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ABSTRACT
The natural gas compressibility factor indicates the compression and expansion characteristics of
natural gas under different conditions. In this study, a simple second-order polynomial method
based on the group method of data handling (GMDH) is presented to determine this critical param-
eter for different natural gases at different conditions, using corresponding state principles. The
accuracy of the proposed method is evaluated through graphical and statistical analyses. The
method shows promising results considering the accurate estimation of natural gas compressibility.
The evaluation reports 2.88%of average absolute relative error, a regression coefficient of 0.92, and a
rootmeans square error of 0.03. Furthermore, the equations of state (EOSs) and correlations are used
for comparative analysis of the performance. The precision of the results demonstrates the model’s
superiority over all other correlations and EOSs. The proposed model can be used in simulators to
estimate natural gas compressibility accurately with a simple mathematical equation. This model
outperforms all previously published correlations and EOSs in terms of accuracy and simplicity.
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1. Introduction

The increasing demand for oil and coal as energy and
the technological and environmental concerns associ-
ated with its production and consumption have drawn
attention toward natural gas. The natural gas consump-
tion generates fewer pollutants and greenhouse gases
(Kamari, Hemmati-Sarapardeh, Mirabbasi, Nikookar,
& Mohammadi, 2013; Shateri, Ghorbani, Hemmati-
Sarapardeh, & Mohammadi, 2015). Critical insight into
the behavior of natural gas is important to the reservoir
and the chemical engineering calculations that deal with
gas as one of the main phases. Among the parameters of
evaluating the behavior of natural gas, the compressibil-
ity is of utmost importance in determining the natural
gas phase behavior. Gas compressibility (Z-factor) rep-
resents the proportion of volume a given amount of gas
to the ideal volume of it at the common conditions and
defined pressure and temperature. Gas compressibility
makes the difference between ideal gas and real gas. The
following relationship is generally used to calculate gas
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compressibility (McCain, 2017):

Z = Vreal

Videal
= V

(nRT)/P
(1)

Where Vreal (V) and Videal denote the real and ideal gas
volumes, respectively. Furthermore,R and z represent the
universal gas constant, and the gas compressibility factor,
respectively. T, P, and n represent the gas temperature,
pressure, and some moles, respectively.

At low pressure and temperature conditions, gas
molecules have fewer interactions and collisions, and
behavior can be considered ideal. However, at a higher
pressure or temperature, the collision and interaction of
the molecules increase. This phenomena has to be taken
into account when making predictions for gas expansion
or contraction (Firoozabadi, 1999; Shateri et al., 2015).

There are various techniques to measure the com-
pressibility factor. One main way is by performing
compression-expansion experiments. Overall, the exper-
imental measurement of the compressibility factor
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appeared to be an accurate approach compared to all
other approaches. However, they are generally slow, cum-
bersome, and costly. Also, it is reported not feasible to
conduct an experiment for every single condition con-
sidering various pressure and temperature at which the
compressibility is needed. Using equations of state (EOS)
is another approach to determine the compressibility fac-
tor. When utilizing EOS, the reservoir characteristics are
being employed. Generally, these equations come from
the following form when the gas compressibility factor is
the target PVT parameter (McCain, 2017):

Z3 + a × Z2 + b × Z + c = 0 (2)

where a, b, and c donate the empirical constants of com-
position functions for temperature, pressure, and gas.
Furthermore, Z denotes the gas compressibility factor.
Even though these equations are advantages and their
implementation can facilitate the measurement of other
gas properties such as enthalpy, entropy, and Gibbs free
energy, they are usually implicit higher-order equations
that require intense computations. Besides the complex
computations, the binary interaction coefficients used in
some EOS’s need to be measured by conducting exper-
iments that may not be practical. Further, it has been
shown that these equations are not suitable for predicting
hydrocarbon gas properties (Elsharkawy, 2004).

Empirical correlations are another source of determin-
ing gas compressibility factor, which is easy and fast to
use but is generally associatedwith erroneous predictions
(Kamyab, Sampaio, Qanbari, & Eustes, 2010; Kumar,
2004; Sanjari & Lay, 2012b). A minor estimation error in
the compressibility factor of correlations would lead to
a false prediction of formation, density and the amount
of gas. Therefore, the development of fast, user-friendly,
and accurate models to predict the compressibility factor
is critical.

Several researchers have attempted to develop meth-
ods to estimate the compressibility factor. For instance,
Standing andKatz (1942) advanced a graphical technique
based on pseudo-reduced. VanDerWaals and Rowlinson
(2004) was one of the pioneers of EOS methods by tak-
ing into account the intramolecular forces and volume of
molecules. Using Van derWaals EOS for determining gas
compressibility factor leads to higher accuracy compared
to the empirical approach introduced by Katz and Stand-
ing. There is a number of researches contributed to the
development of reliable EOS’s (Soave, 1972).

A general expression for the PVT relationship of fluids
has the following form (Shateri et al., 2015):

P = RT
V − b

= a
v2 − uv − w2 (3)

An expression for gas compressibility factor can be writ-
ten by rewriting the above equation and implementing
the equation for gas compressibility factor as follows:

Z3 − (1 + B − U)Z2 + (A − BU − U − W2)Z

− (AB − BW2 − W2) = 0 (4)

Where A, B U, andW are dimensionless parameters that
are extracted from the current temperature, composition,
and pressure.

For the purpose of advancing more efficient, yet faster
methods, adequate researchers have developed correla-
tions that can be explicitly used to address the problem.
In 1973, Hall and Yarborough (1973) transformed the
graphical chart of Katz and Standing into a relatively sim-
ple correlation by fitting their correlation to the chart and
determining the correlation coefficients. Beggs and Brill
(1973) also employed Katz and Standing chart and devel-
oped a correlation to estimate the gas compressibility fac-
tor. Dranchuk, Purvis, and Robinson (1973) used an EOS
developed by Benedict–Webb–Rubin (Simon & Briggs,
1964) and proposed a gas compressibility correlation in
1974. Abu-Kassem joined Dranchuk in 1975 to develop
an analytical equation to decrease the gas density which
had been utilized to calculate the gas compressibility fac-
tor (Dranchuk & Abou-Kassem, 1975). In 1975, Gopal
collected multiple correlations for the gas compressibil-
ity factor at various conditions (Gopal, 1977a). Kumar
(2004) introduced a novel model for gas compressibility
factor to be used by Shell. In 2010, Heidaryan et al. used
multiple regression analysis (Heidaryan, Moghadasi, &
Rahimi, 2010), and in the same year, Azizi employed
genetic programming (Azizi, Behbahani, & Isazadeh,
2010). A comprehensive study of thementionedmethods
was conducted by Sanjari and Lay (2012a) in which the
performance of the methods mentioned above has been
investigated.

The application of artificial intelligence and soft com-
puting for building intelligent methods in many indus-
tries has recently attracted much attention (Anitescu,
Atroshchenko, Alajlan, & Rabczuk, 2019; Chuntian &
Chau, 2002; Fotovatikhah et al., 2018; Guo, Zhuang, &
Rabczuk, 2019; Moazenzadeh, Mohammadi, Shamshir-
band, & Chau, 2018; Taherei Ghazvinei et al., 2018;
Yaseen, Sulaiman, Deo, & Chau, 2019). In petroleum and
gas industries, intelligentmodels have been used to deter-
mine, oil and gas thermodynamic properties, reservoir
formation properties and miscibility conditions required
for gas injection processes (Dargahi-Zarandi, Hemmati-
Sarapardeh, Hajirezaie, Dabir, & Atashrouz, 2017; Dash-
tian, Bakhshian, Hajirezaie, Nicot, & Hosseini, 2019;
Hajirezaie, Hemmati, & Ayatollahi, 2014; Hajirezaie,
Hemmati-Sarapardeh, Mohammadi, Pournik, & Kamari,
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2015; Hajirezaie, Pajouhandeh, Hemmati-Sarapardeh,
Pournik, & Dabir, 2017; Hajirezaie, Wu, Soltanian, &
Sakha, 2019; Hemmati-Sarapardeh, Tashakkori, Hos-
seinzadeh,Mozafari, &Hajirezaie, 2016;Kamari, Pournik,
Rostami, Amirlatifi, &Mohammadi, 2017; Kamari, Safiri,
& Mohammadi, 2015; Rostami, Kamari, Panacharoen-
sawad, & Hashemi, 2018). These models take both input
and output values to get trained and later can make
predictions. Even though the original, intelligent mod-
els were considered black-box models, there have been
numerous modifications to these models to make them
transparent and usable methods, and their performance
has significantly improved over the past few years. Intelli-
gent models have been used in many reservoir engineer-
ing calculations. There are also some intelligent models
that were developed specifically for predicting natural gas
properties (Dargahi-Zarandi et al., 2017; Hajirezaie et al.,
2015, 2017). We have already developed two intelligent
models for predicting natural gas compressibility factor
using the same data bank (Kamari et al., 2013; Shateri
et al., 2015). However, they are a black box, and their
usage generally needs software. Literature still suffers
from the lack of a comprehensive, accurate, and simple
model for natural gas compressibility estimation.

In this study, a novel supervised approach, namely
the group method of data handling (GMDH) was pro-
posed as a robust model to predict the compressibility
factor. To do this, a comprehensive data bank of com-
pressibility factor was used considering a diverse range of
pressure, temperature, and composition. Several statisti-
cal quality measures and graphical methods were utilized
to calculate the model performance. Furthermore, for
the evaluation of the proposed graphical and the sta-
tistical methods, the root mean square error (RMSE),
average absolute percent error (AAPRE), regression coef-
ficient (R2), average percentage relative error (APRE),
cross-plot, and error distribution curves have been used.
Additionally, the performance of previously published
well-known correlations and EOSs was investigated and
compared to the proposed model.

2. Data acquisition

The reliability of any intelligent model is dependent on
the data bank that has been utilized for the purpose
of model training and testing. Here, various range of
pressure, temperature, and gas composition conditions
were used to ensure the development of a valid model
that can determine the gas compressibility factor. Two
dimensionless parameters of pseudo-reduced for tem-
perature and pressure are studied to be used in the devel-
oped model for predicting gas compressibility. These
parameters are calculated from the current pressure and

temperature, as well as the pseudo critical pressure and
temperature calculated as follows:

ppr = P
ppc

Tpr = T
Tpc

(5)

where Tpc and Ppc provide the values of pseudo critical
temperature and pressure, respectively. Furthermore, Ppr
and Tpr are pseudo-reduced pressure and temperature.

For gas withmultiple components, Ppc and Tpc are cal-
culated from the critical temperature and pressure of the
individual components as follows:

Ppc =
n∑

i=1
yiPci (6)

Tpc =
n∑

i=1
yiTci (7)

In these equations, Tci and Pci provide the values for the
critical temperature and pressure of component i. Also, yi
describe the mole fraction of component i.

The data sets in this article gathered from the pre-
viously published research and the online repositories,
e.g. (Elsharkawy & Foda, 1998; McLeod, 1968; Robin-
son & Jacoby, 1965; Simon & Briggs, 1964; Whitson &
Torp, 1981; Wichert & Aziz, 1972). These data were also
used in our previous publications (Kamari et al., 2013;
Shateri et al., 2015). Further, Table 1 represents the statis-
tical details of the data bank used. As the table demon-
strates, the pressures, temperatures, and compositions
comprise a comprehensive range, ensuring that the devel-
oped model based on this data set would be a reliable
predictor for various types of natural gases at different

Table 1. The statistical parameters for the data used for z-factor
modeling.

Property Max. Min. Average

C1 97.48 17.27 71.18
C2 28.67 0 3.86
C3 13.16 0 1.44
i-C4 2.23 0 0.21
n-C4 3.10 0 0.36
i-C5 2.85 0 0.18
n-C5 0.79 0 0.10
C6 2.68 0 0.20
C7+ 8.17 0 0.64
MwC7+ 150 0 50
Sgc7+ 0.90 0 0.31
H2S 73.85 0 13.92
CO2 54.46 0 6.00
N2 25.15 0 1.83
Pressure, psi 7026 154 2820
Reservoir temperature, °F 300 40 147
Tpr 1.96 0.97 1.46
Ppr 10.19 0.17 3.75
Z-factor 1.241 0.40 0.86
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conditions. Nine hundred seventy-eight data points were
used in this study. Eighty percent of the data was used for
training and model development and the remained 20%
was used to check model performance and validity. The
data were divided into training and testing sets randomly.

3. Evaluating themodel performance

There are multiple statistical parameters that are
employed to assess the performance of a model. The
parameters that were used in this work include APRE,
AAPRE, RMSE, and R2. A simple presentation of the
mentioned parameters is presented here:

1. APRE (Er%):

Er = 1
n

n∑
i=1

Ei (8)

where Ei stands for the relative variation of predicted
value from an experimental value expressed as Percent-
age Relative Error:

Ei =
[
(O)exp − (O)rep./pred

Oexp

]
× 100 ⇒ i =1, 2, 3, . . . , n

(9)
2. AAPRE:

Ea = 1
n

n∑
i=1

|Ei| (10)

3. RMSE:

RMSE =
√√√√1

n

n∑
i=1

(Oiexp − Oirep./pred )2 (11)

4. R2:

R2 = 1 −
∑n

i=1 (Oi exp − Oi rep./pred )2∑n
i=1 (Oi rep./pred − O)

2 (12)

In these formulas, O is the mean value of experimental
data output.

Another approach to evaluate the performance of a
model and compare it with other models is the usage of
graphical error analysis. The graphical approaches used
in this study are cross-plot, frequency vs. absolute rela-
tive error, error distribution, and trend analysis curves.
Cross-plots are utilized to assess the performance of a
model in which the estimated data by the model are plot-
ted against the experimental values, and one can observe
the accuracy of the model depending on how close the
trend is to a unit-slope line that crosses the origin. Fur-
ther, the cumulative frequency of data points against the
absolute relative error is plotted to quantify the number

of data points that can be accurately predicted by the
model. Besides, the error distribution curve was inves-
tigated to identify the error trend of the model when an
independent variable is increased. The proximity of data
points to the zero-error line tests the precision of that
model. Finally, a trend analysis is performed to inves-
tigate whether or not the developed model can accu-
rately estimate the trend of gas compressibility factor at
different pressures.

4. Model development

GMDH, every two independent parameters are coupled

with a quadratic polynomial expression and form
(
M
2

)

new variables as follows:

ZGMDH
i = axi + bxj + cxixj + dx2i + ex2j + f (14)

And the new matrix can be represented by the new vari-
ables as follows:

vz = (z1, z2, . . . zn) (15)

In the next step, the least square method is utilized to
reduce the difference between the actual data and the
model predictions as presented below:

δ2j =
Nt∑
i=1

(yi − ZGMDH
i )2 j = 1, 2 . . . ,

(
M
2

)
(16)

In this equation, the quantity of data points in the training
set is shown by Nt. In the next step, the general matrix is
written as follows:

Y = ATX (17)

Writing the general matrix in the above form helps with
offering a general formulation to determine the unknown
quadratic polynomial coefficients as shown below:

AT = YXT(XXT)−1 (18)

In the later stage, the data set is divided into subsets of
testing and training, the model coefficients are obtained
during the training stage, and the testing set is utilized to
determine the best combination of the two independent
variables based on the following condition:

δ2j =
N∑

i=Nt+1
(yi − ZGMDH

i )2 < ε j = 1, 2 . . . ,
(
M
2

)

(19)
The combined variables will be stored if this criterion
is met, otherwise the algorithm eliminates this combi-
nation of two variables and the iteration will continue.
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More information about this modeling approach can be
found in our previous work (Hemmati-Sarapardeh &
Mohagheghian, 2017). This method was recently used
for modeling gas compressibility factor of Iranian gas
reservoirs (Shariaty, Khorsand Movaghar, & Vatandoost,
2019).

5. Results and discussion

The GMDH has been successfully implemented as an
evolutionary intelligentmodel to predict the natural gas’s
compressibility. The inputs of the model were gas com-
position, pressure, and temperature, as shown in Table 1.
In addition to C1–C6 and C7+ components, H2S, CO2,
and N2 gases were considered as the components. The
pressure and temperature values are utilized to esti-
mate the pseudo-reduced pressure and temperature as
discussed previously. During the data acquisition stage,
a wide range of input parameters was considered as
shown in Table 1. The pressure ranges from 154 to 7026
Psia, reservoir temperature ranges from 40 to 300°F, and
the compressibility factor values cover a wide range of
0.4–1.24. The distribution of input and output data is
illustrated in Figure 1. In addition to the data distri-
bution, normal distribution curves were plotted in this
figure. Pseudo reduced pressure and temperature were
the chosen parameters for this figure due to their impact
on any reservoir fluid properties. As can be seen, all
three data sets follow a relatively normal shape, especially
the gas compressibility factor data. The mean values for
the pseudo-reduced temperature, pseudo-reduced pres-
sure, and gas compressibility factor are 1.5, 3.9 and 0.9,

Figure 1. Distribution of the input and output data sets.

respectively. The bin size in all cases is 40. The model’s
schematic flowchart is illustrated in Figure 2. In order to
assess the accuracy of the developed model, various sta-
tistical and graphical methods such as average absolute
relative error and error distribution curve were employed
as will be discussed in this section.

After optimizing the model, the genome and nodal
expressions were obtained as follows:

z = −0.268213 − 1.09959N2

√
Tpr + 0.434222T2

pr

− 1.02209N4 + 0.397836N2
4 + 2.58207N2 (20)

N6 = 2.28818 + 1.46235Ppr − 1.05874Ppr
√
Tpr

+ 3.50204
√
TprPpr−0.667833Tpr−4.84879

√
Ppr

(21)

N5 = 1.88105 − 0.466011TprPpr + 1.5661Tpr
√
Ppr

− 0.265557T2
pr + 0.863307Ppr − 2.90311

√
Ppr
(22)

N4 = −2.14451 − 0.0929261PprN6 + 0.0120013P2pr

− 4.51872N6

√
Tpr + 1.89131Tpr + 5.85344N6

(23)

N3 = −0.461086 + 0.0344126T2
pr − 0.048752Ppr

+ 0.00674994P2pr + 2.4872N4 − 1.11543N2
4 (24)

N2 = −0.182453 − 17.0122N5 + 18.4918N5N3

+ 17.1725N6 − 18.6856N6N3 + 1.22045N3 (25)

where Tpr and Ppr represent the pseudo-reduced temper-
ature and pressure, respectively, and N2–N6 represents
the virtual variables or nodes of the model. Here, the
equations are second-order polynomials that are utilized
to predict the gas compressibility factor. Considering the
first equation, the gas compressibility factor will be esti-
mated through realization of the pseudo- reduced tem-
perature, and the virtual parameters N2 and N4 and.
N4 can be calculated by knowing pseudo-reduced pres-
sure and by calculating the virtual parameter N6. N6 is
a simple function of temperature and pseudo-reduced
pressure and can be directly calculated. In order to cal-
culate N2, the virtual parameters N3 and N5 are needed
in addition to N6. N3 can be calculated after calcu-
lating the virtual parameter N4. Finally, N5 is directly
calculated similarly to N6 by having pseudo-reduced
pressure and temperature. The graphical techniques
and statistical quality measures were applied to evalu-
ate the accuracy of the developed model. Furthermore,
EOSs are used for further evaluation and comparison.
Five EOSs are considered, i.e. Van der Waals, Threfall,
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Figure 2. A schematic flowchart of the proposed GMDH for predicting z-factor.

Adair, and Roth (1873), Lawal-Lake-Silberberg (Lawal,
1999), Peng and Robinson (1976), Soave-Redlich-Kwong
(Soave, 1972), and Patel and Teja (1982). The empiri-
cal correlations include Dranchuk, Purvis, and Robinson
(1974), Dranchuk and Abou-Kassem (1975), Brill and
Beggs (1973), Shell Oil Company (Kumar, 2004), Gopal
(1977b), Hall and Yarborough (1973), Sanjari and Lay
(2012a), Heidaryan et al. (2010), Azizi et al. (2010), and
Kamari, Gharagheizi, Mohammadi, and Ramjugernath
(2016). The list of the outcomes of a statistical assess-
ment of the GMDH model and the previously published
correlations and EOSs are available in Table 2. Evidently,
in this table, the proposed model demonstrates the most
accurate performance compared to other models when
comparing the RMSE, the average absolute percentage
relative error, and the regression coefficient. The Hall
Yarborough correlation was found to be the next most
accurate model followed by the Patel-Teja EOS model
based on the statistical information presented in this
table.

Noticing the APRE and AAPRE values of the mod-
els in this study reveals that, while the APRE value of
some of the models is not smaller than those of others,
their AAPRE is. The definition of APRE can be used to
explain this observation. As a matter of fact, APRE can-
not be used by itself to approve or reject a model. For
instance, an APRE value close to zero would be obtained
if half of the data points are overestimated by a model
and the remaining half are underestimated, which would
in return present a false assessment of the model per-
formance. However, if some data points are estimated
accurately by a model and the remaining few data points
are either underestimated or overestimated, a positive
or negative APRE value would be obtained, respectively,
which again cannot testify the model performance. As an
example, the Van der Waals’s model has a much smaller
APRE value than that of Dranchuk-Purvis-Robinson.

Table 2. Statistical error analyses for the correlations, EOSs, and
the GMDHmodel.

Method AARE % RMSE R2 AAPRE %

Dranchuk-Abou-Kassem
Correlation

4.21 0.0992 0.5748 8.18

Kamari et al. −1.10 0.0629 0.8248 5.92
Dranchuk-Purvis-Robinson

Correlation
4.66 0.0555 0.9064 4.77

Hall-Yarborough
Correlation

1.46 0.0429 0.8924 3.59

Beggs-Brill Correlation 4.08 0.0785 0.7763 6.53
Shell Oil Company

Correlation
4.36 0.0596 0.7819 6.24

Gopal Correlation 6.12 0.0910 0.7371 6.26
Azizi et al. Correlation 4.26 0.0792 0.7723 6.25
Heidaryan et al. Correlation 3.61 0.0762 0.7788 5.80
Sanjari and Lay Correlation 0.66 0.0697 0.8119 5.67
van der-Waals EOS 0.31 0.0696 0.7711 6.42
Peng-Robinson EOS −5.34 0.0599 0.8916 6.10
Patel-Teja EOS −1.18 0.0447 0.8806 4.15
Soave-Redlich-Kwong EOS −3.14 0.0493 0.8938 4.82
Lawal-Lake-Silberberg EOS −2.66 0.0453 0.8942 4.43
The GMDHmodel, Train −0.21 0.0351 0.9177 2.89
The GMDHmodel, Test −0.10 0.0340 0.9171 2.85
The GMDHmodel, Total −0.19 0.0349 0.9176 2.88

However, it is considered to be a less accurate model than
the latter one.

Another way to illustrate the performance of themod-
els and to compare them more comprehensively is by
using graphical analyses. The performance evaluation
is done through several graphical analyses considering
a number of most popular models from both quantity
and quality standpoints. Figure 3 presents the cross-plot
of the developed model in which the calculated data is
plotted against the measured data for both testing and
training sets. The location of the majority of the data
points on the y = x line provides the precise predictions
of the developed GMDHmodel for the training and test-
ing phases. The error distribution of the model is shown
in Figure 4. As the figure shows, most of the data points
are near the zero percent error line. Therefore, as the
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Figure 3. Cross-plot of the predicted z-factors versus experimen-
tal data.

Figure 4. Error distribution curve of the proposed GMDH model
versus experimental z-factor.

gas compressibility factor increases, the GMDH model
shows no systematic error trend. Worth mentioning that
most of the previously published models suffer from an
error trend. The figure indicates that the error of the test-
ing set is smaller than the training set. The distribution
of the relative error of predictions is plotted in Figure 5.
In addition to the distribution of data points, the nor-
mal distribution is plotted indicated by the red line. The
figure indicates that a Weibull or lognormal distribution

may better describe this distribution and that most of the
data points (predictions) have a relative error close to zero
demonstrating the accuracy of the model in predicting
gas compressibility factors. Figures 6 and 7 depict the sta-
tistical information reported in Table 2 for a graphical
demonstration of the performance of the models. Fur-
ther, these figures indicate that models with a smaller
RMSE do not necessarily have a smaller average absolute
percent relative error. This means that when perform-
ing statistical analyses, care should be taken to avoid the
misinterpretation of the results by focusing on only one
statistical parameter.

As can be seen in Figure 7, Beggs-Brill, Van derWaals,
Gopal, Azizi, and Shell Oil Company models have the
highest AAPRE values meaning that their predictions
are less accurate than other models. It can be observed
that the proposed model outperforms the former mod-
els by the AAPRE of 2.89%, 2.85%, and 2.88% for the
training, testing and entire data sets, respectively. Further
insight into performance of the model can be observed
in Figure 6 with lower RMSE value compared to former
published models.

In order to investigate the accuracy of the GMDH
model versus former models’ correlations, a cumulative
frequency plot of the models are illustrated in Figure 8.
This figure helps to achieve a better quantitative eval-
uation of the developed model when compared to the
previously published models. This figure shows that the
GMDH predicts nearly 52% of the data with an abso-
lute relative error of 2%. More importantly, the model
can predict 75% of the data points with an absolute rel-
ative error of only 4%. Thus, the model predict the gas
compressibility factor with the smallest absolute relative
error for any number of data points included in the pre-
dictions. This verifies the consistency of the developed
GMDHmodel in accurately estimating gas compressibil-
ity factor within a wide range of reservoir conditions. The
figure also shows that Hall-Yarborough correlation is the
second model with high performance and accuracy that

Figure 5. Distribution of relative error of the proposed GMDHmodel.
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Figure 6. RMSE of the existing correlations, EOSs, and GMDHmodels for predicting z-factor.

Figure 7. The predicting z-factor’s average absolute percent relative error correlations, GMDHmodels and EOSs.

can estimate gas compressibility factor with small error
values when any number of data points are considered.
Another important finding from this figure is the com-
parison between the Lawal-lake-Silberberg EOS model
and the Dranchuk-Purvis-Robinson correlation. While
Lawal-lake-Silberberg EOS is more accurate in estimat-
ing gas compressibility factor for up to 50% of the data
points, Dranchuk-Purvis-Robinson correlation becomes
the superior model when more than 50% of the data

points are included. This trend changes again when 80%
or more of the data points are included.

Finally, the predicted compressibility values by the
GMDH model visually represented in Figure 9 against
the experimental data at different pseudo-reduced pres-
sure values and constant pseudo-reduced temperature of
0.7 to confirm the capability of the developed model in
accurately estimating natural gas compressibility factor
at different conditions. The experimental trend in this
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Figure 8. Comparative analysis of the cumulative frequency ver-
sus absolute relative error.

Figure 9. Variation of z-factor as a function of Ppr at Tpr = 1.19
for a gas sample.

figure indicates that by increasing the pressure, gas com-
pressibility factor first decreases and then increases. This
trend has been accurately estimated by the developed
GMDH model as shown by the dashed line in the same
figure.

6. Conclusions

In this work, GMDH was used to estimate the compress-
ibility factor of natural gas. The GMDH model outper-
formed othermodels and provided higher accuracy at the
various gas conditions. This was confirmed by measur-
ing the RMSE, average absolute percent relative error, and
regression coefficient to be 0.03, 2.88%, and 0.92, respec-
tively. The Hall Yarborough correlation was determined
as the second most accurate correlation for estimating
the natural gas compressibility factor. Besides, the error
distribution curve analysis indicated that the presented
model in this study does not have an error trend when
predicting very low and very high compressibility factor
values. The experimental trend of gas compressibility fac-
tor showed that by increasing the pressure, the Z-factor

first decreases and then increases. This trend was per-
fectly shown by the developed GMDH model in this
work.

The results of this study show that generally, the
correlations in the recent researches are based on lim-
ited data sets. Therefore, they are only able to predict
the compressibility factor within limited ranges of pres-
sure and temperature conditions. While the proposed
GMDH model can accurately predict the natural differ-
ent gas compressibility factor at low and high temper-
ature and pressure conditions. The GMDH model is a
data-driven based model, and its accuracy and reliability
strongly depend on the data set used for its develop-
ment. Using this model for temperature and pressure
conditions beyond this study may lead to more error.
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