8)

4) PROBLEM OPTIMIZATION
The total energy consumption of the system ETotal is:

ETotal =
∑
i∈N

E imt +
∑
j∈M

E jfog +
∑
k∈K

Ekcloud , (9)

where 0 < i ≤ N , 0 < j ≤ M , 0 < k ≤ K . The total delay of
the system can be expressed as

DTotal =
∑
i∈N

Dimt +
∑
j∈M

Djfog +
∑
k∈K

Dkcloud . (10)

We can realize optimal energy consumption with a cer-
tain delay threshold by solving nonlinear programming as
follows:

min ETotal
s.t. DTotal ≤ Dmax∑

i∈N

X imt +
∑
j∈M

X jfog +
∑
k∈K

X kcloud = C

Xmin
mt < X imt < C

Xmin
fog < X jfog < C

Xmin
cloud < X kcloud < C, (11)

where C is the total workload. It may reduce delay; however,
it may increase energy consumption when tasks are executed
on fog nodes. In contrast, offloading tasks to the cloud server
can save the energy of fog nodes but increase the transmission
delay. To balance the workload, we set a minimum workload
for each layer. Xmin

mt is the minimum workload of the mobile
terminal device layer, Xmin

fog is the minimum workload of
the fog node layer, and Xmin

cloud is the minimum workload
of the cloud server layer. By solving the above nonlinear
programming problem, we can obtain the optimal workload
of each layer. X∗mt is the optimal workload of the mobile
terminal device layer, X∗fog is the optimal workload of the fog
node layer, and X∗cloud is the optimal workload of the cloud
server layer.

Fig. 3 is the task processing chart in our cloud-fog coop-
eration system. After tasks arrive, tasks are allocated to each
layer by using our tradeoff. However, numerous new tasks are
often generated in IoT applications. In this scenario, we pro-
pose a fog-cloud cooperation scheduling algorithm to reduce
energy consumption when processing new tasks (Section IV).
Moreover, the IoT system is dynamic, and one node may
leave the system when there are unfinished tasks in its queue.
In this case, we propose the tasks offloading algorithm to
complete tasks when their nodes leave (Section V). The mon-
itoring center in the cloud is responsible for the scheduling
tasks and monitoring devices conditions.

IV. CLOUD-FOG COOPERATION
SCHEDULING ALGORITHM
In IoT application scenarios, some latency-sensitive tasks
must be responded to immediately. The tasks can be executed
by the allocated layer when the workloads are not exceeded.
However, the tasks cannot be executed directly when the layer

VOLUME 7, 2019 159691



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

FIGURE 3. The task processing chart.

workloads exceed. Therefore, we design a cloud-fog coopera-
tion scheduling algorithm to reduce energy consumption. The
approach is summarized in Algorithm 1.

Although the cloud server has rich computational
resources, we cannot allocate all new tasks to the cloud
server. Where to execute a new task is related to the energy
consumption and delay tolerance of the new task. In the
cloud-fog cooperation scheduling algorithm, ut is the task
execution flag; when the flag value is 1, the task is executed
on the mobile terminal device layer, a value of 2 indicates

TABLE 2. Algorithm 1.

FIGURE 4. Range of task execution.

that the task is executed on the fog node layer, and a value
of 3 indicates that the task is executed on the cloud server
layer. If the task t is not allocated, the value of ut is 0. Energy
consumption is related to computing units required by the
task. ψa

mt , ψ
a
fog and ψa

cloud represent the average computing
units required by the task performed at mobile terminal
devices, fog nodes and cloud servers, respectively.ψt denotes
the computing units required by task t . If ψt is less than
ψa
mt , we allocate the task to the mobile terminal device layer

for execution. It must be determined whether the current
workload plus task t exceeds the optimal workload before it
is allocated. The task can be allocated to the mobile terminal
device layer if the total workload of the mobile terminal
devices does not exceed the optimal workload; otherwise,
set ut to 01 and wait for further processing. If ψt is more
than ψa

mt and less than ψa
fog, the task is transported to the

fog nodes for execution. We determine whether the current
workload plus task t exceeds the optimal workload before
it is allocated. The task can be allocated to the fog layer
if the total workload of the fog nodes does not exceed the
optimal workload; otherwise, set ut to 02 and wait for further
processing. If ψt is more than ψa

fog or ψa
cloud , the task must

be assigned to the cloud server for execution. Next, in the
case of ut = 01, the task can be allocated to the fog layer
if the total workload of the fog nodes does not exceed the
optimal workload; otherwise, the task should be allocated
to the cloud layer. In the case of ut = 02, the task should
be allocated to the cloud layer. Finally, the value of ut is
returned.
Theorem 1: Scheduling tasks according to the cloud-fog

cooperation scheduling algorithm can not only minimize the
maximum delay but also meet the requirements of energy
consumption.
Prove: We sort tasks from small to large with the STML

algorithm and obtain the minimal value of Dmax. We next
prove that the cloud-fog cooperation scheduling algorithm
can make the energy consumption of the system meet the
requirements of the objective optimization. From Fig. 4, for
a new task, if the computing units required by the task are
in
(
0, ψa

mt
]
, we allocate the task to the mobile terminal

device layer. If the computing units required by the task are
in
(
ψa
mt , ψ

a
fog

]
, we allocate the task to the fog node layer.

If the computing units required by the task are in
(
ψa
fog , ψt ],

we allocate the task to the cloud server layer.
Eamt ,E

a
fog,E

a
cloud represent the average energy consump-

tion of previous tasks performed at mobile terminal devices,
fog nodes and cloud servers respectively. When the power of
the device is constant, the energy consumption is proportional
to the computing units required by the task. The mobile

159692 VOLUME 7, 2019



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

terminal device layer energy consumption distribution is in
(0,Eamt

]
, the fog node layer energy consumption distribution

is in (Eamt ,E
a
fog

]
, and the cloud server layer energy consump-

tion distribution is in (Eafog,$
]
, $ is the upper limit of

the cloud server energy consumption. We can conclude that
the energy consumption of a new task is not more than the
average energy consumption at the mobile terminal device
layer and the fog node layer. The energy consumption of a
new task may be more than the average energy consumption
at the cloud layer. For a large task, if its energy consumption
is more than Eamt ,E

a
fog,E

a
cloud , we should allocate the task to

the cloud server layer since the energy consumption of a large
task is closest to Eacloud .

V. TASK OFFLOADING ALGORITHM
As is known, the IoT network is dynamic, and one node could
leave the system when it runs out of power. If there is an
unfinished task in the node’s queue, the task will be offloaded
to other nodes for execution. Therefore, we designed a task
offloading algorithm to ensure that the task could be com-
pleted when their nodes leave. The task offloading algorithm
is given as Algorithm 2.

TABLE 3. Algorithm 2.

Assume there are n1 mobile terminal devices and n2 fog
nodes. If task t needing to be offloaded belongs to the mobile
terminal device layer, first, we determine whether the mobile
terminal device layer has idle computing resources to com-
plete task t . δi is the current CPU utilization rate and Ci
is the total computing cell of the mobile terminal device i.
The idle computing resource of the mobile terminal device
i is C i

idle = (1 − δi)Ci. When the mobile terminal device

TABLE 4. Value of important parameters.

i has enough idle computing resources to complete task t ,
we allocate the task to mobile terminal device i for execution.
Otherwise, we consider allocating task t to the fog node layer
or cloud server layer for execution. We should allocate task
t to the fog node layer when the current number of tasks in
the fog node layer plus task t does not exceed the optimal
workload. Otherwise, task t is allocated to the cloud server
layer. In the same way, if task t belongs to the fog node layer,
we first determine whether fog node j can accept this task. If
yes, we allocate the task t to fog node j. Otherwise, the task
is allocated to the cloud server. The task offloading algorithm
is used to ensure that tasks can still be executed when the
execution node exits.
Theorem 2: The time complexity of this task offloading

algorithm is O(n).
Prove: Assuming there is a task t to be offloaded, it could

be at the mobile terminal device layer or fog node layer. Due
to rich computational resources, the cloud server layer does
not offload to the mobile terminal device layer and fog node
layer. Our choice is to offload the task to the layer that the
task belongs to. Therefore, in the worst case, the algorithm
only needs to traverse the mobile terminal device layer and
fog node layer, and the time complexity is O(n).

VI. SIMULATION
Simulation results are presented in this section to validate the
effectiveness of ourmethod. For simplicity but without loss of
generality, we consider the scenario with seven mobile termi-
nal devices, three fog nodes and one cloud server in the fog-
cloud computing system. It can be extended to more mobile
terminal devices, fog nodes, and cloud servers, with similar
results. Some important parameters used in the simulation
are summarized in Table 4, referring to [1], [4] and [30]. To
reflect the performance of our method at different workloads,
we selected five groups of tasks, and their total workloads
are 30, 50, 90, 150, and 200, in which the minimumworkload
of the mobile terminal device layer and fog layer is 3, 5, 10,
20, and 30 and 10, 20, 30, 50, and 80, respectively. More or
fewer tasks can be achieved similarly. The lengths of the tasks
are generated randomly because we cannot predict the length
of a task in reality. We conduct extensive simulations using
MATLAB 2015a on a computer equipped with a Pentium
Dual-Core CPU running the Windows operating system to
validate the performance of our proposed method.

First, we investigate the impact of the scheduling method
on the upper bound of the delay threshold Dmax. Because

VOLUME 7, 2019 159693



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

FIGURE 5. Delay of FCFS and STML.

FIGURE 6. Max delay of FCFS and STML.

FCFS is most commonly used in fog or cloud computing,
we compare STML with FCFS. As Fig. 5 shows, a group of
tasks are scheduled by FCFS and STML. The x-coordinate
represents the sign of the tasks, and the y-coordinate rep-
resents the delay. As shown in Fig. 5, the maximum delay
of STML is approximately 126, and the maximum delay
of FCFS is approximately 144, which means that the upper
bound of delay threshold Dmax can be reduced from 144 to
126. In other words, STML minimizes the global maximum
delay by approximately 12.5%. Moreover, we divide 100
tasks into 10 groups and schedule them by FCFS and STML.
The maximum delay of each group is presented in Fig. 6.
We can see that the reduction in the max delay is stable.

Then, we study how the delay threshold affects ourmethod.
Fig. 7 shows the energy consumption of the system without
considering the delay threshold. We select five groups as
examples, in which the total workload is 30, 50, 9, 150, and
200. The sample points at the same horizontal line represent
the workload allocated to each layer when the system energy
consumption is constant. We find that the workload allocated
to the mobile terminal device layer is 3, 5, 10, 20, and 30
(indicated by blue stars), the workload allocated to the fog

FIGURE 7. The energy consumption of the system without considering
the delay threshold.

FIGURE 8. Workload allocation of Dmax = 50.

node layer is 10, 20, 30, 50, and 80 (indicated by yellow stars),
and the workload allocated to the cloud server layer is 17, 25,
50, 80, and 90 (indicated by green stars), respectively. With
the increase in total workload, the workload growth trend of
mobile terminal devices and fog nodes does not changemuch,
and it increases linearly, while the slope of the workload of
the cloud server fluctuates. Moreover, the workload of the
mobile terminal device layer and fog node layer is equal to
the minimum workload we set, and the cloud server performs
the highest workload. As is known, processing tasks on the
cloud can save the energy of mobile terminal devices and
fog nodes, but it unavoidably increases delay. In this case,
we do not consider delay, so the cloud processes most of the
workload. Our three-layers model meets the characteristics of
the system.

To reflect how the delay threshold affects workload alloca-
tion and energy consumption, we choose two scenarios with
small and normal delay thresholds. The scenario of a large
delay threshold is equivalent to without considering delay,

159694 VOLUME 7, 2019



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

FIGURE 9. Workload allocation of Dmax = 150.

FIGURE 10. Energy comparison at different Dmax.

which we have discussed above. As Fig. 6 shows, the average
max delay of STML is approximately 150, so the normal
delay threshold is (−∞, 150] . We set the small delay thresh-
old as (−∞, 50] , which is one-third of the normal delay
threshold. Fig. 8 is the workload allocation whenDmax = 50.
In Fig. 8, when the total workload is 30, 50, 90, 150, and 200,
the workload allocated to the mobile terminal device layer is
8, 26, 55, 54, and 32, the workload allocated to the fog node
layer is 18, 20, 30, 50, and 80, and the workload allocated
to the cloud server layer is 4, 4, 5, 5, and 6, respectively.
We can see that the mobile terminal device layer and fog
layer perform most of the workload. While the workload
allocated to the cloud changes little, the workload allocated to
mobile terminal devices rises and then falls, and the workload
allocated to fog nodes rises because a small delay threshold
has higher requirements for task delay, which results in pro-
cessing tasks at the local layer. It is worth noting that the sum
of workload allocated to each layer is not the total workload
when the total workload is 150 and 200, which means there

FIGURE 11. Energy consumption comparison of Dmax = 150.

are tasks not completed. This is mainly because of the power
constraint. The power of mobile terminal devices and fog
nodes is far from the cloud, and they cannot complete too
many tasks without assistance from the cloud. Fig. 9 is the
workload allocation when Dmax = 150. In Fig.9, when the
total workload is 30, 50, 90, 150, and 200, the workload
allocated to the mobile terminal device layer is 3, 15, 45,
85, and 105, the workload allocated to the fog node layer
is 12, 20, 30, 50, and 80, and the workload allocated to the
cloud server layer is 15, 15, 15, 15, and 15, respectively.
We can conclude that the workload of the cloud layer is
increased approximately three times to alleviate the energy
consumption of the mobile terminal device layer and fog
layer. It is more important that all tasks are finished in this
scenario. From above, we can clearly observe the necessity
of determining a proper delay threshold for task allocation
and completion.

In addition, energy consumption at different Dmax value is
shown in Fig. 10. We can conclude that the higher the delay
requirement, the larger the energy consumption. The energy
consumption of the situation where Dmax = 50 and the
total workload is 150 and 200 should be higher than others,
but there are many unfinished tasks, so we do not see this
in Fig. 10. Therefore, the normal delay threshold we set is a
proper delay threshold.

Finally, we compare our energy consumption optimization
with the nonoptimization of energy consumption. In Fig. 11,
an obvious energy consumption reduction with a normal
delay threshold can be realized using our method. When the
total workload is 30, 50, 90, 150, and 200, the energy con-
sumption reduction rate is approximately 53%, 28%, 10%,
10%, and 7.3%, respectively. Then, the average energy con-
sumption reduction rate is approximately 22%. Therefore,
our energy consumption optimization is effective. However,
the energy consumption reduction rate decreases when the
total workload increases; Dmax = 150 can ensure that
all tasks finish on time. The delay-intensive requirement is
reached by processing at mobile terminal devices or fog

VOLUME 7, 2019 159695



G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

nodes, which increases the energy consumption of the system
when total the workload increases.

VII. CONCLUSION
In this paper, we adopt a tradeoff strategy that can real-
ize optimal energy consumption with a delay threshold.
We model a three-layers fog-cloud cooperation system by
describing energy and delay function with queue theory.
We solve the energy optimization problem by nonlinear
programming, and solve the delay optimization problem by
STML approach. We designed two detailed algorithms to
reduce new task’s energy consumption and guarantee task
completion. The experimental results show that energy con-
sumption is reduced by approximately 22%, while the delay
is 12.5 less than FCFS approach. For future work, we intend
to further optimize the energy consumption and delay in
cloud-fog computing where fog nodes are heterogeneous.
In that case, the energy consumption description and delay
description of fog nodes need to be carefully investigated.

REFERENCES
[1] R. Deng, R. Lu, T. H. Luan, H. Liang, and C. Lai, ‘‘Optimal work-

load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[2] S.Wan, Y. Zhao, T.Wang, Z. Gu, Q. H. Abbasi, andK.-K. R. Choo, ‘‘Multi-
dimensional data indexing and range query processing viaVoronoi diagram
for Internet of Things,’’ Future Gener. Comput. Syst., vol. 91, pp. 382–391,
Feb. 2019.

[3] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, ‘‘An edge
computing-enabled computation offloading method with privacy preser-
vation for Internet of connected vehicles,’’ Future Gener. Comput. Syst.,
vol. 96, pp. 89–100, Jul. 2019.

[4] L. Liu, Z. Chang, S. Mao, T. Ristaniemi, and X. Guo, ‘‘Multiobjective
optimization for computation offloading in fog computing,’’ IEEE Internet
Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

[5] J. Wu, M. Dong, K. Ota, J. Li, W. Yang, and M. Wang, ‘‘Fog-computing-
enabled cognitive network function virtualization for an information-
centric future Internet,’’ IEEE Commun. Mag., vol. 57, no. 7, pp. 48–54,
Jul. 2019.

[6] Z. Cai and X. Zheng, ‘‘A private and efficient mechanism for data upload-
ing in smart cyber-physical systems,’’ IEEE Trans. Netw. Sci. Eng., to be
published.

[7] X. Lin, J. Li, J. Wu, H. Liang, and W. Yang, ‘‘Making knowledge trad-
able in edge-AI enabled IoT: A consortium blockchain-based efficient
and incentive approach,’’ IEEE Trans. Ind. Informat., to be published,
doi: 10.1109/TII.2019.2917307.

[8] H. Liang, J. Wu, S. Mumtaz, J. Li, X. Lin, and M. Wen, ‘‘MBID: Micro-
blockchain-based geographical dynamic intrusion detection for V2X,’’
IEEE Commun. Mag., vol. 57, no. 10, pp. 77–83, Oct. 2019.

[9] F. Bonomi, R.Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its role
in the Internet of Things,’’ in Proc. ACM 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet of
Things: A Roadmap for Smart Environments. Cham, Switzerland, Springer,
2014, pp. 37–42.

[11] Z. Cai, X. Zheng, and J. Yu, ‘‘A differential-private framework for urban
traffic flows estimation via taxi companies,’’ IEEE Trans. Ind. Informat.,
to be published.

[12] Z. Guan, Y. Zhang, L. Zhu, L. Wu, and S. Yu, ‘‘EFFECT: An effi-
cient flexible privacy-preserving data aggregation scheme with authen-
tication in smart grid,’’ Sci. China-Inf. Sci., vol. 62, no. 3, pp. 1–14,
Mar. 2019.

[13] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[14] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[15] S. K. Datta, C. Bonnet, and J. Haerri, ‘‘Fog computing architecture to
enable consumer centric Internet of Things services,’’ in Proc. IEEE Int.
Symp. Consum. Electron. (ISCE), Madrid, Spain, Jun. 2015, pp. 1–2.

[16] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE
Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[17] I. Stojmenovic and S. Wen, ‘‘The fog computing paradigm: Scenarios
and security issues,’’ in Proc. Federated Conf. Comput. Sci. Inf. Syst.
(FedCSIS), Warsaw, Poland, 2014, pp. 1–8.

[18] X. Chen and J. Zhang, ‘‘When D2D meets cloud: Hybrid mobile task
offloadings in fog computing,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Paris, France, May 2017, pp. 1–6.

[19] T. Zhu, T. Shi, Z. Cai, X. Zhou, and J. Li, ‘‘Task scheduling in deadline-
aware mobile edge computing systems,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 4854–4866, Jun. 2019.

[20] S. Ahn, M. Gorlatova, and M. Chiang, ‘‘Leveraging fog and cloud com-
puting for efficient computational offloading,’’ in Proc. IEEE MIT Under-
graduate Res. Technol. Conf. (URTC), Cambridge, MA, USA, Nov. 2017,
pp. 1–4.

[21] G. Li, J. Wang, J. Wu, and J. Song, ‘‘Data processing delay optimization in
mobile edge computing,’’ Wireless Commun. Mobile Comput., vol. 2018,
Feb. 2018, Art. no. 6897523.

[22] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, ‘‘Methods of resource scheduling
based on optimized fuzzy clustering in fog computing,’’ Sensors, vol. 19,
no. 9, p. 2122, 2019.

[23] G. Li, S. Xu, J.Wu, and H. Ding, ‘‘Resource scheduling based on improved
spectral clustering algorithm in edge computing,’’ Sci. Program., vol. 2018,
Jul. 2018, Art. no. 6860359.

[24] J. Yu, X. Deng, G. Wang, X. Gu, and D. Yu, ‘‘CWSC: Connected k-
coverage working sets construction algorithm in wireless sensor net-
works,’’ AEU-Int. J. Electron. Commun., vol. 67, no. 11, pp. 937–946,
2013.

[25] L. Qi, J. Yu, and Z. Zhou, ‘‘An invocation cost optimization method for
Web services in cloud environment,’’ Sci. Program., vol. 2017, May 2017,
Art. no. 4358536.

[26] L. Liu, Z. Chang, T. Ristaniemi, andX.Guo, ‘‘Multi-objective optimization
for computation offloading in mobile-edge computing,’’ in Proc. IEEE
Symp. Comput. Commun., Jul. 2017, pp. 832–837.

[27] R. Deng, R. Lu, C. Lai, and T. H. Luan, ‘‘Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3909–3914.

[28] D. Hoang and T. D. Dang, ‘‘FBRC: Optimization of task scheduling in
fog-based region and cloud,’’ in Proc. IEEE Trustcom /BigDataSE/ICESS,
Sydney, NSW, Australia, Aug. 2017, pp. 1109–1114.

[29] X. Meng, W. Wang, and Z. Zhang, ‘‘Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,’’ IEEE Access, vol. 5,
pp. 21355–21367, 2017.

[30] T. Mori, Y. Utsunomiya, T. Okuda, and X. Tian, ‘‘Queueing theoretic
approach to job assignment strategy considering various inter-arrival of job
in fog computin,’’ in Proc. IEEE 19th Asia–Pacific Netw. Oper. Manage.
Symp. (APNOMS), Sep. 2017, pp. 151–156.

GUANGSHUN LI received the Ph.D. degree from
Harbin Engineering University, China, in 2008.
He has been a Visiting Scholar with Hong Kong
Polytechnic University, since 2019. He is currently
anAssociate Professor with the School of Informa-
tion Science and Engineering, Qufu Normal Uni-
versity, China. He has already published more than
50 articles. His research interests include wireless
networks, the IoT, and Bigdata.

159696 VOLUME 7, 2019

http://dx.doi.org/10.1109/TII.2019.2917307


G. Li et al.: Energy Consumption Optimization With a Delay Threshold in Cloud-Fog Cooperation Computing

JIAHE YAN received the bachelor’s degree in
computer science and technology from Qufu Nor-
mal University, China, in 2017, where she is cur-
rently pursuing the M.Sc. degree. Her current
research interests include mobile edge computing,
task scheduling, and the IoT.

LU CHEN received the Ph.D. degree from Wuhan
University, China. She is currently an Associate
Professor with the Department of Information
Security, Naval University of Engineering, China.
Her research interest includes trusted computing.

JUNHUA WU received the Ph.D. degree from
Harbin Engineering University, China, in 2009.
She is currently an Associate Professor with the
School of Information Science and Engineering,
Qufu Normal University, China. She has already
publishedmore than 40 articles. Her research inter-
ests include wireless networks, edge computing,
and the IoT.

QINGYAN LIN received the bachelor’s degree
in computer science and technology from Qufu
Normal University, China, in 2017, where she is
currently pursuing the M.Sc. degree. Her current
research interests include mobile edge computing,
task scheduling, and resource allocation.

YING ZHANG received the bachelor’s degree
in computer science and technology from Qufu
Normal University, China, in 2017, where she is
currently pursuing the M.Sc. degree. Her current
research interests include the Internet of Vehi-
cles, edge computing, stackelberg game, wireless
resource allocation, heterogeneous computing sys-
tems, game theory, and mobile computing.

VOLUME 7, 2019 159697


	INTRODUCTION
	RELATED WORK
	CLOUD-FOG COOPERATION SYSTEM
	DELAY THRESHOLD DEFINITION
	DELAY DESCRIPTION AND ENERGY DESCRIPTION
	MOBILE TERMINAL DEVICES
	FOG NODES
	CLOUD SERVERS
	PROBLEM OPTIMIZATION


	CLOUD-FOG COOPERATION SCHEDULING ALGORITHM
	TASK OFFLOADING ALGORITHM
	SIMULATION
	CONCLUSION
	REFERENCES
	Biographies
	GUANGSHUN LI
	JIAHE YAN
	LU CHEN
	JUNHUA WU
	QINGYAN LIN
	YING ZHANG


