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PURPOSE. To investigate the neuroprotective effects of Lycium barbarum polysaccharides
(LBP) against chronic ocular hypertension (OHT) in rats and to consider if effects differed
when treatment was applied before (pretreatment) or during (posttreatment) chronic IOP
elevation.

METHODS. Sprague-Dawley rats (10-weeks old) underwent suture implantation around the
limbus for 15 weeks (OHT) or 1 day (sham). Four experimental groups were studied, three
OHT groups (n ¼ 8 each) treated either with vehicle (PBS), LBP pretreatment or
posttreatment, and a sham control (n ¼ 5) received no treatment. LBP (1 mg/kg) pre- and
posttreatment were commenced at 1 week before and 4 weeks after OHT induction,
respectively. Treatments continued up through week 15. IOP was monitored twice weekly for
15 weeks. Optical coherence tomography and ERG were measured at baseline, week 4, 8, 12,
and 15. Eyes were collected for ganglion cell layer (GCL) histologic analysis at week 15.

RESULTS. Suture implantation successfully induced approximately 50% IOP elevation and the
cumulative IOP was similar between the three OHT groups. When compared with vehicle
control (week 4: �23 6 5%, P ¼ 0.03), LBP pretreatment delayed the onset of retinal nerve
fiber layer (RNFL) thinning (week 4, 8: �2 6 7%, �11 6 3%, P > 0.05) and arrested further
reduction up through week 15 (�10 6 4%, P > 0.05). LBP posttreatment intervention
showed no significant change in rate of loss (week 4, 15: �25 6 4.1%, �28 6 3%). However,
both LBP treatments preserved the retinal ganglion cells (RGC) and retinal functions up to
week 15, which were significantly reduced in vehicle control.

CONCLUSIONS. LBP posttreatment arrested the subsequent neuronal degeneration after
treatment commencement and preserved RGC density and retinal functions in a chronic
OHT model, which was comparable with pretreatment outcomes.

Keywords: glaucoma, neuroprotection, lycium polysaccharides, posttreatment, chronic rat
model

Glaucoma is a chronic age-related neurodegenerative dis-
ease, characterized by damage to the retinal ganglion cell

layer (GCL), leading to progressive vision loss and compro-
mised quality of life. The prevalence of glaucoma is estimated
to increase steadily from 60.5 million in 2010 to 111.8 million
by 2040,1 which has significant socioeconomic implications.2–4

Currently, IOP lowering remains the mainstay treatment for
preserving vision, irrespective of the type and severity of
glaucoma presentation.5–7 However, a proportion of patients
continue to experience gradual deterioration in vision despite
well-managed IOP.5–7 Hence, adjuncts to IOP lowering, such
neuroprotective strategies are needed to preserve healthy
neurons and rescue damaged neurons.8,9

While it is not fully understood why ageing predisposes to
glaucoma, increased oxidative stress is thought to play a

significant role.10–14 It is well-documented that as cell ages,
there is an increased level of free radicals, which can
compromise mitochondrial energy production and normal
neuronal functioning.15,16 Thus, complementary and alternate
medicines that seek to ameliorate energy deprivation and
reduce oxidative stress have been sought as therapeutic targets
for glaucoma treatment.17–19 In recent years, traditional
Chinese medicines have received considerable interest for
their potential neuroprotective effects in neurodegenerative
disease, including glaucoma.20 Potentially useful are the
polysaccharides extracted from the fruits of Lycium barbarum

(wolfberry), which has been reported to be an effective
antiaging agent21,22 with cytoprotective properties23 and the
capacity to modify oxidative stress,24–26 immune respons-
es,27,28 and neuronal responses.29–31

L. barbarum polysaccha-
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ride (LBP) has shown to protect retinal ganglion cells (RGC) in
both IOP-dependent32–35 and -independent models36–41 of
optic neuropathy. Chan et al.32 first demonstrated a dose-
dependent RGC preservation with LBP pretreatment in an in
vivo ocular hypertension (OHT) rat model induced by laser
photocoagulation of the trabecular meshwork. A number of
studies have since confirm that LBP pretreatment was
protective for RGCs in a range of injury models including
chronic OHT,32–35 acute ocular hypertension (AOH),36,37

partial optic nerve transection,38–40 and ischemia reperfusion
injury.41 While, the benefits of LBP pretreatment are clear in
experimental glaucoma model, treatment in the clinical setting
is often initiated once disease risk or the presence of injury has
been confirmed.

To better replicate clinical management and to increase the
chance for effective translation,42,43 we sought to assess the
potential benefits of LBP intervention in preserving the retinal
structure and function when delivered well after the onset of
neuronal degeneration. Using the minimally invasive circum-
limbal suture model of OHT in rats, we assessed neuroprotec-
tive efficacy of LBP when intervention was initiated before
(pretreatment) and well after the onset of IOP elevation
(posttreatment). In Sprague-Dawley rats, the circumlimbal
suture approach facilitated longitudinal assessment, allowing
us to demonstrate robust retinal nerve fiber layer (RNFL)
thinning and a corresponding reduction in ganglion cell
function.44 Using in vivo longitudinal assessment of retinal
structure (optical coherence tomography [OCT]) and function
(ERG), we tested the hypothesis that neuroprotective effects of
LBP against chronic IOP elevation can be achieved with pre-
and posttreatment intervention.

MATERIALS AND METHODS

Animals

Animal care and experimental procedures were undertaken in
accordance with the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research and were approved by the
Animal Ethics subcommittee of The Hong Kong Polytechnic
University. Female Sprague-Dawley rats of 10 weeks of age,
weighing 180 to 210 g at the start of the experiment were
housed at room temperature (228C) under normal lighting
condition (~200 lux) with an alternating light/dark cycle (12-
hours light/12-hours dark, on at 8 AM). Food (PicoLab diet 20
[5053]; PMI Nutrition International, Richmond, IN, USA) and
water were available to animals ad libitum.

Experimental Design

Forty-two Sprague-Dawley rats underwent baseline OCT and
ERG examinations, after which they were randomly assigned to
one of four experimental groups. These include three OHT
groups, namely (1) OHT-vehicle control, in which animals were
posttreated with PBS, (2) OHT-LBP pretreatment (preTx), (3)
OHT-LBP posttreatment (postTx), and a (4) sham control,
which received no treatment. A dosage of 1 mg/kg LBP was
used in both LBP pre- and postTx groups. The pretreatment
was initiated 1 week prior to OHT induction and posttreatment
was commenced 4 weeks after OHT induction. Both LBP
treatments were continued up through week 15. At day 0, all
the animals underwent OHT induction and longitudinal
structural and functional changes were assessed using OCT
and ERG, respectively, at the end of weeks 4, 8, 12, and 15.
After in vivo assessment at week 15, animals were euthanized
by CO2 asphyxiation and eyes were collected for histologic

examination (see Supplementary Fig. S1 for schematic diagram
of experimental study design).

IOP Measurements and OHT Induction

IOP was measured in rats using a rebound tonometer (Tonolab;
Icare, Vantaa, Finland) and recordings were obtained between
10:30 AM and 12:30 PM to minimize diurnal variations. All
animals were handled and acclimatized for 3 days to awake IOP
measurements. Baseline IOP was obtained by averaging IOP
measurements collected on two subsequent days. On the day
of OHT induction (day 0), animals were anesthetized with an
intraperitoneal injection of a 60 mg/kg ketamine and 5 mg/kg
xylazine mixture (Alfasan International B.V., Woerden, Hol-
land). Following application of a drop of topical anesthetic
(Provain-POS 0.5% wt/vol eye drop; URSAPHARM, Saarbrück-
en, Germany), a circumlimbal suturing was implanted. Briefly,
an 8/0 nylon suture was tied around the globe at approxi-
mately 1.5 to 2 mm behind the limbus, and secured using six to
seven subconjunctival anchor points. The suture was then
tightened until IOP reached approximately 70 mm Hg; this was
then secured with a second knot. Suture ends were trimmed to
minimize irritation and eyes were treated with a topical
antibiotic (Gentamicin; Gibco, Thermo-Fisher Scientific, Wal-
tham, MA, USA). The suture was applied in both eyes of the
animals assigned to OHT groups and in one randomly selected
eye in the sham control group.

On the day after OHT induction (postoperative day 1), the
suture was left intact in one randomly selected eye and
removed from the other eye. For sham control animals, the
suture was removed and the other eye was maintained as a
näıve fellow control eye. IOP was monitored on alternate days
in the first week and then twice weekly up to week 15. Sutured
eyes that maintained an IOP elevation of 25% above the fellow
control eyes (suture removed) in the first 4 weeks were
considered to be successful OHT induction and were followed
up through 15 weeks. Approximately, 30% (n¼ 12) of animals
were excluded from the analysis due to inadequately sustained
IOP elevation (OHT vehicle control: 3; OHT-LBP PreTx: 2; OHT-
LBP PostTx: 3), development of corneal opacities (sham
control: 1; OHT vehicle control: 1) or attrition (sham control:
1; OHT-LBP PostTx: 1) during follow-up examinations.

Drug Administration

The method of extracting polysaccharides from Lycium fruit
has been detailed elsewhere.45 Fresh LBP solution was
prepared by dissolving dried LBP powder in PBS. Animals
were either pre- or posttreated with 1 mg/kg LBP or PBS once
daily using a nasogastric feeding tube between 10:30 AM and
11:30 AM. Animals in pre- (weeks�1 to 15) and posttreatment
(weeks 5–15) received feeding for a total of 16 and 11 weeks,
respectively.

Optical Coherence Tomography

The peripapillary retinal thickness was imaged using a spectral-
domain optical coherence tomography (SD-OCT; Micron IV;
Phoenix Research Lab, Pleasanton, CA, USA) as described
earlier.46 Briefly, animals were anesthetized with ketamine-
xylazine and pupils were dilated (Mydriacyl 1%; Alcon-
Couvreue, Puurs, Belgium). A peripapillary B-scan of 0.51-
mm radius, consisting of 1024 A-scan with axial and transverse
resolutions of 1.8 and 3.0 lm, respectively, was acquired.
Images were then analyzed using a semiautomated segmenta-
tion algorithm (Insight software; Phoenix Research Lab) to
measure the thicknesses of total retina (TRT), retinal nerve
fiber layer (RNFLT), inner retinal layer (IRLT), and outer retinal
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layers (ORLT). The TRT was measured from the RPE layer to
the inner limiting membrane, the IRLT was the total thickness
of the inner plexiform and inner nuclear layer (INL), and the
ORLT was measured from the RPE layer to the outer plexiform
layer.

Electroretinography

Full-field Ganzfeld (Q450; RETI Animal; Roland Consult,
Brandenburg an der Havel, Germany) stimuli was used to
elicit inner and outer retinal responses from experimental
animals as described previously.46 Briefly, under dim red light,
dark adapted animals (>12 hours of dark adaptation) were
anaesthetized using ketamine-xylazine and placed on a
temperature controlled platform connected to a warm water
bath (378C). Pupils were dilated and a drop of lubricating gel
was applied to prevent corneal dehydration. Recordings were
taken from both eyes using gold ring electrodes placed on the
corneal surface (active electrode) and needles electrodes
inserted into the lateral canthi of each eye (reference
electrode) and the base of the tail (ground electrode).

The positive scotopic threshold response (pSTR) was
measured by averaging 30 (interstimulus interval of 2 seconds)
responses using a series of brief (2 ls) dim white light-emitting
diode flash intensities ranging from �4.8 to �4.05 log cd.s/m2

with 0.15-log cd.s/m2 steps. Scotopic (mixed rod and cone)
responses were recorded using a single flash of 1.3 log cd.s/m2.
Signals were recorded with a band pass filter of 0.1 to 1000 Hz.
The amplitudes and implicit time of the pSTR, scotopic a- and
b-wave responses, which correspond to ganglion, photorecep-
tor, and bipolar cell function, respectively, were analyzed.

Histologic Examination

At the end of week 15, animals were euthanized by the
inhalation of CO2 and eye cups were collected for histology
analysis as reported earlier.46 Briefly, the eye cups were fixed
overnight using 4% paraformaldehyde in PBS at room
temperature, after which tissues were dehydrated using graded
ethanol before paraffin embedded. Retinal section of 5 lm
parallel to the optic nerve were collected, stained with
hematoxylin and eosin (H&E), and imaged using a light
microscope at 3200 magnifications (Nikon, Tokyo, Japan).
The peripheral (250 um away from the ora serrata) and the
central (250 um away from the scleral canal opening) retinal
regions of 500 3 500 lm along with optic nerve head (ONH)
were selected for morphologic analysis. The GCL density
(cells/mm) of both central and peripheral retinal regions was
calculated by dividing the manually counted cell number in the
GCL with the corresponding retinal length measured using
ImageJ software (http://imagej.nih.gov/ij/; provided in the
public domain by the National Institutes of Health, Bethesda,
MD, USA).

Immunohistochemistry

The de-paraffinized retinal sections were blocked with goat
serum and incubated with primary mouse anti–b-III-tubulin
(1:1000; BioLegend, San Diego, CA, USA) at 48C overnight. The
retinal sections were then incubated with Alexa Fluor 488 goat
anti-mouse IgG (1:500; Molecular Probes, Invitrogen, Carlsbad,
CA, USA) to visualize the signal and the cell nuclei were
counterstained with 4 0-6-diamidino-2-phenylindole (DAPI).
Stained sections were imaged using a light microscope at
3200 magnifications (Nikon). The RGC density was obtained
by manually counting the b-III-tubulin–positive cells from
central retinal region of 500 3 500 lm and divided by the
corresponding retinal length using ImageJ.

Statistical Analysis

The data collection and analysis were masked. The data were
normally distributed and are presented as mean with SD. All
analysis was performed using SPSS 23.0 (IBM Corp, Armonk,
NY, USA). The significance level was set at P < 0.05. A 2-way
repeated measure (RM) ANOVA was used to compare the IOP
measurements, OCT, and ERG parameters between the
experimental and fellow control eyes over time. Cumulative
IOP (week 0–15) was calculated for each experimental group
and a mixed-model ANOVA was used to compare differences in
cumulative IOP within groups (between experimental and
fellow eye) and between groups (across different treatment
conditions) with Bonferroni correction. To test the long-term
protective effects on structural and functional parameters
under different treatment conditions, data from treated eyes
were first expressed relative to their contralateral control eyes
([experimental eye � fellow control] / fellow control 3 100
[%]) and then as a difference (%) from baseline. A mixed-model
ANOVA was used to compare the difference in retinal layer
thicknesses and ERG parameters (amplitudes and implicit
time) among the four groups and also within each group over
time. A post hoc comparison between groups or eyes at
various time points was undertaken using Bonferroni test.

RESULTS

Comparison of Chronic IOP Elevation by
Circumlimbal Suture Model Between Experimental
Groups

Baseline IOP was similar in all experimental groups (11 6 1
mm Hg). After securing the suture, a spike in IOP to 73.0 6 10
mm Hg was detected in all groups, which dropped by
approximately 50% in 10 minutes. Figure 1A shows IOP data
for sham control (n¼ 5), which had the suture removed at day
1 and its näıve fellow control eye. IOP returned to normal after
suture removal on postoperative day 1 and was similar to the
control eye throughout the 15 weeks. Figures 1B to 1D shows
IOP measurements from OHT-vehicle control (n ¼ 8, Fig. 1B),
OHT-LBP pretreatment (n ¼ 8, Fig. 1C), and OHT-LBP
posttreatment (n ¼ 8, Fig. 1D) groups, in which one eye had
the suture in place for 15 weeks and the contralateral control
eye underwent suture removal at postoperative day 1. IOP in
experimental eyes was significantly higher than fellow control
eyes in all three OHT groups (2-way RM ANOVA: between eyes:
P ¼ 0.0001). Figure 1E shows cumulative IOP for control and
treated eyes from each experimental group. Cumulative IOP
was significantly different between eyes and between exper-
imental groups (mixed ANOVA: between eyes: P < 0.001;
between groups: P ¼ 0.01; interaction: P < 0.001). All OHT
eyes had approximately 35% higher cumulative IOP compared
with their fellow control eyes and sham control eyes (P <
0.001). Cumulative IOP was similar among the three OHT
groups (P > 0.05). Also, there was no difference in cumulative
IOP between suture cut sham control eyes and fellow näıve
control eyes (P > 0.05).

Longitudinal Effect of LBP Treatments on OCT
Measured Retinal Layers

Change in thicknesses of the TRT, RNFLT, IRLT, and ORLT over
the week 15 for all four experimental groups are expressed as
percentage change from baseline (Fig. 2). The raw data of all
the retinal thicknesses are presented in Supplementary Figure
S2 and the representative SD-OCT B-scans from each experi-
mental group were shown in Supplementary Figure S3. TRT
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(Fig. 2A) was significantly different between treatment groups
over time (mixed ANOVA: interaction effect: P ¼ 0.01). While
the TRT of sham control eyes remained stable over the 15
weeks (week 15: 1.4 6 1.2%, P > 0.05, relative to baseline),
the OHT-vehicle control group showed thinning at week 4
(�2.4 6 2.5%, P ¼ 0.02, relative to baseline; P ¼ 0.01,
compared with sham control). From week 8, there was a
gradual thickening of TRT up to week 15 (4.1 6 4.4%, P ¼
0.01, relative to baseline, weeks 4 and 8). With LBP
pretreatment, there was no change in TRT (week 4: �0.3 6

1.9%, P > 0.05; week 15: 2.0 6 2.8%, P > 0.05, relative to
baseline). With LBP posttreatment, there was significant TRT
thinning at week 4 (�1.6 6 2.0%, P¼ 0.27, relative to baseline,
P ¼ 0.03, compared with sham control). However, after

commencing LBP posttreatment from week 5, TRT improved
and was comparable with baseline up to week 15 (0.8 6 1.6%,
P > 0.05, relative to baseline). This was not different to sham
controls.

RNFLT (Fig. 2B) differed significantly among experimental
groups over time (mixed ANOVA: interaction effect: P¼ 0.01).
RNFL thickness of sham controls was not significantly altered
(week 15: 6.5 6 8.4%, P > 0.05). Following OHT induction,
RNFL thickness in the vehicle-treated group showed significant
thinning at week 4 (�23.4 6 15.3%, P ¼ 0.03, relative to
baseline; P ¼ 0.06, compared with sham control) that was
sustained up to week 15 (�17.0 6 16.6%, P¼ 0.04, relative to
baseline). LBP pretreatment prevented RNFLT thinning at
week 4 (�2.0 6 18.9%, P > 0.05, relative to baseline). While

FIGURE 1. IOP profile of experimental animals over 15 weeks of study. Mean IOP measurements of experimental and fellow eyes were presented
for (A) sham control, (B) OHT-vehicle control, (C) OHT-LBP preTx, and (D) OHT-LBP postTx animals. Error bars, standard deviation. *P < 0.05 , †P

< 0.01, ‡P < 0.001 versus fellow control (*†‡Bonferroni’s post hoc test of 2-way RM ANOVA). (E) Cumulative IOP of experimental and fellow eyes
among different treatment conditions. Error bars, standard deviation. Each circle in the bar chart represents individual data points of the animals. *P
< 0.05 versus fellow eye; †P < 0.05 versus sham control (*†mixed-model ANOVA).
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not significant, there was a trend for RNFL thinning at week 8
(�11.0 6 9.1%, P > 0.05, relative to baseline) and week 15
(�10.4 6 12.4%, P ¼ 0.64, relative to baseline). In the LBP
posttreatment group, there was a significant RNFL thinning at
week 4 (�25.3 6 11.7%, P¼0.02, relative to baseline; P¼0.05,
compared with sham control). After initiating LBP treatment
from week 5, there was no further significant change in the
rate of RNFL loss (week 15:�28.7 6 8.9%, P > 0.05, relative to
week 4). However, RNFL thickness (see Supplementary S2B of
OHT-LBP postTx) showed a mild increase in both experimental
and fellow controls from weeks 4 (OHT versus fellow eye: 20.3
6 0.7 lm; 22.8 6 1.4 lm) to 8 (23.8 6 1.2 lm, P¼ 0.15; 26.4
6 1.2 lm; P¼ 0.08, relative to week 4) that was maintained up
through week 15 (23.1 6 0.7 lm, P¼ 0.30; 26.8 6 1.0 lm, P¼
0.05, relative to week 4).

The IRLT (Fig 2C) showed a significant interaction effect
between treatment and time (mixed ANOVA: interaction effect:
P ¼ 0.02). While IRLT was stable in sham controls, the OHT-
vehicle control showed a gradual increase in thickness from
week 8 onward (5.8 6 4.0%, P ¼ 0.12, relative to baseline),
which became statistically significant at weeks 12 (6.7 6 5.5%,
P ¼ 0.04, relative to baseline) and 15 (8.8 6 4.7%, P ¼ 0.001,
relative to baseline; P ¼ 0.01, compared with sham control).

With LBP pretreatment, while there was a trend for IRLT
thickening this was not significant (week 8: 4.3 6 5.6%, P ¼
0.58; week 15: 4.9 6 6.4%, P¼ 0.15, relative to baseline). With
LBP posttreatment, IRLT was significantly increase from week 8
(7.7 6 4.9%, P¼ 0.01, relative to baseline; P¼ 0.03, compared
with sham control) to week 15 (11.7 6 5.5%, P ¼ 0.001,
relative to baseline; P ¼ 0.001, compared with sham control).

ORLT (Fig. 2D) was also significantly different between
treatment groups (mixed-model ANOVA: interaction effect: P¼
0.001). While the sham control showed no change in ORLT
over the 15 weeks, vehicle-treated OHT eyes showed a
significant increase in ORLT at week 12 (4.0 6 3.2%, P ¼
0.01) and 15 (5.7 6 4.4%, P ¼ 0.001, relative to baseline). No
significant changes in ORLT were detected in both LBP
treatment groups. At week 15, the thickness of the vehicle
control was significantly greater than the sham control (P ¼
0.03) and the OHT-LBP postTx (P ¼ 0.01) groups.

Longitudinal Effect of LBP Treatments on ERG
Measured Retinal Functions

Figures 3A to 3D show the averaged pSTR responses of animals
under different treatment conditions compared with their

FIGURE 2. Longitudinal effects of OHT and LBP treatment on retinal layer thicknesses measured using OCT. (A) TRT, (B) RNFL, (C) IRL, and (D) ORL
thicknesses were quantified and compared. Data from experimental eye are expressed as percentage change from fellow control and difference
from baseline was compared between different treatment conditions. Error bars, standard deviation. *P < 0.05 versus baseline; †P < 0.05 versus
week 4; ‡P < 0.05 versus week 8; §P <0 .05 versus sham control; jjP < 0.05 versus OHT LBP post-treatment (*†‡§jjBonferroni’s post hoc test of
mixed-model ANOVA).
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respective fellow control eyes (95%CI) from baseline to week
15. The individual data points from each experimental group
along with their respective fellow controls from baseline to
week 15 are shown in Figure 3E and the amplitudes between
eyes are compared for each group (two-way RM ANOVA).
While the pSTR responses of sham control were similar
between eyes over the 15 weeks, it was reduced in OHT-
vehicle–treated animals at weeks 12 (P ¼ 0.05) and 15 (P ¼
0.04). With LBP pretreatment, the amplitudes of pSTR in OHT
eyes were greater than those in the fellow control eyes at
weeks 4 (P ¼ 0.05) and 8 (P ¼ 0.04), and remained similar to
those in the fellow control eyes at weeks 12 and 15. In the LBP
posttreatment group, the pSTR showed a trend of mild
reduction at week 4. Following LBP treatment from week 5,
the amplitudes of OHT eyes improved and were comparable
with the fellow eye up through week 15. When comparing the
pSTR responses among the treatment groups (mixed ANOVA:
time effect: P ¼ 0.37; between groups: P ¼ 0.04; interaction
effect: P ¼ 0.76), LBP pretreatment was significantly greater
than the OHT-vehicle control (P ¼ 0.03).

Figure 4 presents the averaged scotopic ERG traces (Figs.
4A–D) and the individual data points of scotopic b- (Fig. 4E)
and a-wave (Fig. 4F) responses of animals from each

experimental group, which are compared with their respective
fellow control eyes from baseline to week 15 (2-way RM
ANOVA). The scotopic responses of sham control were similar
between eyes over 15 weeks. While there was no difference in
scotopic b-wave response between OHT and fellow eyes in
vehicle-treated animals, the a-wave responses were significant-
ly reduced at week 12 (P¼ 0.01) and 15 (P¼ 0.04). With LBP
pretreatment, both the scotopic a- and b-waves in OHT eyes
were significantly greater than those in the fellow control eyes
at weeks 4 (P ¼ 0.02) and 8 (P ¼ 0.01), which then remained
similar between eyes at weeks 12 and 15. In the LBP
posttreatment group, scotopic ERG responses were similar
between OHT and control eyes, except for week 8, in which
they were significantly greater than those of their fellow
control eyes (P ¼ 0.001). When comparing the scotopic
responses between treatment groups, the a-wave (mixed
ANOVA: interaction effect: P ¼ 0.03) of LBP posttreatment
group was significantly reduced at week 4 as compared with
the pretreatment (P¼ 0.02). After initiating the LBP treatment
from week 5, the responses improved subsequently that
showed no difference between treatment groups until week
15. The scotopic b-wave responses were not different between

FIGURE 3. Longitudinal effects of OHT and LBP treatments (1 mg/kg) on the pSTR over 15 weeks of study. (A) The pSTR (representing ganglion cell
function) of the sham control group remained stable and was comparable with the fellow control. (B–D) While the pSTR of OHT-vehicle control (B)
reduced gradually from week 4 to 15, pretreatment of LBP (C) preserved responses up through week 15. Although the pSTR of OHT-postTx showed
an initial reduction at week 4, after intervention from week 5, an improvement in the pSTR was observed from week 8 to15. Black traces represent
the averaged pSTR responses from experimental eyes; gray dotted traces indicate the upper and lower limits of the 95%CI of fellow control eyes.
(E) PSTR amplitudes were compared between experimental and fellow eyes for each treatment group. Error bars, standard deviation. Each circle in
the bar chart represents individual data points of the animals. *P < 0.05, †P < 0.01, and ‡P < 0.001 versus fellow control (*†‡Bonferroni’s post hoc
test of 2-way RM ANOVA).
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the treatment groups (mixed ANOVA: time effect: P ¼ 0.15;
between groups: P ¼ 0.29; interaction effect: P ¼ 0.19).

The implicit time of the all the three ERG responses were
not significantly different between the experimental groups
(mixed ANOVA: interaction effect: P > 0.05) and data were
shown in Supplementary Figure S4.

Effect of LBP Treatments on Preservation of GCL
Density and Axonal Arrangements

Figure 5 shows H&E-stained central and peripheral retinal
cross sections for one representative eye from each experi-
mental group. Retinal layers were grossly similar among
experimental groups. However, the GCL density (Fig. 5D) of
central retina in the experimental eyes differed significantly
among treatment groups (mixed ANOVA: between eye: P ¼

0.22; between groups: P ¼ 0.01; interaction: P ¼ 0.22).
Following OHT induction, GCL density in vehicle-treated OHT
eyes was significantly reduced compared with fellow control
eyes (P ¼ 0.02), sham control eyes (P ¼ 0.03), and LBP
pretreatment OHT eyes (P ¼ 0.01). Both LBP-treated groups
showed GCL densities similar to their fellow control eyes or
the sham control eyes. GCL density in the peripheral retina
(Fig. 5C) was not significantly different between the treatment
groups (mixed ANOVA: between eyes: P ¼ 0.08; between
groups: P¼ 0.81; interaction: P¼ 0.47). However, GCL density
in OHT-vehicle control eyes was significantly reduced com-
pared with their fellow control eyes (P ¼ 0.03).

As GCL density reflects changes in both RGC and amacrine
cells,47 the retinal sections were also stained with b-III-tubulin,
an RGC specific marker. Figure 6 shows the representative
immunostained retinal sections with b-III-tubulin from each

FIGURE 4. Longitudinal effects of OHT and LBP treatments (1 mg/kg) on scotopic a- and b-wave responses over 15 weeks of study. (A–D) The b-
wave responses (bipolar cell function) remained stable across all experimental groups. (B) Upon OHT induction, the a-wave response
(photoreceptor function) of vehicle control showed a reduction from weeks 4 to 15. (C, D) Both pre- and posttreatments of LBP preserved a-wave
responses up through week 15. Black traces represent the averaged scotopic responses from the experimental eyes; gray dotted traces indicate the
upper and lower limits of the 95%CI of the fellow control eyes. The amplitudes of (E) scotopic b-wave and (F) a-wave responses were compared
between experimental and fellow eyes for each treatment group. Error bars, standard deviation. Each circle in the bar chart represents individual
data points of the animals. *P < 0.05, †P < 0.01, and ‡P < 0.001 versus fellow control (*†‡Bonferroni’s post hoc test of 2-way RM ANOVA).
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FIGURE 5. Morphologic rescue effect of LBP pre- and posttreatments at week 15. (A, B) H&E–stained (A) peripheral and (B) central retina of one
representative rat from each experimental group. (C, D) Mean GCL densities in the peripheral (C) and the central (D) retinal sections were
quantified for each experimental group and were compared with the fellow eye. Error bars, standard deviation. Each circle in the bar chart
represents individual data points of the animals. *P < 0.05 versus fellow eye; †P < 0.05 versus sham control; ‡P < 0.05 versus OHT LBP
pretreatment (*†‡Bonferroni post hoc test of mixed-model ANOVA). Scale bar: 100 lm. IPL, inner plexiform layer; INL, inner nuclear layer; OPL,
outer plexiform layer; ONL, outer nuclear layer.
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experimental group. The RGC density (Fig. 6B) in the central
retina was significantly reduced in the OHT-vehicle control
(mixed ANOVA: between eye: P ¼ 0.02; between groups: P ¼
0.61; interaction: P ¼ 0.002) as compared with its fellow
control (P¼ 0.001) and the sham control (P¼ 0.03). The RGC
densities of both LBP-treated groups were similar to their
fellow control eyes and the sham control. These results were
comparable with the GCL density quantified from H&E-stained
sections.

Examination of the optic nerve sections showed that the
OHT-vehicle control eyes showed disruption of axon bundle

structure and posterior deformation of the ONH surface. In

OHT-LBP preTx eyes, axonal bundle arrangement was main-

tained. In LBP posttreated OHT eyes, there also appeared to be

preservation of axon bundle structure (Fig. 7).

DISCUSSION

The present study was the first to directly compare pre- and

posttreatment intervention with LBP in a rat model of chronic

OHT. We show that both pre- and posttreatment intervention

FIGURE 6. Neuroprotective effects of LBP pre- and posttreatment on RGCs. (A) Immunofluorescent staining with anti–b-III-tubulin and DAPI
nuclear counterstain of one representative rat retina from each experimental group. (B) Mean RGC densities were quantified for each experimental
group and were compared with the fellow eye (n¼ 3, 6, 5, and 5 rats for sham control, OHT-vehicle control, pre-, and posttreatment, respectively).
Error bars, standard deviation. Each circle in the bar chart represents individual data points of the animals. *P < 0.05 versus fellow eye; †P < 0.05
versus sham control (*†Bonferroni post hoc test of mixed-model ANOVA). Scale bar: 100 lm.

FIGURE 7. Representative ONH morphology from each experimental group at week 15. Upon OHT induction, the optic nerve of vehicle control
showed loss of axon bundle structure (�) with enlarged and brightly stained cells (m) and ONH cupping (*). LBP preTx preserved the axonal
texture in the laminar region with no evidence of ONH cupping, comparable with the sham and the normal control. With posttreatment
intervention, axon bundle arrangements looked preserved with the presence of enlarged and brightly stained cell. Scale bars: 100 lm.
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with LBP (1 mg/kg) exerted long-term neuroprotective effects
and preserved retinal structure (OCT and RGC counts) and
function in a model of chronic OHT.

The circumlimbal suture placement around the limbus
produced a moderate IOP elevation of approximately 50% in
the first 3 to 4 weeks that was sustained throughout 15 weeks.
It is worth noting that both pre- and posttreatment of LBP did
not alter IOP as reported previously.32 Cumulative IOP (over 15
weeks) was similar between the three OHT groups, and thus
IOP-related stress was similar between these eyes. Also, IOP
from the fellow control eyes of experimental groups were
similar to näıve eyes of the sham control, demonstrating that
the surgical procedure and suture placement for a day did not
cause any lasting IOP changes.

On longitudinal evaluation, sham control (sutured removed
after day 1) eyes showed no detectable changes in retinal and
optic nerve structure or function and RGC density as
compared with fellow näıve control eyes. In contrast,
vehicle-treated OHT eyes developed a RNFL thinning (week
4, 15:�23 6 15%,�17 6 16 %), together with a reduced RGC
density (�50 6 15%, Fig. 6) and a disruption of axonal
arrangement and posterior deformation of the optic nerve head
(Fig. 7). Interestingly, both the IRL (IPL þ INL: �9 6 5%) and
ORL (6 6 4%) were thickened at week 15. IOP-induced
thickening has been noted in experimental48,49 and human
glaucoma subjects,48,50,51 with photoreceptors swelling48 and
glial proliferation49,51,52 thought to be the primary drivers.
Corresponding to RNFL thinning, functional measures of inner
retina (week 15: pSTR:�39 6 25%; b-wave:�23 6 21%) and a-
wave magnitudes (week 15: �38 6 20%) were reduced. The
decrease in photoreceptor response could have been resulted
from a compromised choroidal blood flow to the outer retina,
possibly arising directly from IOP elevation or indirectly from
suture compressing the scleral and episleral plexus. Such
deficits in choroidal blood flow along with the earlier
reduction in a-wave followed by b-wave responses have been
reported in mouse models of spontaneous glaucoma including
DBA/2J53 and DBA/2NNia.54

With pretreatment (week�1 to 15), LBP prevented much of
the deficits in retinal structure and function induced by
chronic IOP elevation. Most importantly, LBP delayed the onset
and reduced RNFL thinning to �11 6 9% at week 8 (�10 6
12% at week 15) compared with�23 6 15% thinning at week
4 in vehicle-control OHT eyes. LBP pretreatment also reduced
the IRL and ORL thickening, which was seen in vehicle
control. Pretreatment preserved RGC density and the optic
nerve structure. The efficacy of pretreatment in preserving
RGC density, was comparable to a previous report32 in the
laser photocoagulation chronic OHT model (in Sprague-
Dawley rats) and 4 weeks of LBP dosing. LBP pretreatment
preserved the RNFL thickness and also prevented functional
deficits (pSTR, a- and b-waves) in OHT eyes, consistent with
the protection of RGCs.

To evaluate posttreatment intervention, animals were fed
with LBP from weeks 5 to 15. This time point was chosen
after considering the following: (1) the pattern of compart-
mentalized neuronal degeneration reported in experimental
glaucoma models,55–57 and (2) the rate of structural and
functional changes observed with the circumlimbal OHT
approach in Sprague-Dawley rats.44 As RNFL thinning was
observable after 4 weeks of OHT induction, this was reasoned
to be a good time point for LBP posttreatment intervention. In
the LBP posttreatment group, OHT eyes showed RNFL loss at
week 4 (�25 6 12%), which was equivalent to the OHT-
vehicle control (week 4: �23 6 15%). With LBP intervention
from week 5, there was no significant improvement in the
rate of RNFL loss (week 15, �28 6 9%). However, the raw
data (see Supplementary Fig. S2) revealed a small increase in

RNFL thickness in both OHT and fellow control eyes at week
8, which was sustained up through week 15. As LBP was
administered orally, a corresponding increase in RNFLT in the
fellow control could be attributed to the systemic effect of
LBP or the contralateral eye effect. When calculating the rate
of loss with respective to the fellow eyes, an equal increase in
the thickness in these control eyes rendered no detectable
change. However, the preservation of pSTR responses in OHT
eyes until the end of the study corroborated with the increase
in RNFL thickness. Also, LBP posttreatment improved the
scotopic responses from week 8, which were otherwise
decreased in vehicle control. LBP posttreatment also relative-
ly prevented the RGC loss and ORL thickening. At weeks 12
and 15, the posttreatment functional benefits were similar to
those of LBP pretreatment. One of the possible contributors
for the improvement in RNFL thickness and retinal functions
observed in the posttreatment could be attributed to the
neuromodulatory effects of LBP on endothelin-1 (ET-1) and its
receptors (ET-A, ET-B) located in the retinal neurons and its
vasculature.35 Increased levels of ET-1 in aqueous humor in
patients with POAG58 and ET-B receptor expression in the
optic nerve of the postmortem glaucomatous eyes59 have
been reported. The potential role of ET-1 on the RGC loss has
been further investigated by intraocular administration of ET-
160–62 and experimental IOP elevation.63,64 Under both
conditions, there was a concomitant increase of ET-B receptor
expression in the inner retinal layers, which was associated
with a preferential apoptotic loss of RGCs. On the other hand,
RGC loss was reduced when RGC-5 cells were pretreated
with ET-B receptor antagonist62 and in ET-B–deficient
rats.62,64 Furthermore, ET-1 was associated with a decreased
ocular blood flow in animals60 and human65,66 and such
reductions was inhibited by co-administrating ET-B receptor
antagonist.65 Treatment with Sulfisoxazole, a nonselective
endothelin antagonist, improved ERG retinal functions in an
acute ischemic insult model.67 Because LBP pretreatment has
shown to exert neuroprotective effects in a chronic OHT
model by modulating ET-1, ET-A, and ET-B expressions in
RGCs and the retinal vasculature,35 we speculate that the
protective effects on RFNL thickness and retinal function
observed in the current study were mediated by similar
mechanisms.

While no studies have reported posttreatment intervention
with LBP, the results of the present study are comparable to a
study using a similar OHT model (circumlimbal suture), in
which IOP was normalized after 8 weeks of chronic IOP
elevation by simply removing the suture.68 In that study,
RNFL loss was not progressive after suture removal (weeks 8
and 15:�10% and�11%) and GCL density was preserved with
complete restoration of ganglion function loss at week 15 (7
weeks after normalizing IOP). While such reversal of neuronal
dysfunction and structural preservation are attributable to
IOP normalization, similar outcomes reported with LBP
posttreatment in the presence of sustained IOP elevation
suggest that IOP-independent factors are acting to preserve
the retina.

The possible neuroprotective mechanisms of LBP in
experimental glaucoma have been studied. First, LBP’s dose-
dependent neuroprotective effect on RGCs was associated
with modulation of microglial activation.33 Moderately activa-
tion of microglia using 1, 10, or 100 mg/kg LBP was protective;
whereas excessive microglia activation with 1000 mg/kg was
less neuroprotective. Pretreatment of LBP (1 mg/kg) may have
direct neuroprotective effects on RGCs by upregulating
crystalline proteins (found in the GCL and INL).34 Indirect
effects can arise from improved blood flow as evidenced by
modulation of the expression of ET-1, and its receptors ET-A
and ET-B in the GCL, INL, and retinal vasculature in OHT
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eyes.35 In other models of optic neuropathy LBP has also been
shown to impact a range of pathways that can modify RGC
survival, including activation of astrocytes (reduced glial
fibrillary acidic protein), aquaporin-4 channels, poly(ADP-
ribose) expression, the Nrf2/HO-1 antioxidant pathway,
advanced glycation end products (AGE), and their receptors,
amyloid-b proteins, c-jun N-terminal kinase pathway, and
insulin-like growth factor-1.36,37,39–41 The mechanisms in-
volved in retinal protection with LBP posttreatment warrants
further investigation.

Interestingly, the outcomes from the present chronic OHT
study largely correspond with our earlier reports on pre- and
posttreatment-LBP intervention using an acute OHT model.46

Both studies showed that pretreatment LBP could prevent the
initial stage of neuronal degeneration (dendritic and axonal
loss) that arrested the subsequent events of somal loss, thus
preserving the RNFLT and GCL density. Whereas, posttreat-
ment LBP could not reverse the RNFL loss sustained prior to
the intervention, but arrested later stages of neuronal
degeneration and preserved the GCL density and maintained
the retinal function. Thus, this study provides proof-of-concept
evidence for translating LBP posttreatment as an adjunct
glaucoma therapy, perhaps for those who show progressive
loss of vision despite well-controlled IOP. To this end, further
preclinical studies that simulate clinical study designs, which
combine LBP treatment with IOP lowering therapy, are
warranted.42 Also, as glaucoma is prevalent among the geriatric
population, the efficacy of LBP intervention should be
considered in older rats.43

In summary, LBP pre- and posttreatment-exerted neuro-
protective effects in a minimally invasive chronic OHT rat
model that are independent of IOP lowering. Pretreatment
with LBP offered superior neuroprotection as evidenced by
longitudinal preservation of both inner and outer retinal
structure and function. With posttreatment intervention,
although LBP could not completely reverse the structural
loss incurred prior to the treatment commencement, it
arrested the subsequent neuronal degeneration and preserved
the RGCs and retinal functions.
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10. Saccà SC, Pascotto A, Camicione P, Capris P, Izzotti A.
Oxidative DNA damage in the human trabecular meshwork:
clinical correlation in patients with primary open-angle
glaucoma. JAMA Ophthalmol. 2005;123:458–463.
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