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1  | INTRODUC TION

Along with the rapid development of molecular biology and bioin‐
formatics, the pattern of coding information in life activity has been 
found to be far more complex than the genetic central dogma.1 
ncRNAs (non‐coding RNAs) that are rarely translated into peptides 

account for roughly up to 98% of total RNAs transcribed by DNA, 
widely involving in regulating various biological processes such as 
cancer metastasis, response to stress, development and cell cycle 
regulation. As two main subclasses of ncRNA, long ncRNAs (ln‐
cRNAs) and microRNAs (miRNAs) have attracted great attention for 
their significant roles in gene expression regulation.2‐6 miRNAs, as 
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Abstract
LncRNA and miRNA are key molecules in mechanism of competing endogenous 
RNAs(ceRNA), and their interactions have been discovered with important roles in 
gene regulation. As supplementary to the identification of lncRNA‐miRNA interac‐
tions	from	CLIP‐seq	experiments,	 in	silico	prediction	can	select	the	most	potential	
candidates for experimental validation. Although developing computational tool for 
predicting lncRNA‐miRNA interaction is of great importance for deciphering the 
ceRNA mechanism, little effort has been made towards this direction. In this paper, 
we propose an approach based on linear neighbour representation to predict lncRNA‐
miRNA	interactions	(LNRLMI).	Specifically,	we	first	constructed	a	bipartite	network	
by combining the known interaction network and similarities based on expression 
profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour 
representation method was introduced to construct a prediction model. To evalu‐
ate the prediction performance of the proposed model, k‐fold cross validations were 
implemented.	As	a	 result,	LNRLMI	yielded	 the	average	AUCs	of	0.8475	±	0.0032,	
0.8960	±	0.0015	and	0.9069	±	0.0014	on	2‐fold, 5‐fold and 10‐fold cross validation, 
respectively. A series of comparison experiments with other methods were also con‐
ducted, and the results showed that our method was feasible and effective to predict 
lncRNA‐miRNA interactions via a combination of different types of useful side infor‐
mation. It is anticipated that LNRLMI could be a useful tool for predicting non‐coding 
RNA regulation network that lncRNA and miRNA are involved in.
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one kind of small ncRNA (20‐25nt), can inhibit translation of mRNA 
into proteins via mRNA degradation and repressing translation initi‐
ation.7,8 LncRNAs with lengths of more than 200nt, a loosely clas‐
sified group of RNA transcripts, can regulate gene expression and 
nuclear architecture by binding to protein partners via structural 
motifs as well as interacting with RNA and DNA via base pairing.9 
Although more and more lncRNAs have been found by computa‐
tional	 prediction	 techniques,	 improved	 epigenomic	 technologies	
as	well	as	deeper	and	more	sensitive	RNA	sequencing,	only	a	small	
number	of	lncRNAs,	like	HOTAIR,	XIST	and	TERC,	are	well	studied.	
It is an urgent need to understand the functional roles and mecha‐
nisms of other types of lncRNAs.9‐11

It is reported that lncRNAs are associated with different kinds 
of biological molecules, forming a complex mechanism by which the 
expression of proteins is critically regulated.12 However, identifica‐
tion	of	lncRNA‐miRNA	interactions	based	on	CLIP‐seq	experiments	
are expensive and time‐consuming for the data collection.13 As sup‐
plement to biological experimental method, computational methods 
can combine with other useful information and learn the hidden 
pattern underlying the known lncRNA‐miRNA interaction network. 
They are of high efficiency to yield the most potential candidates 
for experimental validation and therefore attracting increasing at‐
tention in the field of non‐coding RNA.

To unify the patterns of different types of non‐coding RNA act 
in,	Salmena	et	al	proposed	competing	endogenous	RNAs	(ceRNA)	
mechanism where different non‐coding RNAs compete for binding 
to miRNAs that usually repress target gene expression.1,14 More 
and more experimental and theoretical evidence support this hy‐
pothesis.15‐17 To annotate the biological functions of lncRNAs, 
many works have been done to investigate the correlation of ex‐
pression level between lncRNAs and protein‐coding genes with 
little consideration on lncRNA‐miRNA interactions.18‐21 As the 
crosstalk between lncRNAs and miRNAs plays a significant role in 
the biological function, predicting lncRNA‐miRNA interactions by 
using efficient approaches can contribute to annotating biological 
functions.22

Recent studies show that lncRNAs and miRNAs are involved 
in the pathological processes of diverse human diseases.9,23,24 
Therefore, much effort has been made to systematically investigate 
the	 impacts	 of	 lncRNA‐miRNA	 interactions.	 For	 instance,	 it	 is	 re‐
ported	that	in	the	vasculature,	CERS1,	NAT8L	and	LARP1	as	down‐
stream targets can be repressed by the overexpression of miRNAs 
(miR‐4459,	miR4488	and	miR‐3960)	that	bind	to	lncRNA	TGFb2‐OT1	
that functions as ceRNA.25	Xia	et	al	reported	that	lncRNA‐FER1L4	in	
gastric cancer competes for miR‐106a‐5p through the correspond‐
ing	MREs	and	then	regulates	expression	of	CDKN1A,	E2F1,	HIPK3,	
IL‐10,	 PAK7,	 PTEN,	 RB1,	 RUNX1	 and	 VEGFA.26 Du et al investi‐
gated	 into	 prostate	 cancer	 and	 revealed	 that,	 lncRNAs	TUG1	 and	
CTB‐89H12.4, acting as miRNA sponges, can suppress tumour and 
regulate their phosphatase and tensin homolog (PTEN) expression.27 
Such	understanding	of	regulation	network	constructed	by	lncRNAs	
and miRNAs in pathophysiology can pave the way for new biomarker 
discovery and therapeutic approaches. However, the number of the 

existing lncRNA‐miRNA interactions identified by biological experi‐
ments is still limited in number.

To accelerate the identification processes of lncRNA‐miRNA 
interactions, it is an urgent need to propose effective computa‐
tional methods to find the most potential lncRNA‐miRNA pairs as 
candidate based on the known interactions.22,28‐30 Most existing 
computational prediction approaches for miRNA‐target interactions 
are developed according to some common rules that mainly focus 
on the following four aspects: conservation, seed match, free en‐
ergy and site accessibility.9	Some	prediction	tools	for	miRNA‐target	
interactions have been proposed. Most of them are based on the 
observation that the miRNA seed regions of mRNA generally have 
higher conservation than the non‐seed regions. However, the basic 
assumption of these methods contradicts the fact that lncRNAs 
have	prominently	lower	sequence	conservation	and	faster	evolution	
than mRNAs.31,32	Some	methods	are	based	on	the	calculation	of	the	
free energy of the potential‐binding sites are proposed to predict 
lncRNA‐RNA interactions.33	For	 instance,	LncTar,	a	prediction	tool	
for lncRNA‐RNA interactions, evaluates the free energy joint struc‐
ture of each RNA pair.31	Although	such	sequence‐based	prediction	
approaches have been widely applied, they suffer from high false‐
positive rates.28 Most existing prediction approaches for miRNA‐
target interactions are not effective for predicting lncRNA‐miRNA 
interactions, because such approaches cannot incorporate current 
understanding of lncRNA‐miRNA interactions.

Previous researches on miRNA‐target threshold effects, small 
RNA (sRNA) regulation and protein‐protein interaction (PPI) indicate 
that lncRNAs and miRNAs can interact with each other according 
to a titration mechanism.34‐36 This finding suggests the importance 
of expression levels of lncRNA and miRNA on their interaction pat‐
tern. In addition, previous study suggests that ceRNA crosstalk is 
closely related to indirect interactions, the number of MREs, relative 
abundance of ceRNAs and miRNAs and stoichiometry.37,38 More 
and more studies on co‐expressed gene indicate that associations 
established by multiple lncRNAs and particular miRNA clusters in a 
synergistic manner can regulate biological processes.12,32

Increasing attention is drawn to predict the interactions be‐
tween lncRNA and miRNA by considering their general expression 
patterns. Huang et al, for the first time, use the expression profiles of 
lncRNA and miRNA to build a computational algorithm called EPLMI 
predict lncRNA‐miRNA interactions.39 This method calculates the 
final prediction network with the average of two independent pre‐
diction networks that are respectively based on expression similarity 
of lncRNAs and miRNAs. Hu et al proposed an effective prediction 
model named INLMI that integrated lncRNA/miRNA similarity net‐
work	was	 constructed	 by	 combining	 sequence‐based	 and	 expres‐
sion‐based similarity network, and non‐negative matrix factorization 
(NMF)	method	was	employed	on	the	integrated	similarity	networks	
for prediction.40

In this work, considering that all lncRNA‐miRNA interactions 
were positive, we proposed a computational method called LNRLMI 
to	 predict	 potential	 lncRNA‐miRNA	 interactions.	 Specifically,	 it	
was based on a constructed lncRNA‐miRNA bipartite network that 
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was composed of similarities of lncRNAs and miRNAs and known 
lncRNA‐miRNA interaction network. Based on such a constructed 
network, linear optimization, a semi‐supervise model, was intro‐
duced to predict the new links of the known lncRNA‐miRNA inter‐
action network.

To validate the effectiveness of our proposed method, 2‐fold 
cross validation, 5‐fold cross validation and 10‐fold cross valida‐
tion were implemented to predict lncRNA‐miRNA interactions on 
the	 dataset	 that	was	 collected	 from	 the	 lncRNASNP	 database.41 
LNRLMI was compared with the state‐of‐the‐art computational 
approaches such as EPLMI and INLMI that were initially devel‐
oped	 for	 predicting	 lncRNA‐miRNA	 interactions.	 Some	 classical	
algorithms, such as KATZ measure42	and	LFM,43 were also imple‐
mented. Based on the expression profile‐based similarities of ln‐
cRNAs	and	miRNAs,	the	proposed	model	yielded	the	average	AUCs	
of	0.8475	±	0.0032,	0.8960	±	0.0015	and	0.9069	±	0.0014	as	well	
as	the	best	AUCs	of	0.8530,	0.9009	and	0.9096	in	2‐fold cross val‐
idation, 5‐fold cross validation and 10‐fold cross validation, respec‐
tively. The experimental performance of our work illustrates that 
linear neighbour representation for lncRNA‐miRNA interaction 
(LNRLMI) is a promising method to predict interactions between 
lncRNAs and miRNAs.

2  | MATERIAL S AND METHODS

2.1 | Data processing

To investigate into potential lncRNA‐miRNA interactions, the lncR‐
NASNP	 database,	 February	 2017	 version,	 is	 downloaded	 from	
http://bioin	fo.life.hust.edu.cn/lncRN	ASNP.	 The	 database	 collected	
from	 108	 CLIP‐Seq	 datasets	 contains	 8091	 records	 of	 known	
lncRNA‐miRNA interactions that are confirmed by laboratory stud‐
ies.41	5348	of	valid	interactions	were	obtained	for	our	experiments	
after	data	de‐duplication.	Specifically,	780	different	types	of	 lncR‐
NAs and 275 different types of miRNAs were involved.

Moreover, there are three kinds of similarities of RNAs used 
as side information in predicting lncRNA‐miRNA interaction. 
The first type of biological profile is expression profile that is 
related to human tissues and cell lines. To collect expression 
profile data, putative functional annotations of lncRNAs and 
miRNAs were obtained from the NONCODE database (http://
www.nonco de.org/)44 and from the microRNA.org database 
(http://www.micro rna.org/micro rna/home.do)45, respectively. 
A total of 450 expression profile data and 264 functional an‐
notations data of the lncRNAs were obtained by converting the 
names of lncRNA into the NONCODE IDs, in which each expres‐
sion profile datum of lncRNA has 22 dimensions involved in 8 
cell	lines	and	16	distinct	human	tissues.	And	230	of	expression	
profile data of miRNAs were obtained, which have 172 dimen‐
sions, each of which describes the expression level in a specific 
human tissue or cell line. The second type of similarity is bi‐
ological function that is related to functional annotations and 
interactions between target genes. The data are downloaded 

from miRTarBase (version 6.1, http://miRTa rBase.mbc.nctu.edu.
tw)46, and 272 records of miRNAs in our dataset were collected. 
Lnc‐GFP	method	based	on	 a	 coding‐non‐coding	 co‐expression	
network was employed to predict probable biological functions, 
and 10 most of probable biological function are predicted as 
the functional annotations for lncRNAs. The third type of in‐
formation	 is	RNA	sequence	that	 is	collected	from	the	miRBase	
database (http://www.mirba se.org/)47 and LNCipedia database 
(https ://lncip edia.org/)10.

These three types of biological information are widely used in 
bioinformatics	researches.	We	considered	these	three	types	of	side	
information are closely related, and therefore they collectively de‐
scribe the relation of different types of lncRNA/miRNA with regards 
to their roles in the regulation network.

2.2 | Construction of lncRNA/miRNA similarity

In the proposed model of LNRLMI, similarity matrixes are needed to 
be computed by using different types of raw features of lncRNA and 
miRNA to search the neighbours that are correlated with regards to 
lncRNA‐miRNA interactions. In this work, three kinds of similarities 
were explored to predict lncRNA‐miRNA interactions. The similarity 
matrix of expression profile of RNAs is computed by using Pearson 
correlation coefficient (PCC),48 which is widely used to depict cor‐
relation coefficient of two samples with same type of attributes as 
follow:

where X and Y denote the samples with distinct attribute vector 
that contains N attribute value. Xi and Yi denote the i‐th attribute 
value.	PCC	score	lies	between	−1	and	1	where	maximum	and	min‐
imum value denotes the strong positive correlation and negative 
correlation.

For	the	second	type	of	similarity,	given	two	functional	annota‐
tions of lncRNA/miRNA(say Ra and Rb), the definition of functional 
similarity measure is as follow:

To	calculate	the	third	type	of	similarity,	the	Needleman‐Wunsch	
pairwise	sequence	alignment	is	employed	on	the	sequence	data	of	
RNAs via the package of pairwise2 in Biopython. In detail, gap‐open 
extending penalty, gap‐open penalty and identification score were 
set	as	<0.1,	−0.5	and	2,	respectively.

To incorporate our proposed prediction model, similarity ma‐
trixes should be normalized from 0 to 1 if elements of matrix do not 
range	from	0	to	1.	In	detail,	sequence‐based	similarities	need	to	be	
normalized. Elements of each column are divided by the maximum in 
each column. The final matrix is obtained by filling the upper triangu‐
lar matrix with the transpose of the lower triangular.

(1)PCCS(X,Y)=

∑N

i=1
(Xi−

̄X)(Yi−
̄Y)�∑N

i=1
(Xi−

̄X)2
∑N

i=1
(Yi−

̄Y)2

(2)FNS(ra,rb)=
card(Ra∩Rb)√

card(Ra) ⋅
√
card(Rb)

http://bioinfo.life.hust.edu.cn/lncRNASNP
http://www.noncode.org/
http://www.noncode.org/
http://www.microrna.org/microrna/home.do
http://miRTarBase.mbc.nctu.edu.tw
http://miRTarBase.mbc.nctu.edu.tw
http://www.mirbase.org/
https://lncipedia.org/
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2.3 | Linear neighbour representation method for 
predicting lncRNA‐miRNA interactions

In this section, we propose a linear neighbour representation method 
for	predicting	lncRNA‐miRNA	interactions	(see	Figure	1).49

Based on an assumption that lncRNAs with similar functions 
tend to interact with functionally similar miRNAs and vice versa, 
similarities of RNAs can be helpful information to reflect the cor‐
relation between RNAs. As it is reported that the interactions be‐
tween lncRNA and miRNA could be affected by their expression 
pattern, it could be expected that their underlying biological func‐
tion is closely related to their expression pattern. In the framework 
of our proposed algorithm, a bipartite network is constructed with 
the similarities and known interaction network. Note that the bipar‐
tite network is a real symmetric matrix. All elements of each row can 
contribute to linear neighbour representation in training. In order to 
validate the effectiveness of using side information, our proposed 
method was also employed on a single‐layer network without using 
side information. Meanwhile, the results can justify the assumption 
that lncRNAs with similar functions tend to interact with function‐
ally similar miRNAs.

In the framework of our proposed method, first, similarity ma‐
trixes of lncRNA and miRNA are constructed, that is, lncRNA simi‐
larity matrix LSM∈ Rln×ln and miRNA similarity matrix MSM∈ Rmn×mn

. The known lncRNA‐miRNA interaction network LMN∈Rln×mn is 
then constructed based on the known interaction pairs of lncRNA 
and miRNA. A target lncRNA‐miRNA bipartite network M∈RN×N 
is constructed by combining LSM, MSM and LMN and defined as 
follow:

where M can also be treated as a weighted graph G(V, E, W) that 
V, E, W denote the vertices, edges and weights, respectively. Note 
that E and W are respectively related to LMN and similarity matrixes 
of LSM and MSM. The corresponding link mij is defined as a weighted 
link form node i to node j. Here, a score matrix S is defined as follows:

where C	is	a	weight	matrix.	Specifically,	denote	an	element	sij in 
S, and each element can be unfolded by a linear summation of con‐
tributions from node i's neighbours, as follows:

where ckj is the contribution from node k to node j. In the score 
matrix	S,	the	observed	links	are	utilized	to	estimate	the	rationality	of	
S, and the non‐observed ones are undetermined and need to be pre‐
dicted. According to self‐consistence, the value of mij has obviously 
positive correlation with the score of sij, and S is closely related to M 
so the magnitude of C should be small. Thus, to obtain the matrix S, 
C can be simply obtained by solving optimization problem as follows:

where parameter α is set to balance the two factors and || ⋅ || is 
defined	as	a	certain	matrix	norm.	To	solve	Eq.	(6),	the	Frobenius	norm	
is used and set with power 2. That is to optimize the minimum of the 
following formula:

where the function || ⋅ ||2
F
 can be solve as ||A||2

F
=Tr(ATA).	Eq.	(7)	

can be unfolded as follows:

then take partial derivative of Q with respect to C as follows:

Taking	 Eq.(9)	 as	 0,	 the	 optimal	 solution	 of	C can be obtain as 
follows:

(3)M=

⎡
⎢⎢⎣
LSM

LMNT

LMN

MSM

⎤
⎥⎥⎦

(4)S=MC

(5)sij=
∑
k

mikckj

(6)min
C

�||M−MC||+ ||C||

(7)Q=�||M−MC||2
F
+ ||C||2

F

(8)
Q=�Tr

[(
M−MC

)T (
M−MC

)]
+ Tr

(
CTC

)

=�Tr
(
MTM−MTMC−CTMTM+CTMTMC

)
+Tr

(
CTC

)

(9)
�Q

�C
=�

(
−2MTM+2MTMC

)
+2C

(10)C∗
=�

(
�MTM+E

)−1

MTM

F I G U R E  1   The flowchart of prediction 
process of LNRLMI
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where E is the identity matrix. The final score matrix S for link 
prediction can be solved as follows:

Finally,	the	target	prediction	network	is	computed	as	LMN′ in S.

3  | RESULTS

3.1 | Performance evaluation using k‐fold cross 
validation

To evaluate the performance of LNRLMI, k‐fold cross validations 
were employed and corresponding receiver‐operating characteris‐
tics	(ROCs)	curves	were	drawn.	In	addition,	area	under	curve	(AUC)	
values lying between 0.5 and 1 are calculated to measure whether 
models	perform	well	or	not.	AUC	of	0.5	denotes	a	simply	 random	
prediction	 and	 AUC	 of	 1	 denotes	 an	 ideal	 prediction.	We	 imple‐
mented 2‐fold, 5‐fold and 10 fold cross validation to investigate 
how	the	quantity	of	training	sample	influence	the	performance	and	
evaluate the performance better.

According to 5‐fold cross validation, the known lncRNA‐
miRNA samples were randomly divided into five parts, in which 
four of them take turn to be used to train the model and the 
rest one is for testing. To avoid the bias brought by random 
sample division, random sampling was carried out for 20 times. 
Consequently,	our	proposed	method	yielded	good	performance	
with	average	AUC	of	0.8960	±	0.0.0015	and	the	highest	AUC	of	
0.9009.

We	also	performed	2‐fold and 10‐fold cross validation for further 
performance evaluation. As a result, the model proposed average 
AUCs	 of	 0.8475	 ±	 0.0032	 and	 0.9069	 ±	 0.0014	with	 the	 highest	
AUCs	as	0.8530	and	0.9096	when	performing	2‐fold cross validation 
and 10‐fold cross validation,	 respectively	 (see	 Figure	 2).	 The	 result	
demonstrates that our proposed method is effective to predict ln‐
cRNA‐miRNA interactions on a large scale.

3.2 | Evaluation on the effectiveness of using side 
information

Based on the assumption that lncRNAs with similar profile tend 
to interact with same miRNAs, we here implemented 5‐fold cross 
validation on a bipartite network combining with expression‐based 
similarities and known interaction network as well as a single‐
layer network without any side information for 20 times, respec‐
tively.	As	 a	 result,	 the	highest	AUC	of	0.8884	and	average	AUC	
of	0.8838	±	0.0017	were	achieved	without	using	side	information	
while	the	highest	AUC	of	0.9009	was	yielded	by	using	expression	
profile‐based similarity. The ROCs of best performance were also 
plotted	in	Figure	3.

From	the	results,	the	assumption	was	justified	and	the	biological	
similarity as side information in prediction model could improve the 
performance.

3.3 | Comparison with different kinds of side 
information

In this sub‐section, other kinds of bio‐information were also investi‐
gated,	such	as	nucleotide	sequence	information	derived	from	high‐
throughput	 sequencing	 and	biological	 functional	 information.	Two	
types	 of	 similarity	 were	 constructed	 by	 using	 sequence	 data	 and	
biological functional data, respectively.

For	the	purpose	of	comparison	with	the	performance	achieved	by	
using expression similarity of RNAs, we similarly employed 5‐fold cross 
validation	on	using	biological	functional	similarity	and	sequence	simi‐
larity,	respectively.	As	a	result,	the	average	AUCs	of	0.8940	±	0.0019	
and	0.8970	±	0.0017	were	yielded	by	using	function‐based	similarity	

(11)S=MC∗

F I G U R E  2   Performance results of LNRLMI by using 2‐fold, 5‐
fold, 10‐fold cross validation

F I G U R E  3   Performance results of LNRLMI by using bipartite 
network and single‐layer network
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and	sequence‐based	similarity,	 respectively.	The	best	performance	
was	achieved	at	AUC	of	0.8980	 (function‐based	similarity),	0.9007	
(sequence‐based	 similarity)	 and	 0.9009	 (expression	 profile‐based	
similarity). By using expression profile‐based similarity, it reached the 
lowest standard deviation that demonstrate the better stability. All 
the	results	were	shown	in	Table	1.	From	all	results,	the	performance	
among three types of similarities were close, which releases that the 
model might make full use of the side information.

The results yielded by respectively using three kinds of similarity 
showed that the side information was helpful to yield a better result.

3.4 | Comparison with different prediction methods

To evaluate the performance of our proposed method, we compared 
it with current state‐of‐the‐art computational methods based on the 
same similarities of lncRNA and miRNA (see Table 2). KATZ measure, a 
graph‐based computational method, is proposed to solve link prediction 
problem by computing similarities between nodes and is widely used in 
social network and biological network. As such prediction task can be 
tackled	by	using	matrix	 completion	method,	 LFM	was	 implemented.	
We	 also	 compared	 our	 proposed	 method	 with	 the‐state‐of‐the‐art	
methods such as EPLMI and INLMI that were previously developed for 
predicting	lncRNA‐miRNA	interactions.	As	the	first	effective	technique	
to predict potential links in the bipartite graph, EPLMI combined two 
outputs that were based on lncRNA and miRNA by using the two‐way 
diffusion method. INLMI integrated expression profile‐based similarity 
and	sequence‐based	similarity	and	employed	NFM	method	and	two‐
way diffusion method to obtain the prediction results.

As	a	result,	LNRLMI	model	yielded	the	highest	AUC	among	other	
five methods when using 5‐fold cross validation. INLMI, EPLMI, KATZ 
and	LFM	yielded	AUCs	of	0.8517,	0.8402,	0.7435	and	0.8257,	 re‐
spectively.	With	 comparison	 to	 other	 algorithms,	 LNRLMI	 is	 con‐
sidered as a reliable and promising tool to predict lncRNA‐miRNA 
interactions on a large scale.

3.5 | Sensitivity to hyper‐parameter

Our proposed method has one hyper‐parameter α, where α can bal‐
ance	two	factors	 in	solving	optimization	problem.	We	studied	the	

sensitivity of α by ranging it from 0.006 to 0.04 at an interval of 
0.002.	We	 tested	 the	 performance	by	 implementing	 each	 experi‐
ment at different parameter α for 20 times. As a result, the highest 
AUC	was	yielded,	when	α was 0.018. To search the best parameter, 
α	of	0.017	and	0.019	were	also	tested.	From	Figure	4,	the	best	per‐
formance was achieved with α	 of	0.018.	The	box	plot	 in	Figure	4	
shows	that	the	distribution	of	AUC	is	on	a	bell‐shape	curve,	which	
demonstrates that the proposed model could be easily optimized. 
In addition, the prediction performance tends to be stable with 
AUCs	of	around	0.895	when	α increases up to 0.014. Therefore, we 
consider the proposed model is robust to the setting of hyper‐pa‐
rameter, which is important for its application on various and large 
datasets.

4  | DISCUSSION

In this work, we aimed to develop a robust method to investigate 
into the potential lncRNA‐miRNA interaction from the current lim‐
ited	data.	First,	we	constructed	a	bipartite	network	by	combining	
known lncRNA‐miRNA interaction network as well as expression 
profiles‐based similarities of lncRNA and miRNA via PPC method. 
Then, LNRLMI prediction model was built to predict potential in‐
teractions between lncRNAs and miRNAs, based on the linear 
neighbour representation of complex network. In order to validate 
the effectiveness and reliability, we implemented k‐fold cross vali‐
dation and compared it with recent state‐of‐the‐art methods. As 
a	 result,	 our	 proposed	method	yielded	 the	highest	AUC	 score	of	
0.8999 in 5‐fold cross validation among five methods. In addition, 
we also implemented 2‐fold cross validation and 10‐fold cross vali‐
dation that demonstrated that our proposed method could yield a 
better result if a larger number of training samples are introduced 
into the model.

We	 anticipate	 that	 LNRLMI	 can	 offer	 great	 insights	 into	 the	
mechanism of ceRNA regulation networks that lncRNA and 
miRNA are involved in. Different from traditional prediction tools 
that focus on binding sites, LNRLMI are only based on the network 
structure of lncRNA‐miRNA interactions with node attributes. As 
we correspondingly defined the model as a semi‐supervised one, 

ncRNA similarity 2‐fold CV result 5‐fold CV result 10‐fold CV result

Expression profile‐based 0.8475	±	0.0032 0.8960	±	0.0015 0.9069	±	0.0014

Sequence‐based 0.8522	±	0.0034 0.8970 ± 0.0017 0.9070 ± 0.0017

Function‐based 0.8523 ± 0.0032 0.8940	±	0.0019 0.9039	±	0.0016

The	highest	AUCs	of	k‐fold	CV	by	using	different	kind	of	similarity	is	in	bold

TA B L E  1   Performance comparison 
among different kinds of similarity with 
regards	to	AUC	values

TA B L E  2   Performance comparison among different methods

Method KATZ42 LFM43 EPLMI39 INLMI40 LNRLMI

AUC 0.7439	±	0.0017 0.8253	±	0.0024 0.8447	±	0.0017 0.8517 0.8960 ± 0.0015

Compared	with	different	prediction	methods,	our	proposed	method	achieved	the	highest	AUC	that	is	shown	in	bold



     |  7WONG et al.

it is to fill the matrix with prediction scores for all lncRNA‐miRNA 
pair candidate and doesn't need any negative sample. In the pro‐
cess of LNRLMI, the interaction possibility between lncRNAs and 
miRNAs can be yielded by using the expression similarity of ln‐
cRNA and miRNA in one‐shot, which is more effective than the 
former method.

In the experimental comparisons, there are some points that 
should be noted: (a) using a bipartite network can perform better 
than using a single known interaction network, which demonstrates 
the side information is meaningful in the prediction model; (b) in cross 
validation experiments, more data on lncRNA‐miRNA interactions for 
training can yield a better performance, demonstrating that the more 
precise result can be obtained by offering more complete network; 
(c)	By	using	different	types	of	similarity,	the	AUCs	were	close,	which	
demonstrated that the constructed model made full use of the side 
information and reached the best performance. (d) Compared with the 
exiting methods that EMPLMI and INLMI employed two‐way diffusion 
without considering weighting, LNRLMI is more effective and reliable 
to yield prediction results of lncRNA‐miRNA interactions by using the 
bipartite network that combines the expression similarities of lncRNA 
and miRNA as well as the known lncRNA‐miRNA interaction network.

Even though LNRLMI is effective and reliable as demonstrated 
by the experimental results, some of its limitations should be noted. 
Imbalanced data amounts of sample number for different lncRNA/
miRNA might result in prediction‐bias. Moreover, if lncRNA/miRNA 
are well studied further, better prediction results can be yielded 
owing to a more complete lncRNA‐miRNA interaction network.
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