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a b s t r a c t

As the featured material of the superionic thermoelectric (TE) material family, copper-chalcogenide Cu2-

xSe is attracting growing research interest for its excellent TE performance derived from the satisfactory
power factor and the ultra-low thermal conductivity induced by the superionic effect. Various efforts
have been made and proved to be effective to further enhance the TE performance for Cu2-xSe. However,
this material is still far from the application stage, which is mainly due to concerns regarding control of
the properties and the costly complex fabrication technology. Here we report a scalable pathway to
achieve high-performance and tunable Cu2-xSe, utilizing conventional sintering technology and copper
(Cu)-vacancy engineering with an effective mass model. The figure of merit zT is a competitive value of
1.0 at 800 K for the optimized binary Cu2-xSe, based on the precise modeling prediction and Cu-vacancy
engineering. The changes in TE properties of Cu2-xSe under heating-cooling cycle tests are also revealed.
Our work offers the referable method along with the decent parent material for further enhancement of
TE performance, paving a possible route for the application and industrialization of Cu2-xSe TE materials.
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Calls for new green energy technology have been raised due to
ever increasing issue on fossil fuel shortage and environment
problems [1e3]. However, statistics revealed that over 60% energy
is wasted worldwide mostly as emissions of heat [4,5]. Intrinsically
as a cutting-edge energy technology, the solid-state thermoelectric
(TE) technology offers a decent solution to solve this energy
problem in a simple and environment-friendly way. Serving as the
core component for TE technology, the TE materials are capable to
harvest and convert waste heat to electricity directly, and the
reverse direct pumping of heat with electricity is also realizable
[6e10]. Growing attention is thus being paid to TE technology
because of the unique feature of TE materials, as well as the ad-
vantages over other energy technologies: small size, no moving
parts, high reliability and broad temperature-range use [11e17].

The conversion efficiency for a specific TE material is deter-
mined mostly by the thermoelectric figure of merit zT ¼ ðS2sÞT= k,
where S, s, k and T are thermopower (Seebeck coefficient),
am).
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electrical conductivity, total thermal conductivity and absolute
temperature, respectively [18,19]. Here S2s is also defined as the
power factor (PF), and the total thermal conductivity k includes
both the contributions from the lattice thermal conductivity kL and
the electronic thermal conductivity ke, which is expressed by k ¼
kLþke [20]. Heavily depending on the figure of merit zT, the per-
formance of TE materials is aimed to be enhanced through two
aspects: to improve the electrical properties (S, s and PF) and to
reduce the thermal conductivity. Thus, various means have been
utilized to achieve high zT, such as band structure engineering,
nanostructuring, etc [21e30]. However, it is still challenging
because the electrical and thermal transport in materials are
strongly coupled in which the increase of PF may induce the in-
crease of k; or vice versa [31e35]. Therefore, it turns out to be
important to find a TE material with intrinsic superior electrical
properties and low thermal conductivity, following the concept of
phonon-glass electron-crystal [36,37].

As the featured material of copper chalcogenides Cu2-xX (X¼ S,
Se or Te), Cu2-xSe is of growing TE study interest due to its supe-
rionic nature at high temperature. At low temperature below about
400 K, Cu2-xSe presents a low-symmetry monoclinic crystal struc-
ture, known as the a-phase. Upon heating above 400 K, a reversible
phase transition takes place [38e40], then Cu2-xSe exhibits a
superionic cubic structurewith the space group Fm3m, which is the
b-phase of Cu2-xSe [41,42]. In superionic b-Cu2-xSe, Se2� ions occupy
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Fig. 1. Room-temperature XRD patterns for the Cu-vacancy engineered Cu2-xSe
(x¼ 0.03, 0.02 and 0.01).
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at the face-centered lattice, while Cuþ ions can be found at the
octahedral 4b sites, tetrahedral 8c sites, and trigonal 32f sites. Cuþ

ions are kinetically free and thus can travel freely among their
respective positions within the Se2� framework just like a “liquid”
[43e45]. Attributed to this featured superionic nature, the phonon
(thermal) transport can be effectively scattered by the diffusion of
Cuþ ions, thus low thermal conductivity is obtained. Also owing to
the good electrical properties with tunable capability, Cu2-xSe is
now recognized as a promising TE material.

Although the superionic nature of Cu2-xSe favors the TE per-
formance, it also induces reliability concerns. The diffusive Cuþ ions
at high temperature facilitate copper migration in a thermal or
electrochemical gradient in Cu2-xSe [46e48], which can be an
obstacle to the application of this kind of TE material.

Moreover, there is other stumbling block to be tackled to further
the application and realize the industrialization. As generally
known, product performance, reliability and cost are the major
factors to be considered before mass-production. At present, TE
materials are still suffering from high cost, including complex
fabrication methods of hot-pressing (HP) and spark plasma sin-
tering (SPS) as solidification technologies, which are actually diffi-
cult to be introduced to industry. To tackle this situation, the
conventional sintering technology can be considered alternatively,
which is much more cost-effective and scalable and has been
widely utilized in industry. Therefore, it is of great significance to
explore the feasibility of applying conventional sintering technol-
ogy to the fabrication of Cu2-xSe, to advance its industrialization.

In this work, we report that the TE performance of conventional
sintered Cu2-xSe can be precisely optimized via Cu-vacancy engi-
neering using effective mass modeling as a guide [49,50]. An
optimized zT value of ~1.0 is achieved at 800 K for the undoped Cu2-
xSe, and the excellent repeatability in properties is also obtained
from room temperature to 800 K. This work offers a readily scalable
and cost-effective path to fabricate Cu2-xSe material with high TE
performance and good thermal reliability, heading a great step to
its industrialization. Besides, this Cu-vacancy engineered Cu2-xSe
can be a decent parent TE material for further study focusing on the
TE performance enhancement.

2. Experimental

2.1. Sample preparation

Cu2-xSe (x¼ 0.03, 0.02 and 0.01) samples with nominal com-
positions were synthesized via conventional solid-state sintering
technology. Oxygen-free Cu shots (99.99%, Aladdin) and Se shots
(99.999%, Aladdin) were used as the raw materials. The
stoichiometry-determined Cu and Se shots were weighed and
mixed. The whole processing was operated in glove box. The
mixturewas then sealed in a carbon-coated quartz crucible, melted
at 1440 K for 3 h, followedwith annealing at 973 K. The as-prepared
ingot was ground into fine powder in glove box using an agate
mortar, then weighed and pressed into discs under a pressure of
240MPa. Finally, the discs with a typical diameter of 14mm and a
thickness of 0.5mm were sintered at 973 K for 2 h under an argon
atmosphere, and then naturally cooled down to room temperature.

2.2. Characterizations

The phase structures of the as-sintered bulk samples were
determined by X-ray diffraction (XRD) at room temperature with a
X-ray diffractometer (Rigaku SmartLab), in which Cu Ka radiation
(l¼ 1.5406 Å) was used.

The scanning electron microscopy (SEM) was performed with a
scanning electron microscope (Tescan VEGA3) at room
temperature, the bulk samples were cracked to expose the fracture
morphology. Owing to the good electrical conductivity of the
samples, the coating of gold (Au) was not implemented before
conducting SEM.

The electronic transport features including the Seebeck coeffi-
cient (S) and the electrical conductivity (s) as well as the thermal
cycling test were performed using a thermal system (Netzsch SBA
458 Nemesis, Germany) adopting the four-probe method, under an
argon atmosphere with a flow rate of 50mLmin�1. The thermal
conductivity was obtained through the calculation of k ¼ D·Cp·d,
where the thermal diffusivity (D) was measured using a laser flash
analysis instrument (Netzsch LFA 457 MicroFlash, Germany) under
an argon atmosphere with a flow rate of 50mLmin�1, a constant
specific heat capacity (Cp) [47] was used rather than a decreasing
high-temperature heat capacity used in the recent literature [51],
and the geometric density (d) was measured.

3. Results and discussions

Fig. 1 shows the room-temperature XRD patterns of the Cu-
vacancy engineered Cu2-xSe (x¼ 0.03, 0.02 and 0.01) samples. The
XRD patterns exhibit identical characteristics of monoclinic Cu2Se
phase (Standard Identification Card, JCPDS: 27-1131) for the con-
ventional sintered Cu2-xSe samples. With increasing Cu vacancies,
the cubic Cu2Se phase (Standard Identification Card, JCPDS: 06-
0680) forms, resulting in the coexistence of monoclinic and cubic
phases. This reveals the dependence of the room-temperature
phase structure of Cu2-xSe on the Cu-vacancy concentration, and
the phase structure could be tuned via Cu-vacancy engineering for
Cu2-xSe. The SEM images for the cross-sections of the Cu2-xSe
samples are shown in Fig. 2. All samples are confirmed to be well
densified after sintering, exhibiting stacked-plate grain structures.
The grain sizes are revealed to be micron-level.

The temperature-dependent electronic transport properties,
electrical conductivity (s), Seebeck coefficient (S) and power factor
(PF), of the as-fabricated Cu2-xSe samples are plotted in Fig. 3. For all
samples, the electrical conductivity decreases with ramping tem-
perature up to 800 K, and undergoes a featured a-b phase transition
influence of Cu2-xSe at ~400 K, which is indicated by the abrupt
change of electrical conductivity (Fig. 3a). It is also coincident to the
expectation that the electrical conductivity diminishes with higher
Cu stoichiometry (less Cu vacancies), for instance, the electrical
conductivity at room temperature decreases from ~2000 S cm�1 for
Cu1.97Se to ~750 S cm�1 for Cu1.99Se. This trend is well attributed to
the p-type semiconductor nature of Cu2-xSe in which more Cu



Fig. 2. SEM images for the cross-sections of the as-sintered Cu2-xSe bulk samples. (a) Cu1.97Se, (b) Cu1.98Se, and (c) Cu1.99Se.
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vacancies greatly increase the hole concentration and thus facilitate
the charge transport. The p-type semiconductor nature is also
revealed by the positive values of Seebeck coefficient of Cu2-xSe
(Fig. 3b). The trend of Seebeck coefficient is just inverse to that of
electrical conductivity, which increases with the temperature and
is negatively related to the concentration of Cu vacancies. No
evident bipolar effect is observed up to 800 K, and the optimal
Seebeck coefficient of ~240 mVK�1 is obtained for Cu1.99Se at 800 K.
The power factor (PF ¼ S2s) is calculated based on the measured s

and S, and plotted as a function of temperature (Fig. 3c). All the Cu2-
xSe samples show the same trend in the power factor as a function
of temperature. For the a-phase Cu2-xSe, the power factors are
6.5e7.5 mWcm�1 K�2, and competitive values of
8e11.5 mWcm�1 K�2 are obtained for the b-phase at 800 K [51].
Overall, the electronic transport properties are successfully tuned
and optimized through Cu-vacancy engineering, and the satisfac-
tory power factors are thus achieved for the Cu2-xSe samples.

Based on the low thermal diffusivity measured for Cu2-xSe
(Fig. 4a), the thermal conductivity values of b-phase Cu2-xSe are
calculated to be small, as plotted in Fig. 4b. It is evident that sam-
ples with less Cu vacancies show lower thermal conductivity over
the whole temperature range. The extremely low thermal con-
ductivity is achieved for Cu1.99Se at 800 K, which is due to the small
amount of Cu vacancies and the superionic nature at high tem-
perature. This is consistent with the expectation based on the
electrical conductivity analysis in which lower carrier concentra-
tion (indicated by the lower electrical conductivity) contributes less
electronic thermal conductivity to the total thermal conductivity,
which will be further discussed in the following part.

Ascribing to the optimized power factor and low thermal con-
ductivity, high zT is realized with Cu-vacancy engineering, reaching
the maximum value of ~1.0 at 800 K for Cu1.99Se as shown in Fig. 5.
Excellent tunability is revealed that the zT value increases exactly
with the decreasing Cu vacancy. Besides, higher zT is expected if the
measurement temperature is further elevated, based on the trend
in zT as a function of temperature.
To better understand the thermal transport mechanism for b-

phase Cu2-xSe, the samples with nominal compositions (Cu1.97Se,
Cu1.98Se and Cu1.99Se) close to stoichiometric Cu2Se are evaluated to
further study the contribution of carriers (electronic contribution)
to the total thermal conductivity. The Lorenz number, L, is defined
according to the equation:

L ¼
�
kB
e
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where kB is the Boltzmann constant, e is the electron charge, FðhÞ is
the Fermi-Dirac integral, h is the reduced chemical potential and r
represents the carrier scattering factor (acoustic phonon scattering
r¼ �1=2 is adopted in the present case [52,53]). Based on the
effective mass model, the reduced chemical potential can be ob-
tained from the Seebeck coefficient as a function of temperature,
addressing from the equation:
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Then the Lorenz number can be derived, which is a monotone
function of the reduced chemical potential. As shown in Fig. 6a, the
Lorenz number reduces against temperature, ascribed to the in-
crease of reduced chemical potential that is indicated by the trend
of Seebeck coefficient (Fig. 3b). The Lorenz number calculated
based on this approach is more precise, compared with the directly



Fig. 3. Temperature dependence of electronic transport properties of Cu2-xSe. (a)
Electrical conductivity (b) Seebeck coefficient, and (c) Power factor.

Fig. 4. Temperature dependence of thermal transport properties of Cu2-xSe. (a) Ther-
mal diffusivity of Cu2-xSe and (b) Total thermal conductivity of b-phase Cu2-xSe.

Fig. 5. Temperature dependence of TE figure of merit zT of b-phase Cu2-xSe.
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adopted metallic limit Lorenz number derived from quantum me-
chanical treatment [54,55], which is represented by the dash line as
shown in Fig. 6a. The metallic limit overestimates the electronic
thermal conductivity, but underestimates the lattice thermal con-
ductivity portion. Upon the calculated Lorenz number, the
temperature-dependent electronic thermal conductivity ke is
derived from the following equation and plotted in Fig. 6b,
ke ¼ LsT (3)

where s is the electrical conductivity and T is the absolute tem-
perature. In good agreement with the electrical conductivity anal-
ysis (Fig. 3a), the electronic thermal conductivity decreases with



Fig. 6. Temperature dependence of calculated (a) Lorenz number, (b) Electronic
thermal conductivity, and (c) Lattice thermal conductivity of b-phase Cu2-xSe.

Fig. 7. Weighted mobility U of b-phase Cu2-xSe, determined from the electrical con-
ductivity and Seebeck coefficient data, as a function of exponential temperature (T�1.5).

Fig. 8. Temperature dependence of quality factor B of b-phase Cu2-xSe, derived from
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reducing Cu vacancies, indicating the strong response of electronic
phonon transport to the carrier concentration in b-phase Cu2-xSe.
The electronic thermal conductivity also shows decrement against
the increasing temperature, to explain this phenomenon, the
enhanced phonon-carrier interaction as well as the superionic ef-
fect induced phonon-cation-diffusion interaction should be
considered. With the experimental total thermal conductivity data
and the calculated electronic thermal conductivity, the lattice
thermal conductivity kL can be determined from the relationship:
kL ¼ k� ke, as shown in Fig. 6c. For b-phase Cu2-xSe, low lattice
thermal conductivity of smaller than 0.5 Wm�1K�1 is obtained. In
general, the lattice thermal conductivity is strongly temperature-
dependent. However, the weak temperature dependence of lat-
tice thermal conductivity is revealed for the samples, suggesting
the suppressed lattice-vibration induced phonon transport by the
liquid-like superionic behavior [56,57].

The electronic transport properties can be evaluated by deter-
mining the weighted mobility U for the Cu1.97Se, Cu1.98Se and
Cu1.99Se samples. For materials like superionic Cu2-xSe, since the
carrier mobility is too low to be precisely measured, Hall mea-
surements are difficult to be effectively conducted at high tem-
perature to obtain the effectivemassm* and themobility parameter
m0, which determine the weighted mobility. Alternatively, the
weighted mobility can be derived directly from the electrical con-
ductivity and Seebeck coefficient, according to the equations [47],

s¼ sE0,lnð1þ ehÞ (4)
the electrical conductivity, Seebeck coefficient and lattice thermal conductivity data.



Fig. 9. Thermoelectric zT predicted by effective mass model (colored solid-curves) for
Cu2-xSe at 800 K and Seebeck coefficient (red dash-curve) as a function of reduced
chemical potential, with the coordinate-located experimental zT values (represented
by colored geometric dots).
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U¼sE0,
3h3

8peð2mekBTÞ
3
2

(5)

where sE0 is the transport coefficient, h is the Planck constant and
Fig. 10. Heating-cooling cycle test evaluations performed for Cu2-xSe on electronic transport
(c) Calculated cycling power factor derived from the electrical conductivity and Seebeck co
me is the electron mass. As presented in Fig. 7, the weighted
mobility of all samples responds linearly to T�1.5, indicating the
charge transport is dominantly scattered by acoustic phonons. The
continuous linearity of the curves also suggests that no bipolar
effect takes place up to 800 K, and the cold-finger effect that would
cause an abnormal increase of the weighted mobility at high
temperature can be excluded for the Netzsch measurement system,
as claimed by the system design.

With the electronic transport coefficient sE0 and the lattice
thermal conductivity kL, the overall TE quality factor B, can be
assessed from the following equation [58]:

B ¼
�
kB
e

�2sE0
kL

T : (6)

As plotted in Fig. 8, the temperature-dependent quality factor is
calculated for b-phase Cu1.97Se, Cu1.98Se and Cu1.99Se. Generally, the
quality factor increases with more Cu vacancies and higher tem-
perature, reaching >0.4 at 800 K for all samples, which indicates
that the optimal zT of >1 should be achieved for as-fabricated Cu2-

xSe at this temperature.
After determining the quality factor, the zT can be predicted

based on the relation:

zT ¼ S2

Lþ ðkB=eÞ2
B,lnð1þehÞ

: (7)

Fig. 9 exhibits the predicted zT (colored solid-curves) along with
and thermal transport measurements. (a) Electrical conductivity (b) Seebeck coefficient
efficient (PF¼ S2s) (d) Thermal diffusivity.
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the Seebeck coefficient (red dash-curve) as a function of reduced
chemical potential h for Cu1.97Se, Cu1.98Se and Cu1.99Se at 800 K. It is
found that the experimental zT values (represented by colored geo-
metric dots) match well with the predictions for all samples. Taking
Cu1.97Se as an instance, the measured zT and Seebeck coefficient at
800 K are 0.8 and 162 mV K�1 respectively, making a very good
agreement with the prediction (0.8 for zT and 160 mV K�1 for See-
beck coefficient). As a result, based on the precise model prediction
and Cu-vacancy engineering, the zT is optimized to the maximum
value of 1.0 in Cu1.99Se that is comparable to that of undoped Cu2-xSe
when compared with other reported works [47,48].

To investigate the repeatability in properties of the as-fabricated
Cu2-xSe samples, heating-cooling cycle tests are conducted for the
electrical conductivity, Seebeck coefficient and thermal diffusivity
measurements. Alongwith the calculated cycling power factors, the
results are presented in Fig. 10. All the measurements show good
repeatability upon the heating-cooling process over the whole
temperature range up to 800 K, regardless of the hysteresis
behavior exhibited during the phase-transition region. The good
repeatability achieved is amongst the best ones that reported for
the Cu2-xSe-based TE materials [46e48,59]. Besides, changes are
observed among the repeatability in properties of the Cu2-xSe
samples. The changes can be explained by small changes in Cu
vacancy content during the measurement. As the samples are
heated the Seebeck is higher and electrical conductivity are lower
than they are for cooling. This suggests that at high temperature
more copper vacancies form that also increases the hole concen-
tration. Thus on cooling there are more charge carriers that
decrease the Seebeck, increase the electrical conductivity and also
alter the electronic contribution to the thermal conductivity. At
lower temperature the copper could very well be reabsorbed. For a
given change in copper vacancies, samples already with more
copper vacancies have a smaller relative change and therefore their
properties are less sensitive to thermal variations.

4. Conclusions

In conclusion, with the scalable fabrication technology, the
optimized Cu2-xSe exhibits good TE properties with the optimal zT
of ~1.0 at 800 K. The optimization is carried out based on the precise
Cu-vacancy engineering using effective mass modeling as a guide.
The good TE performance is contributed from the as-obtained high
power factor and low thermal conductivity, for which, the mech-
anism analyses including electronic transport and thermal trans-
port properties are discussed. Both the electronic transport and the
thermal transport are highly dependent on the Cu-vacancy con-
centration. Meanwhile, we explore the changes in properties upon
heating and cooling for the Cu2-xSe samples. Our study provides a
promising and realizable approach of using Cu-vacancy engineer-
ing and modeling to advance the TE performance as well as pro-
mote the potential of practical application for Cu2-xSe.
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