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ABSTRACT Today, the Internet of Things (IOT) concept is gaining much attention and popularity; The
related technologies as spacesuits and embedded ECG acquisition device is already existed. However, there
are important issues to be resolved when an application is in a space environment. The ECG signal may be
measured by different mobile conditions when embedded in spacesuits, requiring a more robust algorithm
to remove exercise and noise issues. Thus, we propose a more complete architecture with a new storing
polymorphic average template (SPAT) and a multistage identification algorithm (MIA) to improve the
robustness of ECG identification in motion. In addition, we select better combinations of de-noising and
feature extractions to create a better and more complete architecture. According to our experimental results,
our proposed architecture offers better performance than previous adaptive boosting (AdaBoost) methods;

thus, it is also suitable for application in astronaut spacesuits.

INDEX TERMS ECG signal, multistage identification algorithm, storing polymorphic average template,

spacesuit, MIT-BIH database.

I. INTRODUCTION

In medical settings, ECG can be used in the diagnosis of
health conditions, and ECG identification combined with
diagnosis is a very promising direction. The ECG signal
waveform is related to an individual’s heart structure and
characteristics of the body; everyone ECG signal is different
and not easy to be imitated and hacked. In addition, the col-
lection of ECG signals is convenient and related hardware
costs are not prohibitive. ECG signals can also be used to
enhance other biometric security measures by enabling more
robust biometric features, in turn providing a significant
improvement in the identification accuracy and preventing
duplication and forgery.

With the advance of space technology, the pace of space
exploration will gather speed. Thousands of astronauts
will go beyond earth to explore unknown phenomena for
mankind. Therefore, it is worth investing more effort in the
production of spacesuits to protect astronauts. Spacesuits
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worn by astronauts are expensive high-tech products which
can help them in adapting to the space environment and
accomplish various space missions. Generally, spacesuits are
embedded with various sensors for health monitoring and
identification of security for astronauts, including an ECG
sensor. However, identification technology with mobile ECG
signals poses a challenge in terms of developing wearable
devices for spacesuits, which is the major research issue in
this paper.

At present, most of the existing ECG identification algo-
rithms are based on standard medical monitoring equipment,
providing high precision and requiring individuals to lie qui-
etly, as well as making the collection of good ECG sig-
nals relatively easily. As a wearable device in a spacesuit is
usually in a state of motion, collecting ECG signals would
experience interference or deformation. Therefore, collect-
ing ECG signals from astronauts requires a more robust
algorithm.

From the general literature on ECG identification, we have
investigated the topic from three aspects: (1) signal prepro-
cessing, (2) feature extraction and (3) matching identification.
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Fig. 1 is a classification tree which shows the related algo-
rithm for ECG identification.
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FIGURE 1. Classification tree for the ECG identification algorithm.

According to the above classification tree, we can see that
signal preprocessing mainly deals with the noise from various
ECG signals in order to provide clear and accurate data sig-
nals in the feature extraction phase. An ECG signal has three
common sources of noise: baseline drift, power frequency
interference and EMG interference. While observing the use-
ful signal in ECG and the noise spectrum distribution, we
can find that the baseline drift is in the low-frequency band,
while the frequency interference is in the high-frequency
band. Israel ez al. [1] argues that the noise generated by 60 Hz
electrical noise and the baseline offset potential of 0.06 Hz
is easily recognizable. The author used a 2-40 Hz band-pass
filter to filter out noise at 0.06 Hz and 60 Hz while retaining
useful ECG signals between 1.10 Hz and 40 Hz. The EMG
interference spectrum covers the entire ECG signal. The elim-
ination of myoelectric interference involves a certain degree
of difficulty. Many researchers have made attempts to elim-
inate ECG noise. Kabir and Shahnaz [2] combines Wavelet
transform with an EMD algorithm. Palanisamy et al. [3] used
three kinds of Wavelet function, i.e., “db4’, “coif5” and
“sym7”, in a four-threshold selection method for ECG signal
de-noising. Zhao et al. [4] divided the de-noising process
into two steps. First, the trend is used to eliminate the base-
line drift. Then, the signal is subjected to a three-layer bi-
orthogonal spline of Wavelet transform, with the maximum
and minimum threshold method used to filter the noise.

Related work on feature extraction has primarily involved
the extraction of the only attribute of the ECG signal which
distinguishes it from others. The main features of extraction
algorithms include wave detection and waveform transform.
Waveform detection methods typically extract the charac-
teristic attributes of some important waveforms in the ECG
signal waveform, such as the starting and ending position,
amplitude, slope and area. The QRS complex is the most
prominent waveform in the ECG signal. Traditional QRS
wave detection, proposed by Pan and Tompkins [5], is the
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classic differential threshold method. Firstly, the ECG signal
is preprocessed in order to eliminate some of the noise and
offset, after which some degree of nonlinear transformation
is applied to highlight the shape of the QRS waveform,
such as a square. Finally, the QRS wave position is located,
based on the threshold. In turn, researchers have made further
improvements. For example, Chen and Chen [6] improved
the adaptive threshold expression to further increase the
detection accuracy of QRS complexes. Mallat and Hwang [7]
first applied Wavelet transform to detect QRS complexes.
Later, scholars proposed many QRS complex detection meth-
ods based on Wavelet transform. In [8], morphological and
Wavelet transform was fused to locate the QRS wave. This
algorithm has the characteristics of strong anti-interference
ability, high accuracy and short running time. In addition,
some new algorithms are based on other theories [9]-[14].

Waveform transformation methods do not require the
detection of important waveforms and boundary points, but
directly convert a segment of the ECG signal to extract feature
parameters. Plataniotis ef al. [15] proposed the autocorre-
lation/discrete cosine transform algorithm in 2006, with an
identification result of 100%. Coutinho et al. [16] proposed
a Ziv-Merhav cross-analysis algorithm. Hegde et al. [17]
proposed converting a one-dimensional ECG signal into a
two-dimensional image, then performing a random transfor-
mation on the image and calculating the distance of each
row vector in the image, with a final accuracy of 99.85%.
Wang et al. [18] used sparse decomposition to segment the
ECG signal. This method, which does not need to detect
a single heartbeat cycle or test a reference point, achieves
99.48% accuracy on a standard open database.

The matching identification stage analyzes and determines
the category of characteristic parameters. A variety of dis-
tance methods is available to determine the similarity, such
as Euclidean distance, Mahalanobis distance, Gaussian like-
lihood distance and other custom distance methods. In addi-
tion, Shen et al. [19] used dynamic time warping to find a
similar distance between two ECG signals. Among the many
ECG matching and classification methods are CNN [20],
SVM [21], neural networks [22], [23] and other algorithms.

In addition to the above, we have also investigated ECG
applications for astronauts. Some related technologies for
spacesuits with ECG acquisition devices already exist [24].
However, applications of this kind seldom focus on ECG
algorithms. Charvat ef al. [25] combined ECG with other
detecting results to analyze the cardiovascular status of
NASA astronauts. Mccutcheon et al. [26] investigated astro-
nauts’ physiological responses by using ECG signals as an
emergency aid.

Further to the related general ECG research, there are
some aspects which can improve ECG collection in motion,
including removing motion artifacts through sensors or fil-
ters, and improving feature extraction and principal architec-
ture to improve the robustness of motion in ECG. In terms of
sensor improvement methods, two different principles have
been proposed: cancellation of de-noising with a capacitive
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sensor [27] and de-noising motion bias with an accelerator
and gyroscope sensor [28]. In addition, some papers dis-
cuss filters for removing motion bias, such as Wavelet [29],
ICA [30] and feed-forward combined adaptive [31] filters,
which use software-only algorithms to remove noise artifacts.

In conventional ECG research, the topic related to motion
ECG is heart rate estimation: [32] examines multichannel
heart rate estimation, while [33] investigates compressive
sensing used in heart rate estimation. These studies involved
research on heart rate estimation rather than on how to
solve the problem of identification at different heart rates.
Further, applying the overall optimization of the algorithm
and architecture for motion ECG, one study has considered
DWT filter, PCA and BP neural network recognition [34],
but its algorithm and architecture are quite different to
ours.

In this paper, we propose a more complete integration
architecture, along with a selection of improved algorithms
and proposed new methods. Our contribution is summarized
as follows:

1. We carry out experiments to find a better combination
of algorithms for de-noising filter and feature extraction,
although they are relatively mature in ECG processing.

2. We propose the SPAT method to improve the problem of
heart rate change.

3. We also propose MIA to enhance robustness, as it is
more suitable than the AdaBoost algorithm given the limited
scope of ECG data.

In ECG research, there are mature algorithms including
signal preprocessing, feature extraction and feature matching.
However, for an ECG application in a spacesuit, the signals
are usually collected in motion, and the comprehensive archi-
tecture and robust algorithm are highly demanding. The iden-
tification algorithm is faced with the challenge of signal noise
and heart rate change. Therefore, this research is intended to
improve the robustness of ECG identification for astronaut
spacesuits.

The rest of this paper is organized as follows. The methods
and architecture are presented in Section 2. Experimental
results and algorithm comparisons are illustrated in Section 3.
The application and hardware are set out in Section 4. A dis-
cussion is given in Section 5. Finally, a conclusion is made in
Section 6.

Il. BIOMETRIC-BASED DIGITAL WATERMARKING
ALGORITHM

For astronaut spacesuits with IOT applications, our proposed
method can be divided into four steps, which includes the
selection of two combination algorithms in Step 1 and Step 4,
and two new improved algorithms in Step 2 and Step 3,
as follows:

e Step 1. Signal de-noising: We have carried out many
experiments and selected a better combination of ECG
de-noising algorithms.

e Step 2. Heart rate variability reduction: We propose the
SPAT method for reducing exercise issues and finding a
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better detection and positioning of ORS complex waves
to improve the performance of the SPAT.

e Step 3. MIA: MIA can cascade each weak classifier
into a strong classifier. It is also better able to fuse
multiple features to multistage architecture.

e Step 4. Feature extraction algorithm: We have carried
out many experiments to select the most suitable com-
bination of feature extractions for the corresponding
stage in the multistage algorithm.

A. SIGNAL DE-NOISING

A variety of noises will be mixed with ECG signals dur-
ing their collection, especially in the case of portable chip
acquisition devices. These noises greatly affect the accuracy
of identification. Common ECG noises mainly contain base-
line drift, power frequency interference and EMG interfer-
ence. Noise and the corresponding de-noising algorithm are
described in detail below.

1) POWER LINE INTERFERENCE

50-Hz power line interference is generated by electromag-
netic radiation and electromagnetic coupling. In the course
of research, we found that, regardless of hardware settings or
software filters, there are several mature and effective ways
to remove power line interference. In this paper, the notch
filter [35] and Butterworth band-stop filter are proposed for
the removal of 50-Hz power line noise, and the de-noising
results are compared. Notch filter is a filter that can rapidly
attenuate the input ECG signal at a certain frequency point in
order to achieve the filtering effect that selectively rejects a
portion of the spectrum. An adaptive notch filter is a system
with a notch filter that has a transfer function controlled by
variable parameters and a means to adjust those parameters
according to an optimization algorithm.

The adaptive notch filter in consideration is as follows:

l4a 1-28(k)z ! +72
2 1-Bk)(1+a)z7 ! +2772

The coefficients S(k) and o depend on the notch frequency
w, and the 3dB attenuation bandwidth Q2 given that:

B (k) = cos(w,), o= 1o tan/2)
1 4 tan(2/2)
After observing the band diagram of the butterworth band-

stop filter, we can see that the spectrum curve in this filter
passband is smooth and aligned with the reference line, while
the curve in the stopband is slowly reduced to 0. The passband
cutoff lower-limit frequency of the band rejection filter is set
at 49Hz and the upper limit frequency is 51Hz. The equation
for the butterworth principle is as follows:

H(z) = ey

@)

s 1 1
|H ()" = = 3)
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4

where: n = filter order; w. = cutoff frequency; w, = passband
edge frequency.
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2) EMG INTERFERENCE

The frequency range of EMG interference is 5~2,000Hz,
which is completely overlapped with the spectrum of useful
ECG signals. Noise and the useful signal in the Wavelet
domain are different. With the increase in the Wavelet decom-
position scale, the noise energy becomes smaller and smaller;
however, the energy distribution of the original signal is
concentrated at the critical position of the signal mutation
and does not weaken with the increase in the decomposition
scale [36]. This provides a theoretical basis for using the
Wavelet coefficient threshold de-noising algorithm to remove
EMG interference. The Wavelet threshold de-noising flow
chart is shown in Fig. 2.

- Zeroing or -
Wavelet shrinking wavelet Wavelet
decomposition S reconstruction
coefficients
\ \

= s

Original signal Signal after denoising

FIGURE 2. Wavelet threshold de-noising flow chart.

The Wavelet threshold de-noising algorithm involves the
following:

o Decompose the multi-layer Wavelet of the ECG signal

to obtain Wavelet coefficients on different scales.

o Shrink the Wavelet coefficients or adjust them to

0 according to the threshold.
o Multiscale reconstruction of the Wavelet coefficient
after being shrunken or adjusted to 0.

In this experiment, the signal is decomposed by three
layers, with the detail coefficient of the signal extracted
at the scale of 1, 2 and 3. The extracted detail coefficient
should be disposed after the threshold is estimated. Com-
mon threshold selection rules include the Stein unbiased
likelihood estimation threshold, the fixed criterion threshold,
the heuristic criterion threshold and the minimum-maximum
criterion threshold. Throughout the experiment, we found
that different threshold selection strategies have little effect
on eliminating the signal-to-noise ratio (SNR) of the signals
before and after EMG interference. Thus, we choose the Stein
unbiased likelihood estimation threshold for the ECG signals
in the self-acquisition database. The mother Wavelet func-
tion chooses db8 [37]. Finally, the processed Wavelet coef-
ficients are reconstructed to remove the influence of EMG
interference.

3) BASELINE DRIFT
The movement of the human body will cause a baseline drift
in the ECG signal during the acquisition process of ECG
data using a portable device. The baseline offset belongs to
low-frequency interference [38], whose spectrum is generally
below 0.5 Hz. The baseline drift signal is shown in Fig. 3.
After the original ECG signal is subjected to multi-layer
Wavelet decomposition, the baseline drift is filtered in the
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FIGURE 3. ECG signal before and after removing baseline drift.

low-frequency component. Zeroing the low-frequency com-
ponent of the baseline drift can remove baseline drift in the
Wavelet domain. We also select the mobile window median
filter method to remove the baseline drift [39] by comparison
with the SNR and the root-mean-square error (RMSE) in
order to choose which is optimal.

4) COMBINATION OF DE-NOISING ALGORITHMS

SNR and RMSE are two commonly used criteria for mea-
suring noise reduction. SNR reflects the proportional rela-
tionship between noise and the true signal. The larger the
value, the smaller the proportion of the noise energy to the
overall signal energy. RMSE represents the amount of devi-
ation between the observed value and the true value. The
smaller the RMSE, the smaller the distortion rate of the signal
before and after de-noising. Table 1 shows the performance
comparison using the combination of de-noising algorithms
described above.

TABLE 1. Comparison of different de-noising algorithms combination.

Combination of de-noising SNR RMSE
algorithms
Wavelet threshold de-
noising + wavelet
reconstruction de-noising +
notch filter
Wavelet threshold de-
noising + moving window
median filter + notch filter
Wavelet threshold de-
noising + wavelet
reconstruction de-noising +
Butterworth band-stop filter
Wavelet threshold de-
noising + moving window
median filter + Butterworth
band-stop filter

82.253 9.66E-04

89.9935 0.0076

78.736 2.37E-04

79.4153 2.32E-04

According to the de-noising experiment, we choose a better
combination of filter algorithms. The combination of the
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Wavelet threshold of de-noising, the moving window median
filter and the Butterworth band-stop filter is better when com-
pared with the SNR and RMSE values in Table 1; therefore,
this combination is adopted as the de-noising scheme.

B. HEART RATE VARIABILITY REDUCTION

As ECG signals, based on the motion problem, cause heart
rate variability to be large, we take a series of measures
to enhance the robustness of the algorithm. The following
describes the storing polymorphic average template, QRS
complex wave detection and positioning, and fractional sam-
pling rate conversion.

1) STORING POLYMORPHIC AVERAGE TEMPLATE (SPAT)
The problem of movement is a challenge for ECG in real life,
because the individual cannot always be in a state of calm
during the acquisition process. If a person slightly moves or
is faced with great emotional ups and downs, his/her heart
rate will be significantly accelerated. Therefore, the time-
domain period of the ECG waveform will become shorter,
and its amplitude will cause tensile deformation in the vertical
direction. Fig. 4 shows the ECG signal waveform acquired by
the subjects in a quiet state and after motion. We can see that
the single cycle length of the ECG waveform in the motion
state is shorter than in the quiet state; further, the T wave
amplitude is larger than in the quiet state.

ST

0 500 1000 1500

1

05

0

-05

1 T T
0S5 4
0 4
-0.5 L L
0 500 1000 1500

FIGURE 4. ECG waveform comparison between exercise state and clam
state.

In this paper, the SPAT optimization method is used to
solve the problem of heart rate variability caused by exercise.
The heart rate of normal adults is in the 60~100 bpm range,
while the exercise heart rate of normal people is 170 bpm
on average. In this experiment, in order to cover the extreme
heartbeat range, ECG data within the range of 50~140 bpm
were selected. Then, those selected ECG data were divided
by 10 bpm, 5 bpm and 2 bpm for storage in the corresponding
template. At the time of testing, the process involves finding
the closet template for each single heartbeat cycle and to make
a comparison. Fig. 5 is a graphical representation of how the
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FIGURE 5. Process of storing polymorphic average templates.

polymorphic average templates are stored, as well as how
their similarity is calculated.

The specific steps for the SPAT and comparison processes
are as follows:

« Divide the ECG signal into a single heartbeat cycle using
T wave detection and calculate the heart rate of each
single heartbeat cycle according to equation (4).

sample_rate
len0

where: sample_rate = sampling frequency; len0 = single
heartbeat cycle length.

HeartRate = 60 4

o After the segmentation step, all the single heartbeat
cycles are classified according to the heart rate range
[50,50 + interval, 50 + 2 x interval, ..., 140] (bpm),
where: interval = heart rate interval of 10 bpm,
Sbpm and 2 bpm. The classification result is[Datas,
Dataso+ interval» Datasot2xintervals - - - yDataol.

« Calculate the average value of each column in the single
heartbeat cycle which is well classified. A polymorphic
average template for the corresponding range of heart-
beats is obtained. The process is shown in equation (5).

1
Template (i) = —

>, Datai (k) 5)

e For each single heartbeat cycle in the training set and
test set, find the template closest to its corresponding
heart rate in the polymorphic template and calculate
their similarity.

2) DETECTION AND POSITIONING OF ORS COMPLEX WAVES
With the aim of storing the polymorphic template storage
algorithm, we must separate each single heartbeat cycle and
split the single heartbeat cycle for R wave reference point
detection. In addition, the extraction of waveform features
also needs to detect the location of QRS complex waves.
We know from the above research that the difference of
threshold method is simple and effective. Here, we use the
Pan and Tompkins algorithm [5] to perform R wave detection
on the demagnetized ECG signal. A detailed flow chart of the
algorithm is shown in Fig. 6.
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FIGURE 6. Flow chart of the Pan and Tompkins algorithm.

The basic steps of the Pan and Tompkins algorithm are as

follows:

e Low-pass filter: The low-pass filter in the Pan and
Tompkins algorithm is the integral coefficient, which
can reduce the computational complexity according to
equation (6):

1 —76)?

picy—T 6)

e High-pass filter: The role of the high-pass filter in the
Pan and Tompkins algorithm is to filter out the baseline
drift according to equation (7):

—16 L (1- 1732)
32 (1 — z_l)

o Derivative filter: The derivative filter in the Pan and
Tompkins algorithm eliminates the input DC component
and enhances the slope of the P wave, T wave and QRS
waves. The transfer function is shown in equation (8):

Hpp (2) =2 (7

H() = é (2 T L 2z—4) ®)

o Square filter: The effect of the square filter is to make the
sample value into an integer, highlighting the Q wave
and S wave. The relationship between the output and
input of the square filter is given by equation (9):

y (n) = x* (n) 9)

o Integral filter: Set N as 60. The relationship between
the output y(n) of the integral filter and the input x(n)
is given by equation (10):

1
Y=Y xi— (N =) (10)

Both the QRS waves of the ECG signal in the
self-acquisition database and the standard database were
detected by the Pan and Tompkins algorithm. The positioning
results are shown in Fig. 7.

3) FRACTIONAL SAMPLING RATE CONVERSION

During exercise, the heart rate becomes larger and the time-
domain period of the ECG signal becomes shorter. Moreover,
the amplitude and the time interval of the waveform are
deformed and compressed. When using polymorphic tem-
plate optimization, a similar distance is calculated for each
single heartbeat cycle in order to find the template closest
to the respective heart rate. Therefore, we use the fractional
sampling rate conversion method in order to convert the
length of two ECG data into one, which will improve the
identification algorithm classification rate.
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Fig. 8 shows the A/B time process in the sample rate
conversion, which input the x(7) signal sequence with B time
interpolation to output w(7?>), a transform function h(k) may
also be applied to obtain different domain signal sequence
v(T>). Finally, sequence v(T3) can be extracted as sampling
frequencies of fractional times y(73).

C. MULTISTAGE IDENTIFICATION ALGORITHM (MIA)
Feature fusion can enhance the classification ability of the
whole system, and the fusion feature will have the advantage
of strong complementarity and low redundancy [40]. The
MIA flow chart is shown in Fig. 9.

The main idea behind the algorithm is as follows. First,
we divide the ECG signal database into a training database
and a testing database. Regardless of whether the assumption
produced by the first-stage classification result is strong or
weak, the identified sample weight is set to 0, and the unrec-
ognized sample can continue to be input to the second-stage
identification process. The feature space is transformed in
the second stage, with samples that cannot be identified
in the first stage determined according to which individual
category they belong from another angle of the eigenvalue.
The last stage contains the final classification result and the
total misidentification of samples. The pseudo-codes for MIA
are shown in Algorithm 1, where: FeatureExtraction() =
corresponding feature extraction function for each stage;
Feature_i_stage() = classification function in MIA; N =
number of stages of this architecture; Train = correspond-
ing training function for each stage; Best_thre_i = optimal
threshold for a single stage.

The MIA can cascade each weak classifier into a strong
classifier. Each feature parameter is able to analyze the char-
acteristics of ECG data from different angles, meaning that
the classifier can achieve high identification accuracy. Since
the identification process and feature vectors of each stage are
independent of each other, the final identification accuracy of
the MIA can be expressed by equation (11):

Ry=1-(0—=-rd—=r)--- (I =rp1) Y

where:r; = identification accuracy of each stage. We can
obtain equation (12) from equation (11).

lim Ry= 1 (12)

n—o0

(a (b)

FIGURE 7. ECG signal QRS positioning: (a) QRS positioning in the
self-acquisition database; (b) QRS positioning in the standard database.
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FIGURE 8. Fractional sampling frequency conversion diagram.
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FIGURE 9. MIA flow chart.

The above equation shows us that, when we infinitely
increase the number of stages of the MIA, the final identifi-
cation accuracy can reach 1, which is unrealistic in the actual
application, because it must be at the expense of high time
complexity. But, for the ECG single-lead one-dimensional
signal, the feature extraction algorithm is relatively simple.
As such, we can experimentally obtain an MIA within the
acceptable range of time complexity.

Algorithm 1 ECG MIA
1: Feature_i_train <— FeatureExtraction(trainingData)
2: Feature_i_test < FeatureExtraction(testingData)

: Best_thre_i < 0

:forifrom1toN

: Best_thre_i < train(Feature_i_train)

:end

7: ErrorSample < Feature_i_test

8: for ifrom 1to N

9: ErrorSample < Feature_i_stage(ErrorSample,
Best_thre_i)

10: end

11: Recog <— 1 — ErrorSample/testingData

QAW

D. FEATURE EXTRACTION ALGORITHM

We know from the above MIA that, theoretically, with the
increase in the number of stages, the identification accuracy
will reach 100%; but, taking into account time complexity
and spatial complexity, we choose three simple and effective
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feature extraction algorithms: Wavelet coefficients, reduced
binary pattern (RBP) statistics and waveform characteristics.
Statistical features and waveform characteristics, based on
the RBP algorithm, can come from the time domain, Wavelet
domain and statistical characteristics of three angles in order
to measure the ECG data. We then adjust and compare the
parameters.

1) WAVELET COEFFICIENT CHARACTERISTICS

The k-nearest neighbor (k-NN) classifier is a statistics-based
tool. The main goal is to find the k-most similar sample
from the test sample and to determine the type of test sam-
ple based on the sample type. The similarities among the
samples are measured by the Euclidean distance where the
distance means the difference. Many studies have used NN or
k-NN as their classifier in ECG identification systems, such
as [8], [16], [19], [20].

We first detect and position the QRS wave, then divide each
single heartbeat cycle. The EMG signals are decomposed into
three stages in five cycles, and the obtained detail coefficients
CD; ~ CDs3 and approximate coefficients CAz are taken
as eigenvectors. We respectively calculate the correlation
coefficient of these feature vectors so as to obtain a similar
distance between the signal with their own, and with others.
The three-stage Wavelet decomposition of ECG signals is
shown in Fig. 10.

T Raw data l

A \ D,

2

T

CAy D,

FIGURE 10. Wavelet decomposition of the ECG signal.

2) RBP STATISTICAL CHARACTERISTICS

The RBP algorithm extracts statistical characteristics of local
ECG signals [41]. The two successive sample points in the
ECG data are treated as a sample pair. We count local char-
acteristics by analyzing the ups and downs of the sample
pair. More specifically, when the sample pair is incremented,
the sample pair is labelled as 1; when the sample pair is decre-
mented, the sample pair is labelled as 0. The transformation
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function is shown in equation (13).

]’
yi = {0’

This part of the ECG data will be converted to a 0,
1 sequence, then converted into decimal numbers. If we
integrate P bits into decimal numbers, the range of decimal
numbers will be 0 ~ 2F. We count the number and probability
of each decimal number, and use this information as a feature
vector to input to the classification algorithm.

ECG data from self-acquisition databases possess much
noise and mutated waveforms. When the sampling frequency
is high, the smoothness of the ECG signal waveform is not
enough. Further, local statistical characteristics of adjacent
sample pairs have some limitations. In turn, the character-
ization effect is not obvious and should be improved. The
specific improvement is being able to collect a sample pair
from several samples instead of counting adjacent samples
by equation (14).

Xitl > Xi (13)
Xitl = X

L, Xitintervel > Xi
yi = (14)
0, Xitintervel < Xi

where: X is the sampling interval for the sample pair. Exper-
iments show that this improved algorithm offers certain
improvements to the MIA. The MIA results, from using
different interval values, are shown in Fig. 11.

—4—RBP single-layer identification ——Multi-layer identification
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FIGURE 11. Effects of different interval on RBP algorithm identification
results.

We observe that, as the interval increases, the identifica-
tion accuracy increases first and then decreases; and, at the
time when interval = 5, the CRR increases significantly
to 97.92%. Before analyzing and explaining the reason why
this situation occurs, we need to describe the calculation
equation for the degree of similarity following RBP statistical
feature extraction. The similarity function [35] is shown in
equation (15).

b Zieo' IRi 0%0) = Rowi)| p1 0wi)p1 ()

. (15)
Qm—1) it prwiop1(we)
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where: p1 (wr) , p1(wr) = probability of the occurrence for
each decimal integer, respectively; Ry (wy) , Ro(wg) = rank-
ing of p1 (i), p1(wx); m = how many bits of binary num-
bers are integrated into a decimal; wy = integrated decimal
number.

After calculating the similarity of the statistical features,
we found that, when interval = 5, the similarity has many
ranking values. But, when inferval < 3, ranking values
almost do not appear. As ranking values lead to fake features,
which should increase the identification accuracy, we chose
interval = 3.

3) WAVEFORM CHARACTERISTICS

Compared with the ECG signal measured by a medical
device, the ECG signal waveform in the self-acquisition
database is not stable enough. The P wave, T wave and U
wave are all distorted except for the QRS complex wave,
while the detection error is too large. Therefore, we extracted
only eight QRS complex wave-related waveform features:
time interval characteristics (RQ, RS, QS), amplitude charac-
teristics (ampRQ, ampRS), slope (RS_slope, QR _slope), and
area (QRSarea).

In addition, we take all of the single-heartbeat cycle data
as the overall appearance feature vector. Based on the char-
acteristics of the ECG data from the self-acquisition database,
wave feature extraction accuracy may not be enough. More-
over, the waveform feature also belongs to the time domain’s
appearance. Hence, we add the overall appearance of the
characteristics as a contrast in order to observe which exterior
characteristics of the identification effect are good.

llIl. ALGORITHM DESIGN

A. THRESHOLD SELECTION

The one-to-one identification mode is used here to confirm
whether the user’s claimed identity matches his or her iden-
tity. During the feature matching process, it is necessary to
set a certain threshold for identification. The two threshold
selection strategies employed in this paper are described in
detail below.

The first strategy is known the scale factor training method.
Firstly, we find two subjects’ similarity with their own
X (n) and their own similarity with others Y (n), then obtain
the mean and variance of X(n) using equation (16) and
equation (17).

1 n )
Mean = — D X0 (16)
1 n . 5
Var = ~ Zi:l (X (i) —Mean) (17)
Thus, the threshold can be obtained by equation (18).
threshold (i) = Mean +j x Var, i=1,...,k (18)

Where: j = scale factor; k = range of scale factor. By adjust-
ing the scale factor, we can obtain a series of thresholds. In
the training process, we compare X(n) and Y (n) with this
series of thresholds. If x is less than the threshold, then the
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classification is wrong; if y is greater than the threshold, the
classification is also considered to be wrong. Accordingly,
we can calculate the false rejection rate (FRR) and the false
acceptance rate (FAR) corresponding to each value. Further,
the threshold corresponding to the smallest sum of the FRR
and FAR is the best threshold for training.

The second strategy is known as the method of minimum
similarity. First, we find subjects’ similarity with their own
X(n) and their own similarity with others Y (n), then select
the minimum value to determine the threshold. The selected
equation is shown in equation (19).

threshold = min (X (n)) 19)

These two threshold selection strategies apply to the
database in the case of different characteristics and different
occasions, respectively. The specific experimental compari-
son results will be given by the following specific algorithm.

B. PERFORMANCE METRICS

This paper takes the false rejection rate (FRR) and the false
acceptance (FAR) as the system’s identification accuracy
metrics. FRR represents the probability of misjudging their
own ECG data in others, FAR indicates the probability that
others’ ECG data are misjudged as their own. We use the
equation (20) below to obtain the correct classification rate
(CRR) as the final identification accuracy.

CRR = 1 — (FAR + FRR/2) (20)

The relationship between them is shown in Fig. 12.

FRR
FAR FRR FAR

Threshold

FIGURE 12. Relationship between FRR and FRR.

C. EXPERIMENTAL DATA DESCRIPTION

We used a portable device to collect ECG signals from
12 individuals in a quiet state, and ECG signals from the same
12 individuals after running 4 mins at a speed of 6 km/h
on a treadmill. We collected over a period of 2 mins in
both motion and quiet states. The sampling frequency was
500 Hz. The device was connected to a PC via a micro USB
in order to collect ECG data from a finger-type collection
terminal. The collected ECG data were stored on the PC. ECG
signals from the MIT-BIH ST Change database were used
as comparison data. This database contains 28 individuals’
ECG signals, the sampling frequency of which is 360 Hz.
Most of them were tested after exercise. Each individual’s
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heart rate fluctuates in a certain range. We selected 23 indi-
viduals’ ECG signals as contrastive data based on the motion
problem algorithm. Contrasting the experimental results of
the two kinds of database should reflect the robustness of the
proposed algorithm.

D. COMPARISON OF SPAT OPTIMIZATION

In order to solve the problem that the heart rate variability
when collecting individuals’ ECG signals is significant after
exercise, we applied the SPAT to optimize those heart rate
data. More specifically, we extracted each single cycle of
heartbeat in the training data and classified these ECGs every
10 bpm, 5 bpm and 2 bpm within the heart rate range of
50~140 bpm, then averaged the periodic cycles to obtain
the polymorphic average template. During the training and
testing process, the distance between the extracted feature
vectors was calculated for each single ECG to find the tem-
plate closest to the corresponding heart rate. Finally, these
distances were used as the input for the MIA in order to obtain
the identification accuracy.

The cross-validation algorithm is used for ECG signals
without polymorphic average template optimization. Their
own distance with their own X (i) and the distance with others
Y (i) can be acquired by the cross-validation algorithm. ECG
data are divided into SN groups, with each group having one
sampling cycle. There will be a SN — 1 time comparison with
ECG signals from the same individual, and a(PN — 1) x SN
time comparison between different individuals’ ECG signals,
where: PN = number of individuals. The corresponding
equations are shown below.

1
X (i) = d .’ .
0 =<y _71 > d ()
i=1,...,SN; jcotherNj#i 1)
. 1 1 SN PN-—1 .
Y(l)— m*S—N E kel E el dm (l, k) k € other

(22)

Fig. 13 presents a comparison of the experimental results of
the MIA in the self-acquisition database for the optimization
of the SPAT.

According to Fig. 13, for self-acquisition database I, the
accuracy will be 1~6% higher after using polymorphic aver-
age template optimization. The MIA with waveform features,
Wavelet coefficients and RBP statistical features is better than
the MIA with overall appearance features, Wavelet features
and RBP statistical features, regardless of whether it is opti-
mized. For the polymorphic average template with a heart
rate interval of 10 bpm, the best identification accuracy after
optimization is 97.92%.

For self-acquisition database II, the cross-validation
method is more efficient than polymorphic average template
optimization. We compare the classification results of the sin-
gle classification algorithm, which uses cross validation with
the polymorphic average template and analyze the reason for
these results. From the above, we know that the results of the
MIA have a relationship with the attribute characterization of
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FIGURE 13. MIA comparison of the SPAT and cross validation test results:
(a) self-acquisition database I; (b) self-acquisition database II.

the eigenvectors at each stage. Table 2 and Table 3 present a
comparison of the experimental results.

TABLE 2. Comparison of the single identification algorithm before and
after optimization using self-acquisition database 1.

Algorithms Cross 10 bpm 5 bpm 2 bpm
validation

GlobalShape 0.7604 0.8125 0.875 0.8438

RBP 0.8073 0.6667 0.6458 0.6458

Wavelet 0.7917 0.8333 0.875 0.8438

Waveform 0.7708 0.6667 0.6146 0.5833

According to Table 2, RBP and Waveform (which is sus-
ceptible to mutated waveforms) have a higher classification
of single accuracy than the polymorphic average template.
The reason is that cross validation has some fault tolerance
concerning the mutation waveform, which eliminates the
effect of the mutation waveform on the overall classification
rate to a certain extent. Second, the cross validation process-
ing of RBP and Waveform are, at most, 34% higher than the
SPAT in self-acquisition database II and, at most, 14% in self-
acquisition database I, which also explains why the accuracy
of the cross-validation with MIA is higher than that of the
SPAT with the MIA.
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TABLE 3. Comparison of the single identification algorithm before and
after optimization using self-acquisition database 2 .

Algorithms Cross 10 bpm 5 bpm 2 bpm
validation

GlobalShape 0.7563 0.75 0.825 0.8375

RBP 0.85 0.5125 0.55 0.575

Wavelet 0.7875 0.75 0.8375 0.8625

Waveform 0.8625 0.625 0.6125 0.6875

E. MIA APPLICATION TO COMPARE SELF-ACQUISITION
DATABASE AND STANDARD DATABASE

The previous experimental results show that the optimized
MIA has better identification accuracy in the case of the
self-acquisition database with large changes in heart rate
after exercise. The standard ECG signal in the MIT-BIH
ST Change database is more stable and has less noise than
the waveform of the ECG signal acquired using the mobile
device. We compared the proposed MIA, based on the motion
problem, when applied to the standard database and when
applied to the self-acquisition database. For the test group
and the training group, those two kinds of databases pursued
the same strategy. There were five cycles per group with a
total of 20 groups, of which 16 were treated as training groups
and four were treated as test groups. The scale factor training
method was used to select the best threshold for all groups.
The characteristics of the combination were as follows: wave-
form characteristics, Wavelet coefficient characteristics and
RBP statistical characteristics. Fig. 14 shows the results.

8 Self-acquisition database 1@ Self-acquisition database 2

B Standard database

0.99 0.9837
09792  ——m
0.98

0.91 = 0,953 0.9625
0.96 =

§ 0.95
&)
0.94

0.937

0.93
0.92
0.91

0.9

10bmp Sbmp 2bmp
Heart rate interval of template

FIGURE 14. MIA application to compare the self-acquisition database
and the standard database.

We can see from above Fig. 14 that, when the heart rate
interval of the polymorphic template is 10 bpm, the identi-
fication accuracy of the standard database is higher than that
of the self-acquisition database. However, while the heart rate
interval is 5 bpm and 2 bpm, the CRR of the self-acquisition
database is higher. According to the previous comparison
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of experimental results, the closer the heart rate interval of
the polymorphic template, the smaller the distance between
templates. The MIT-BIH ST Change database has a rela-
tively large heart rate variability compared to other standard
databases. Meanwhile, ECG signals from the self-acquisition
database have a much larger heart rate variability than the
standard database. Hence, the CRR of the self-acquisition
database is higher than that of the standard database when
the heart rate interval is 5 bpm and 2 bpm; however, when
the heart rate interval is 10 bpm, excluding the error factor
of the template, the CRR of the self-acquisition database is
lower. In summary, the proposed MIA, based on the motion
problem, has strong robustness.

F. COMPARISON OF THE SINGLE IDENTIFICATION
ALGORITHM AND THE mia

The feature extraction algorithm used in the MIA can
reflect the characteristics of the ECG signal from different
angles. The Wavelet coefficients reflect the characteristics of
the ECG signals in different frequency domains. The wave-
form features reflect the time-domain space, area and slope
of the ECG signal from the time domain. The RBP algorithm
uses a statistical method to obtain the local detail features
of the ECG waveform. A single-feature extraction algorithm
can only reflect the uniqueness of the ECG signal from a
certain point of view; but the MIA is like an X-ray, as it
measures the feasibility of ECG identification from all angles.
The aim of the so-called single classification algorithm is to
select a single-feature extraction algorithm for identification.
Table 4 presents the experimental results when adopting the
scale factor training method, showing that the accuracy of
the MIA is, at most, 31% higher than that of the single
identification algorithm, while the effect is significant. The
heart rate interval of 5 bpm was selected for Table 4.

TABLE 4. Comparison of the single identification algorithm and the MIA .

Algorithms FAR FRR CRR

RBP 0.25 0.458 0.645
3 8

Global Shape 0 0.25 0.875

Wavelet 0 0.25 0.875

Waveform 0.354 0416 0.614
2 7 6

GlobalShape + Wavelet + 0 0.104  0.947
RBP 2 9

Waveform + Wavelet + 0 0.083 0.958
RBP 3 3

G. COMPARISON OF THE SINGLE-FEATURE AND
MULTIPLE-FEATURE EXTRACTION ALGORITHMS

In this paper, a single-feature extraction algorithm is used
for comparison with the proposed multi-feature extraction
algorithm based on the MIA. We use Wavelet decomposition

111672

for ECG signals, which are decomposed into high-frequency
components and low-frequency components.

The low-frequency components are smoothed, while the
polymorphic templates with different heart rate intervals
are selected for the high-frequency components and the
low-frequency components. As high-frequency components
reflect the details of the characteristics, the heart rate interval
needs to be larger during the choice of polymorphic template.
Meanwhile, as low-frequency components reflect the overall
characteristics, the selected state-of-mind template interval is
smaller. The experimental results concerning the combination
of different templates are shown in Fig. 15.

—o— Self-acquisition database 1 —#—Self-acquisition database 2
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FIGURE 15. Wavelet characteristics of different heart rate intervals.

We can see from Fig. 15 that, after the template with a heart
rate interval of 5 bpm was selected for high-frequency com-
ponents and the template with a heart rate interval of 2 bpm
was selected for low-frequency components, the identifi-
cation accuracy of the self-acquisition database I was up
to 88.86%, which is about 1% higher than that of other
templates. Similarly, after the template with a heart rate
interval of 10 bpm was selected for high-frequency compo-
nents and the template with a heart rate interval of 2 bpm
was selected for low-frequency components, the identifi-
cation accuracy of the self-acquisition database II was up
to 90.4%, which is about 1% higher than that of other
templates.

Table 5 shows the comparison results of the single fea-
ture and the multiple features as the input to the MIA. The
multiple-features MIA is 9% and 5% higher than the single-
feature MIA in those self-acquisition databases I and II,
respectively. The experiments show that, in the MIA, each
stage which transforms the feature space, in order to improve
the final identification accuracy, is effective.

H. COMPARISON OF THRESHOLD SELECTION
STRATEGIES

First, the scale factor training method and the minimum
similarity method are used to select the optimal threshold
for the proposed algorithm. We then compare the results of
the experiment in order to analyze and summarize the appli-
cable data and practical applications of these two strategies.
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TABLE 5. Comparison of single-feature and multiple-feature MiAs .

FAR FRR CRR
Single-feature MIA 0.0455 0.1773 0.8886
Multiple-features 0 0.0417 0.9792

MIA

The experimental results are shown in Fig. 16: (a) and (b)
present a comparison of the two threshold strategies in the
self-acquisition database; (c) is the comparison of the two
threshold strategies in the standard database.
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FIGURE 16. Comparison of threshold selection strategies:
(a) self-acquisition database I; (b) self-acquisition database II;
(c) standard database.

‘We can observe from Fig. 16 that the scale coefficient train-
ing method is higher than the minimum similarity method
in self-acquisition database I, while the minimum similarity
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method is higher than the scale coefficient training method in
both the standard database and self-acquisition database II.
By comparison, we find that, in these two kinds of databases,
the false acceptance rate of the minimum similarity method is
higher than that of the scale coefficient training method, but
the false rejection rate of the scale coefficient training method
is higher than the minimum similarity method. This shows
that, for the same feature extraction algorithm, the same data,
the threshold selected by the minimum similarity is smaller
than that selected by the scale coefficient training method.
We found that data in the standard database and
self-acquisition database IT have less noise, more stable wave-
forms and fewer mutation waveforms. Therefore, their own
distance with their own and their own distance with others
have big differences, while small thresholds can distinguish
these differences. While data in self-acquisition database I
have more noise, a certain degree of distortion in the wave-
form makes it more difficult to extract waveform features.
Therefore, their own distance with their own and their own
distance with others have little difference; further, it is
hard to separate them by using small thresholds. Therefore,
we should select the appropriate threshold selection strategy
for different data characteristics and practical applications.

I. COMPARISON WITH THE AdaBoost ALGORITHM

The AdaBoost algorithm [42] is an iterative algorithm. Each
iterative process will obtain a weak assumption, in which
the weight of wrong identification samples will be increased.
The whole weighted sample is used to train the next weak
classification until the specified number of iterations or a
sufficiently small error rate is reached. The core idea of the
AdaBoost algorithm is to combine weak classifiers as a strong
classifier. The MIA idea proposed in this paper has some
similarities with it. Hence, we compare the experimental
results in order to observe the advantages and disadvantages
of those algorithms.

In this experiment, we take the feature vectors obtained by
the proposed feature extraction algorithm as the input to the
AdaBoost algorithm: Feature = (Waveform; RBP; Wavelet).
The ratio of the training set and the test set is the same as that
of the MIA, with the number of iterations set to one, three,
five, ..., 50; the results are shown in Fig. 17. Thus, when the
number of iterations is greater than eight, the identification
accuracy of growth tends to be gentle. Considering the time
complexity, the number of iterations is set to eight.

When the number of iterations is eight, the experimen-
tal results for the self-acquisition database and the standard
database are shown in Table 6. According to this table,
the CRR of the MIA is 18% and 14% higher than the
AdaBoost algorithm in the self-acquisition database, while
the CRR of the MIA in the standard database is 13% higher
than the AdaBoost algorithm. This is in line with our analysis
of the two databases where the AdaBoost standard database
identification rate is higher than that of the self-acquisition
database. We can find an explanation for this result by
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FIGURE 17. Comparison of the number of iterations.

TABLE 6. Comparison between the AdaBoost algorithm and the MIA.

Self- Self- Standard
acquisition acquisition database
database I database I1

AdaBoost 0.7975 0.817 0.8592
algorithm
MIA 0.9792 0.95 0.9837

analyzing and comparing the AdaBoost algorithm and the
MIA.

First, the AdaBoost algorithm is used to train each eigen-
value in the feature column, before it finds the classifier with
the smallest error rate in all the feature columns, which is
the optimal weak classifier of the current iteration number.
In this paper, we propose an MIA to find the threshold for
minimizing the sum of the false rejection rate and the false
acceptance rate, which is the optimal classifier for each type
of feature. Based on the characteristics of the ECG data in the
self-acquisition database: the sampling frequency is large; the
mutation waveform is easy to be found; the waveform charac-
teristic accuracy is not high; and the characterization ability
of the local statistical feature is also not very strong, meaning
that the classifier trained by one eigenvalue compared with
that trained by a class of eigenvalues is strongly one-sided.

Secondly, after each iteration in the AdaBoost algorithm,
the weights of the misidentified samples are reduced, and the
weights of the correctly identified samples are not changed,
which is equivalent to highlighting the misidentified samples
in the next round of training. In the ‘inverted pyramid’ MIA
proposed in this paper, we take each stage in the wrong identi-
fication of the sample as the input stage of the next identifica-
tion process. That is, the weights of the wrong identification
sample are unchanged, and the weights of the corrected iden-
tification sample will be 0. This process, which filters out the
correctly identified samples, when compared with AdaBoost
algorithm, will highlight misidentified samples to a greater
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extent, resulting in a higher accuracy for the authentication
of the MIA.

Therefore, the MIA proposed in this paper is more suited
than the AdaBoost algorithm to the relatively small amount
of ECG signal data and the simplicity and sensitivity of the
ECG signal.

J. TIME COMPLEXITY ANALYSIS AND COMPARISON

In the theoretical analysis of the MIA, we can conclude
that, if time complexity and spatial complexity are not taken
into account, it is easy to arbitrarily increase the number
of stages in the MIA, such that the identification accuracy
can reach 100%. However, in the practical application of
the proposed algorithm, time complexity is a key factor to
consider. To solve the problem of heart rate variability in the
motion state, the time complexity of different stages in the
MIA, based on the SPAT, is shown in Table 7.

TABLE 7. Time complexity of the MIA at different stages.

Stage Cross validation SPAT
getTemplate — o(n?)
getDistance o(n®) o(n?)
train_K o(n?) o(n?)
train_Min o(n) o(n)
test_SingleStage o(n?) o(n?)
test_MultiStage o(n?) o(n?)

During the process of experiments for the MIA, we found
that the consumption of time was mainly concentrated in the
feature extraction and that there was similarity in the calcu-
lation stage. Time complexity was the same in the training
and testing phases regardless of whether or not polymorphic
templates were used in the MIA. In the training phase, each
group of data for each collected individual must be compared
with the threshold. In the training phase, each group of data
for each collected individual must be compared with the
threshold, so that we can obtain the false rejection rate and
the false acceptance and correct identification rate for each
collected individual. Hence, the time complexity for the train-
ing phase is o(n?). Meanwhile, in the testing phase, whether
a single identification algorithm or an MIA is involved,
we compare eigenvectors and optimal thresholds of the group
of data for each collected individual in the test database.
Hence, the time complexity of the testing phase is also o(n?).
The main difference concerns whether optimization is at the
stage of obtaining eigenvector similarity. The polymorphic
average template is adopted for the group of data collected
from everyone in order to obtain the corresponding template
similarity. Hence, the corresponding time complexity is o(1?).
While cross validation is adopted in order to obtain their own
distance with their own and their own distance with others
for the group of data collected from each individual. Hence,
the corresponding time complexity is o(#?). In summary,
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we can observe that the MIA with the SPAT also has some
advantages in terms of time complexity.

IV. APPLICATION AND HARDWARE

A. APPLICATION

During exploratory missions, spacecraft will need to identify
astronauts. ECG identification is one of the more reliable
and safe identification technologies. It is reasonable to embed
an ECG device into a spacesuit or provide a portable device
(such as a smartwatch) with ECG identification technology to
astronauts. Take a smartwatch as an example: the smartwatch
is firstly used to collect ECG signals and then upload them to
the spacecraft or spacesuit via a wired or wireless medium.
After that, the spacecraft receives the signal and begins to
process the data. Finally, the spacecraft sends the results to
the smartwatch.

Spacesuits are costly high-tech products which help astro-
nauts adapt to the space environment and accomplish a vari-
ety of space activities. Embedding ECG signal acquisition
devices into spacesuits allows for the physical condition of
astronauts to be checked [44], including health status and
individual identification. A spacesuit embedded with ECG
signal acquisition devices is shown in Fig. 18 (a).
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/' y L—F signal | ADC
$ Processing <

>Bluetooth Jet Unit Comverter
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X - D L Filter
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FIGURE 18. (a) A spacesuit embedded with ECG signal acquisition device;
(b) a block diagram of a portable ECG device.

In a summary, the reason of ECG is suitable for spacesuits
as follows:

1) The spacesuit is a critical equipment, and the tasks
performed by the astronauts are also important, so it is
more necessary to verify the user’s identity than the general
equipment.

2) Astronauts already need to monitor and diagnose
their physical state in real time, so the integration of
ECG identification will not bring the additional burden of
users.

Of course, although our current method can be used with
spacesuits, and can resist some noise through the algorithm,
the problem of missing acquisition signals may occur when
astronauts are in motion, which still needs to be improved.
In the future, we can research on the compensation and
restoration of missing signals.
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B. HARDWARE

The block diagram of a portable ECG acquisition device
is shown in Fig. 18 (b); the self-acquisition database was
acquired by this device. First, the individual is connected to
the acquisition terminal, then raw signals are collected and
transferred to the signal amplifier for signal amplification.
The next step is de-noising: the corresponding frequencies of
noise from amplified signals are filtered out by the low-pass
filter and high-pass filter. After the de-noising step, amplified
signals become purer, but they are still analog signals. They
are then converted into digital signals by the ADC converter.
Finally, digital signals are processed by the signal processing
unit and stored in flash memory. In the meantime, processed
signals can be taken out from flash memory via Bluetooth or
a micro USB port.

V. DISCUSSION

Numerous mature and effective algorithms have been cre-
ated by scholars for ECG signal identification. The variety
of proposed characteristics demonstrates the possibility that
the ECG signal as a biometric representative can identify
an individual’s unique attributes. However, compared with
the standard medical testing equipment, the accuracy of data
collected by spacesuits or other wearable devices is greatly
reduced. In other words, compared with the accuracy of the
standard medical lead system, wearable equipment can only
be designed to extend some of the patch contact with skin.
This process will inevitably involve movement and loosening,
resulting in the generation of a mutation waveform in the
ECG data, posing great challenges for identification accuracy.
Not only that, as individuals could collect their ECG data
at any time, their physical and emotional conditions will
also affect the collection of ECG signals, which may have
a negative impact on the identification results. Therefore,
this paper completed the work described below and achieved
some results.

We took a variety of de-noising algorithms to remove ECG
signal noise from the self-acquisition database. By comparing
results, we found the best algorithms for combination to
be the following: Wavelet threshold de-noising method [3],
moving window median filter [31] and butterworth band-stop
filter. We proposed that the SPAT could solve the problem that
the heart rate variability of collected individuals is large after
exercise.

We extracted the ECG signal feature by various algorithms
and chose those feature combinations which reflect ECG
signal characteristics from different angles. Then, we put for-
ward an MIA. The number of identification samples per stage
was controlled across a small range, and the samples which
were difficult to be identified on the upper stage were identi-
fied in the next stage. In this way, the proposed architecture
raised the feature identification rate. Besides, this architec-
ture has some similarities with the AdaBoost algorithm [42],
the core idea of which is to combine weak classifiers
as a strong classifier; we in turn compared similarities.
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According to Table 6, the CRR of the MIA is much higher
than the AdaBoost algorithm.

There are still many problems to be studied and solved
in order to improve the robustness of ECG identification.
The accuracy of waveform positioning for ECG data in the
acquisition database has yet to be improved. Since the data
in the self-acquisition database are relatively small and lack
comprehensiveness, this may hide the deep internal relations
within the data. Besides, our acquisition device is very simple.
More advanced devices and comprehensive data are urgent
priorities for future work.

Regarding the feasibility of ECG biometric application,
we point out in the ECG research article [44] that the integra-
tion of diagnosis and identification is a possible application
scenario. Other recent papers [45] also integrate heart rate
estimation and biometric identification. These can prove the
feasibility of our ECG identification in the future.

VI. CONCLUSION

ECG technology for health monitoring embedded in astro-
naut spacesuits involves mature applications. Thus, ECG
identification could be easily integrated with the same hard-
ware. In this paper, we have proposed a comprehensive
architecture with a selection of suitable combinations of
de-noising filters and feature extraction. Moreover, a new
SPAT and MIA are proposed to reduce the effect of heart
rate variability and to strengthen identification robustness,
based on the motion problem, respectively. Our experimen-
tal results show that our architecture improves efficacy and
accuracy compared with existing algorithms. According to
our experimental results, our proposed algorithm offers much
better performance than the AdaBoost algorithm. In partic-
ular, we obtained high identification accuracies of 97.92%
and 98.37% from the self-acquisition database and the public
MIT-BIH database, respectively.
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