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ABSTRACT In this paper, a novel algorithm is proposed for inferring online learning tasks efficiently. By
a carefully designed scheme, the online learning problem is first formulated as a state feedback control
problem for a series of finite-dimensional systems. Then, the online linear quadratic regulator (OLQR)
learning algorithm is developed to obtain the optimal parameter updating. Solid mathematical analysis
on the convergence and rationality of our method is also provided. Compared with the conventional
learning methods, our learning framework represents a completely different approach with optimal control
techniques, but does not introduce any assumption on the characteristics of noise or learning rate. The
proposed method not only guarantees the fast and robust convergence but also achieves better performance
in learning efficiency and accuracy, especially for the data streams with complex noise disturbances. In
addition, under the proposed framework, new robust algorithms can be potentially developed for various
machine learning tasks by using the powerful optimal control techniques. Numerical results on benchmark
datasets and practical applications confirm the advantages of our new method.

INDEX TERMS Online machine learning, optimal control, linear quadratic regulator, complex noise
disturbances.

I. INTRODUCTION
As an important subtopic of machine learning, online learn-
ing has attracted increasing attention during the past decade
due to its extensive applications to realistic modeling prob-
lems, for instance, online advertising, financial quantita-
tive transaction, and mechanical damage detection [1]–[4].
In the online learning, data become available in a stream,
and predictive models are required to be updated in a
real time manner. Therefore, two key issues need to be
addressed in developing new algorithms. The first issue is
to absorb new information from the incoming data flow and
incrementally update the predictive model. The other one
is to remove the old and useless information to maintain
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the parsimony of the model and restrain the computation load
within a certain lever.

A wide variety of online learning methods have been
proposed during the last decade. A major approach is the
gradient based method, in which the update is often given
by solving an empirical error minimization problem [5]–[8].
The gradient descent principle is introduced to ensure that
the computation load will not increase substantially when
the data sequentially come into the learning. The conver-
gence rates and approximation error have also been studied
in literature [9], [10]. Another major approach is the online
version of batch learning algorithms [11]–[13]. In these algo-
rithms, the learning model is updated by repeatedly solving
the corresponding regularized error minimization problem
when the new instances are subsequently added. The sample
selection techniques such as the moving window strategy,

117780 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4550-2285
https://orcid.org/0000-0003-3498-2180
https://orcid.org/0000-0001-6191-0209


H. Ning et al.: Robust Online Learning Method Based on Dynamical Linear Quadratic Regulator

fast leave one out, and pruning error minimization, have
been applied to reduce the computation complexity, mean-
while improve the sparsity and generalization performance of
the learning model [14]–[19]. Among them, passive aggres-
sive (PA) algorithms are a family of margin based online
learning methods [20]–[25]. Instead of penalizing the com-
plexity of the model, PA algorithms penalize the increments
of learning model and update the model when the predictive
error exceeds a predetermined threshold value. Compared
with the gradient based methods, PA algorithms have shown
advantages in robustness due to their less sensitivity to the
parameter setting and adaptive learning rate.

Although the existing methods are very useful for many
real-world applications, there still exist several challenges
when these methods are applied to complex data streams.
A major limitation is the deficiency of coping with noise
effects. Regarding the batch learningmethods, when complex
random disturbances are encountered, the optimization in the
least square form needs to be modified to improve the pre-
diction efficiency. For example, for data with heterogeneous
noise, the weighted least square regression is often utilized.
However, in online learning cases, it is impossible to compute
the weighted parameters or obtain a stable structure of noise
effects. Thus, the sample selection techniques and modifica-
tion strategies cannot be well incorporated into the learning
simultaneously. In the gradient based methods and PA meth-
ods, the updates rely on the feedback of error signals. In many
realistic applications, the error signals may be inevitably
corrupted by noise and thus provide incorrect gradient infor-
mation for updates. This problem will be even worse if the
learning is conducted in the environments of high intensity
noise. The updates will be continuously misguided, and the
convergence rate will be seriously affected. Another limita-
tion is that some key learning parameters, such as the length
of the window in the moving window regression [26] and the
learning rate in the gradient based methods [27], are difficult
to be adjusted. It is noted that in online learning, the system
under studies often experiences abrupt changes and the objec-
tive model is usually time-varying. Therefore, a satisfactory
modeling performance cannot always be guaranteed with
constant learning parameters. Unfortunately, in the majority
of the literature, these parameters are predetermined based on
heuristic knowledge, which also brings substantial challenges
to the online learning problems.

In this paper, we introduce the state feedback control
theory into the modeling of data streams and propose a novel
online learning approach. By a carefully designed numerical
scheme, the online learning problem is reasonably trans-
formed into the state feedback control problems for a series of
finite-dimensional, controllable, and completely observable
systems. Dynamical linear quadratic regulator is introduced
to solve the corresponding optimal control problem. Two
algorithms, named as the online linear quadratic regulator
learning algorithm (OLQR) and online kernel linear quadratic
regulator learning algorithm (OKLQR) are developed for
the learning problems in the linear space and reproducing

kernel Hilbert space respectively. Since a completely differ-
ent approach is explored in our framework, there is no need to
introduce any online adjustment to the learning parameters,
complex data window or pruning techniques, which enables
ourmethod to overcome the aforementioned limitations of the
existing methods. Compared with the conventional methods,
the proposed algorithms can achieve better performance in
both learning efficiency and prediction accuracy regardless of
the characteristics of noise disturbances. Although a number
of pioneering approaches have been proposed for develop-
ing control-based learning algorithms [28]–[30], the learning
problems were transformed into the output feedback control
problems in these works rather than the state feedback control
problems proposed in our method. Our approach not only
bring better control performance for learning but also leads
to strict mathematical analysis on the convergence, all of
which rationalize our proposed method for establishing a
solid learning framework.
Notation: The real field is denoted by R, while RM denotes

the set of real vectors of sizeM . The superscript (·)T and (·)−1

denote the transpose and inverse of a matrix, respectively.
< ·, · > and || · || denote the inner product and norm of
a Hilbert space respectively. Vectors are denoted by bold
letters and matrix by capital letters in Spencerian fonts i.e., s
and S respectively. I denotes the identity matrix, and finally
0 ≺ S ≺ I means that the symmetric matrix S and I − S are
both positive definite.

II. BENCHMARK ONLINE LEARNING METHODS
We start with a brief review on some benchmark online
learning methods. The issues discussed in this section for the
linear system can be naturally extended to the nonlinear cases.
The gradient based methods are the most popular algorithms
in optimization and so far the most common approach in the
online learning strategies. Assume that there is a sequence of
random samples (x(n), y(n)) (n = 1, 2, . . .) generated by the
model

y(n) = f (x(n))+ ε(n) = x(n)β? + ε(n), (1)

where x(n) ∈ RM , y(n) ∈ R and ε is the random term.
Here β(n) denotes the estimate of β? at time slot n, and the
prediction error is defined as e(n) = y(n) − x(n)β(n). In the
stochastic gradient methods [5], [6], the learning law is given
by minimizing the following instantaneous risk

Rinst (β, x(n), y(n)) =
1
2
e(n)2 +

1
2
λ||β||2. (2)

The update is given by

β(n+ 1) = β(n)− η
∂Rinst (β(n), x(n), y(n))

∂β(n)
= (1− ηλ)β(n)+ η(y(n)− x(n)β(n))x(n)T

= (1− ηλ)β(n)+ ηe(n)x(n)T , (3)

where λ > 0 is the regularization parameter and η is the
learning rate. Some gradient algorithms are also proposed
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without an explicit regularization, i.e. λ = 0, given by

β(n+ 1) = β(n)+ ηe(n)x(n)T . (4)

The learning algorithms displayed above are also referred
as stochastic approximation methods or least mean square
methods. A major limitation of the gradient based methods
is the deficiency of coping with noise. The error signal e(n)
is used as the distance between β(n) and β?. If e(n) = 0,
the algorithm considers that β? is accurately estimated, and
β(n) remains steady without any updates. Otherwise, β(n)
will be updated. Noticed that

e(n) = y(n)− x(n)β(n) = x(n)(β? − β(n))+ ε(n), (5)

the update of β(n) becomes

β(n+ 1) = β(n)+ ηx(n)(β? − β(n))x(n)T + ηε(n)x(n)T .

(6)

The error signal e(n) is inevitably corrupted by noise ε(n),
and may provide false information for the online estimation.
Another difficulty is the determination of learning rate η.
A large learning rate may lead to quick convergence, but
also raise the risk of instability of the algorithm. However,
a small enough learning rate can guarantee the asymptotic
convergence but often lead to slow learning and inefficiency
for the fast-changing systems. Although the majority of the
gradient based methods usually prefer a relatively small rate
to ensure the convergence, the range of optimal learning rates
is still distinct for online learning problems with time-varying
objective functions. Although the adaptability of learning
rates has been extensively studied [8]–[10], heuristic knowl-
edge or additional cost is still needed.

In the PA learning methods [20], [23], suppose at time
slot n, the algorithm receives instance (x(n), y(n)) and makes
a prediction ŷ(n) = x(n)β(n). For the true target value
y, the algorithm defines a loss function. For example,
the υ-insensitive hinge loss function is defined as

Lυ (β; x, y) =
{
0, |xβ − y| ≤ υ,
|xβ − y| − υ, otherwise,

(7)

where υ is a positive parameter which controls the sensitivity
of the updates. The algorithm sets the law as the solution of
following optimization

β(n+ 1) = argminβ∈RM
1
2
||β − β(n)||2,

s.t. Lυ (β; x(n), y(n)) = 0. (8)

The update given in (8) has a closed form solution as

β(n+ 1) = β(n)+ sign(y(n)− ŷ(n))τnx(n), (9)

where τn = Lυ (β(n); x(n), y(n)). From (8) and (9), it can
be seen that the error signal e(n) along with learning rate
τ (n) are both corrupted by random disturbances, and the
updates can be misguided for the similar reason that we
have discussed for the gradient methods. The learning

parameters are usually heuristically chosen to obtain a sat-
isfactory modeling performance.

For online batch learning methods [11]–[13], suppose that
at the beginning, we have data (x(n), y(n)), n = 1, 2, . . . ,N ,
the optimization problem with regularization is given by

min
β

N∑
n=1

(y(n)− x(n)β)2 + γ ||β||2, (10)

or by a more general formula, which can include the
nonlinear case

min
f̂

N∑
n=1

(y(n)− f̂ (x(n)))2 + γ ||f̂ ||2, (11)

where f̂ is a nonlinear approximator. This method cannot be
directly applied to online cases since all the samples will be
added into the learning. The estimated model will be a lack
of sparsity and become computationally infeasible. Some
sparsification techniques have been developed. For example,
the moving window method was proposed in [26], which
assumes that the earliest data in a window contains the least
information. The pruning error minimization method was
also developed in [14]. This method selects the sample that
brings the smallest error after it has been pruned.

It is noticed that realistic random disturbances are usually
heterogeneous, temporal correlated and even non-Gaussian.
Some modifications must be made to the optimization
methods [31]–[33]. For the case of heterogeneous noise,
the weighted least square optimization is usually employed

min
∑

σne(n)2 + γ ||f̂ ||2, s.t. e(n) = y(n)− f̂ (x(n)),

(12)

where σn is the weight parameter. However, for the time vary-
ing data stream, it is extremely cumbersome or impossible
to obtain stable and efficient estimates for σn in a real time
manner.

III. A BRIEF INTRODUCTION OF OPTIMAL CONTROL
To demonstrate our motivations, we give a brief introduction
of optimal control for discrete linear systems. Optimal control
is a mature mathematical discipline with a wide range of
applications in science and engineering. Consider the follow-
ing linear control system

Z(n+ 1) = AZ(n)+ Bθ (n), n ≥ 0, (13)

whereA and B are coefficient matrices, Z(n) is the state vec-
tor series and θ (n) is the control input vector. The objective
of optimal control is to find a control policy that stabilizes
systems, and optimizes a specific performance index for sys-
tems.With controller gainF and control input θ (n) = FZ(n),
the closed loop system Z(n+1) = (A+BF)Z(n) is stable, i.e.
A+BF is contractive. In optimal control, an efficient F can
be obtained by minimizing following performance criterion
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including a cost function that penalizing the state and control
input simultaneously

N−1∑
τ=0

(Z(τ )TQ0Z(τ )+ θ (τ )TR0θ (τ ))+ Z(N )TS0Z(N ),

where S0,Q0 andR0 are constant symmetric positive matri-
ces, and N is a positive constant. Despite the accumulated
optimal control models and methods, there are still limited
approaches for addressing the online learning problems from
the perspective of optimal control.

As discussed in the previous section, the prediction error
is used in online learning to infer the distances between the
model parameters and objective parameters, and the online
updating of model parameters (1β(n) = β(n+ 1)− β(n)) is
supposed to minimize the prediction error as much as possi-
ble. This process is similar to that in the stabilization problem
of control theory, for example, obtaining a series of control
inputs θ (n)s to stabilize (13) and making Z(n) converges to
the original point, which sheds light on the motivations of
the technical methods to be developed in this paper. In the
following sections, we develop numerical schemes using the
prediction errors as state variables of control system and
the parameter updates as control input. Meanwhile, we also
elaborate the connections between the optimal control and
online learning.

IV. ONLINE LEARNING FRAMEWORK
In this section, we establish a novel online learning frame-
work from the perspective of state feedback control. Consider
an adaline machine with M input variables. Suppose there is
a data stream (x(1), y(1)), . . . , (x(k), y(k)), . . . generated by

y(k) =
M∑
j=1

β?j xj(k)+ ε(k) = x(k)β? + ε(k), (14)

where β? = (β?1, β
?
2, . . . , β

?
M )T is the objective parameter

vector. Let β(n) be the estimated parameter vector of β? at
time slot n. Assume that at time slot n, we already have an
estimated β(n), which will be updated by β(n+ 1) = β(n)+
1β(n). A projected estimation of y(k) by β(n+ 1) is

ŷ(k) =
M∑
j=1

βj(n+1)xj(k) = x(k)β(n+ 1). (15)

Let ê(n− l) be the projected prediction error by β(n+ 1), i.e.

ê(n− l) = ŷ(n− l)− y(n− l)

= x(n− l)β(n+ 1)− x(n− l)β? − ε(n− l)

= x(n− l)(β(n+ 1)− β?)− ε(n− l), (16)

for l = 0, 1, . . . ,M − 1. Let e(n − l) be the prediction error
by β(n),

e(n− l) = x(n− l)β(n)− x(n− l)β? − ε(n− l)

= x(n− l)(β(n)− β?)− ε(n− l), (17)

for l = 0, 1, . . . ,M − 1. It follows that

ê(n− l)

= x(n− l)(β(n)− β? +1β(n))− ε(n− l)

= x(n− l)(β(n)− β?)− ε(n− l)+ x(n− l)1β(n)

= e(n− l)+ x(n− l)1β(n), (18)

for l = 0, 1, . . . ,M − 1. For all l, with

Ê(n) ≡ [ê(n), ê(n− 1), . . . , ê(n−M + 1)]T ,

E(n) ≡ [e(n), e(n− 1), . . . , e(n−M + 1)]T ,

1β(n) ≡ [1β1(n),1β2(n) . . . , 1βM (n)],

B(n) ≡


x1(n) · · · xM (n)

x1(n− 1) · · · xM (n− 1)
... · · ·

...

x1(n−M + 1) · · · xM (n−M + 1)

 ,
we rewrite (18) as

Ê(n) = E(n)+ B(n)1β(n). (19)

To investigate the learning problem from optimal control
perspective, we further denote (19) as

E(n+ 1) = E(n)+ B(n)U(n), (20)

whereU(n) = 1β(n) is a feedback control input waited to be
determined. This is a linear, discrete and finite dimensional
error dynamical system with parameter vector B(n) and con-
trol input U(n). Based on (20), the update for the learning of
linear model is transformed into a typical control problem of
a discrete dynamical system with finite dimensional control
input U(n) [34]. Generally, to realize online learning, U(n)
is the feedback to the observations, i.e. U(n) = F(n)E(n),
where F(n) is the controller gain to be determined from the
optimal control problem. It is noted that β(n) is assumed to
be known at time slot n. Therefore, e(n− l) can be observed
and the problem can be regarded as a state feedback control
problem. The objective of the learning is to obtain an efficient
F(n) to stabilize the error system (20) and make the state E(·)
be contractive to the origin point. This implies that after the
update, the prediction error by β(n+ 1) will be smaller than
that by β(n) on the given sample set, from the point view
of algebraic mapping. As n grows, a series of time invariant
control systems can also be formulated. If we sequentially
stabilize these systems, a series of control inputs U(n+ k) =
1β(n+ k) (k = 0, 1, 2, . . .) can be obtained as well and

β(n+ k) = β(n)+
∑k−1

j=0
1β(n+ j). (21)

In the following, we show that the distance between β(n+ k)
and β? will be restricted in a compact set as k →∞. More-
over, in literatures, ε(n) is usually set to be normal to facilitate
the statistical analysis. However, random perturbations are
always show the characteristics of boundness. For example,
the return rate of the securities in stock market is usually
assumed to be normal in econometrics models, but in fact it
is bounded [35]. Therefore, ε(n) is assumed to be bounded
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by a constant D (i.e. |ε(n)| < D). Suppose the corresponding
closed loop system for (20) is

E(n+ 1) = [I + B(n)F(n)]E(n), (22)

where I +B(n)F(n) is a state transition matrix for the control
system. Denote β̃(n) = (β1(n)−β?1, β2(n)−β

?
2, . . . , βM (n)−

β?M )T , and d(n) = (ε(n), ε(n− 1), . . . , ε(n−M + 1))T . The
basic results related to the stability of finite dimensional, dis-
crete, linear system are employed to obtain the convergence
of β(n) [48]. Thus we have the following theorem
Theorem 1: Assume that B(n) is invertible for all n. If the

feedback control inputU(n) = F(n)E(n) makes the transition
matrix T (n) = I + B(n)F(n) to be positive and contractive,
i.e. 0 ≺ T (n) ≺ I , then, for any initial value β(1) and
β(n) obtained by β(n) = β(1) +

∑n−1
j=0 U(j), there exists a

De(= O(D)) such that

lim
n→∞
||β(n)− β?|| < De. (23)

Proof: See the appendix A.
It is well known that in linear regression analysis, if the

variables are perfectly multiple collinear, i.e. one independent
variable is an exact linear combination of the others, there is
no method to obtain a unique and promising learning model.
Therefore,B(n) is assumed to be full rank and invertible. This
also guarantees that system (20) is completely controllable,
which greatly facilitates the development of our new method.
Thus the estimation error of β(n) will be convergent to a
compact set including the origin as n → ∞ with a series
of carefully designed control inputs U(n), which means it is
possible to develop efficient learning algorithms from the per-
spective of state feedback control theory. When the intensity
of e(n) is zero (D = 0), the compact set can be extremely
small in this noise-free case.

V. ROBUST ONLINE LEARNING METHOD
BASED ON LQR
The theory of optimal control is concerned with operating
a dynamic system at minimum cost. The case where the
system dynamics are described by a set of linear equations
and the cost is described by a quadratic function is called
the linear quadratic (LQ) problem [34], [36], [37]. One of
the main results for the LQ problem is the linear quadratic
regulator, which is a well known method that provides opti-
mally controlled feedback gains to enable the closed loop
stable and high performance design of systems. For systems
controlled by LQR, control inputs and plant responses are
predicted using the system state space model and optimized
over a family of piecewise constant intervals with respect to
a cost function with weighting factors including penalties on
the system states and control inputs. Once the optimization
problem is solved, only the control input of the current time
slot is implemented. This optimization procedure is then
repeated in the next time slot to continuously generate a series
of efficient control inputs.

In this paper, the infinite horizon LQR is utilized to obtain
the optimal state feedback control inputs to establish our

online learning method. For system (20), we construct a
virtual time invariant dynamical control system as follows

En(t + 1) = En(t)+ BnUn(t), t = 1, 2, . . . , (24)

where Bn = B(n) with En(1) = E(n). System (24) is
regarded as a time invariant (static) linear system. It is easy
to verify that (24) is a completely controllable and observ-
able as long as Bn is full rank, which implies there exists
an optimal control that can stabilize (24) according to the
control theory [37], [38]. To develop the learning method
by LQR, the infinite time horizon optimization problem is
constructed as

V = min
Un(1),...,

∑∞

t=1
En(t)TQEn(t)+ Un(t)TRUn(t),

s.t. En(t + 1) = En(t)+ BnUn(t),

Un(t) = FnEn(t), (25)

whereFn is the controller gain to be determined.R andQ are
systematic and semi-definite matrices. These matrices can be
chosen to obtain a desirable closed loop response. Here Q
and R are set to unit matrices I and γ I , respectively. The
first term in V measures the output deviation, and the second
term penalizes the intensity of control input. In addition,
γ > 0 is a tradeoff parameter to weight the two goals
of the optimization. Once the solution of (25) is obtained,
the control input in (20) and parameter update for the learning
model is given by applying only the first control input Un(1)
as 1β(n) = U(n) = Un(1) = FnE(n). At the next time
slot n + 1, Bn in (24) is updated to Bn+1 accordingly. The
corresponding LQR problem (25) is solved again to obtain
the update law 1β(n + 1). This procedure will be repeated
to update the model in a real time manner as the observa-
tion data are continuously added into the learning process,
which is also named as the dynamical LQR in this study.
The techniques for obtaining the solution of linear quadratic
optimization problem are also utilized to obtain the following
schemes of our algorithm [37], [39].
Theorem 2: The solution of optimization problem (25) can

be given by solving the following matrix equation for Pn,
given by

PnBn(R+ BTn PnBn)−1BTn Pn = Q. (26)

In addition, the optimal controller gain and parameter update
are given as

β(n+ 1) = β(n)+ FnE(n),

Fn = −(R+ BTn PnBn)−1BTn Pn. (27)

The estimation error by applying the update law is conver-
gent, i.e. there exists a constant De = O(D) such that

lim
n→∞
||β(n)− β?|| < De. (28)

Proof: See the appendix B.
It can be seen from the proof of Theorem 2 that with the

update law obtained by the infinite horizon LQR, the distance
between β(n) and β? will be exponentially convergent to a
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compact set including the origin as n → ∞, which leads
to an efficient and fast convergent online learning method
named OLQR in this paper. In addition, the compact set
and the estimation error can be extremely small in the noise
free cases. Therefore, the dynamical LQR and the concept
of state feedback control can be well introduced into the
machine learning of data streams, which is one of the main
contributions of this paper. Algorithm 1 shows the detailed
steps of the proposed method for the learning of adaline
system (14). Regarding the time horizon N in the index (25),
from the perspective of optimal control, the solution obtained
from LQR over a large time horizon can usually stabilize
the closed loop system. However, the system may be still
unstable with a time horizon that is not long enough. This
problem can be entirely avoided if the controlled performance
is evaluated over an infinite prediction horizon i.e. N = ∞,
which not only ensure the convergence but also lead to an
explicit, convenient and consistent computational scheme for
the online learning [37], [39]. The algorithm is named as
OLQR (for system (14)) and summarized as follows

1) Initialization: the number of variables M .
2) Let the system run for M steps, and β(M ) = 0.
3) β(n) is updated as β(n+ 1) according to (26) and (27).
4) If data flow ends, stop; otherwise n=n+1, go to step 3

VI. THE ONLINE LEARNING IN KERNEL SPACES
In this section, we consider the online learning problem in
the reproducing kernel Hilbert space HK associated with
inner product < ·, · >H and feature mapping φ. The
kernel K for HK has the reproducing property [8], [9], i.e.
< f ,K (x, ·) >H= f (x) and < φ(x1),φ(x2) >H=<

K (x1, ·),K (x2, ·) >H= K (x1, x2) for ∀x, x1, x2 ∈ X and
f ∈ HK . Here HK is the closure of the span of all K (x, ·), and
X is a set in RM1 . K (x1, x2) = exp(−||x1 − x2||2/σ 2) is the
Gaussian kernel, and σ is the bandwidth. In this study, it is
assumed that X is a compact subset.

Suppose there exists a data stream (x(1), y(1)), . . . , (x(n),
y(n)), . . . generated by y(n) = f (x(n)) + ε(n), where x(·) ∈
RM1 , f and ε are unknown nonlinear function and random
disturbance respectively. Suppose there is an objective w? in
HK such that

y(n) = φ(x(n))w? + ε(n), (29)

and we have a learning model in Hk

ŷ(n) = φ(x(n))w(n), (30)

x(·) is assumed to be in the compact set X ⊂ RM1 . At time slot
n, we have w(n), which will be updated to w(n+1) by1w(n).
The projected error byw(n+1) is set to be ê(·). By employing
the same techniques developed in section IV,

ê(n− l) = φ(x(n− l))(w(n+ 1)− w?)− ε(n− l), (31)

for l = 0, 1, 2 . . .. e(n− l) is the prediction error by w(n).

e(n− l) = φ(x(n− l))(w(n)− w?)− ε(n− l), (32)

for l = 0, 1, 2 . . .. It follows that

ê(n− l) = e(n− l)+ φ(x(n− l))1w(n). (33)

Let l = 0, 1, . . . ,M0 − 1, where M0 will be specified later.
Similar to (18) and (19), with

E(n+ 1) ≡ [ê(n), ê(n− 1), . . . , ê(n−M0 + 1)]T ,

E(n) ≡ [e(n), e(n− 1), . . . , e(n−M0 + 1)]T ,

Equation (33) can be written as

E(n+ 1) = E(n)+8(n)1w(n), (34)

where 8(n) = (φ(x(n))T ,φ(x(n − 1))T , . . . ,φ(x(n − M0 +

1))T )T . For any n, (34) can be considered as a control system
with control1w(n) defined in the kernel space. With the sim-
ilar techniques developed in (24), for system (34), a virtual
system can be designed as

En(t + 1) = En(t)+8n1wn(t), (35)

where 8n = 8(n), wn(1) = w(n) and En(1) = E(n). The
optimization of LQR with (35) in HK is designed as

V = min
1wn(1),...,

∑∞

t=1
En(t)TEn(t)+ γ ||1wn(t)||2,

s.t. En(t + 1) = En(t)+8n1wn(t). (36)

It is noticed that w(n) in the kernel space may be infi-
nite dimensional. To reasonably transform (36) into a finite
dimensional one, we find optimal solution in a subspace H s

K
rather than in HK itself [12], [13]. Let ui (i = 1, 2, . . . ,M )
be different vectors in X . H s

K is the linear subspace of HK
spanned by basis vectors φ(ui), i = 1, . . . ,M . For ∀n, w(n)
and objective vector w? are then represented in H s

K as

w? =
∑M

i=1
α?i φ(ui), w(n) =

∑M

i=1
αi(n)φ(ui). (37)

Then, the prediction errors on the dataset (x(n− l), y(n− l)),
l = 0, . . . ,M − 1 by w(n + 1) (denoted as ê(·)) and w(n)
(denoted as e(·)) can be reduced into difference equations
with finite parameters

ê(n− l)

= φ(x(n− l))(w(n+ 1)− w?)− ε(n− l)

=

∑M

i=1
(αi(n+ 1)− α?i )K (ui, x(n− l))

− ε(n− l)e(n− l)

= φ(x(n− l))(w(n)− w?)− ε(n− l)

=

∑M

i=1
(αi(n)− α?i )K (ui, x(n− l))− ε(n− l). (38)

Denote α(n) = (α1(n), α2(n), . . . , αM (n))T , αi(n + 1) =
αi(n)+1αi(n), for i = 1, 2, . . .. Then

ê(n− l)

=

∑M

i=1
(αi(n+ 1)− α?i )K (ui, x(n− l))−ε(n− l)

=

∑M

i=1
(αi(n)−α?i +1αi(n))K (ui, x(n− l))−ε(n− l)

= e(n− l)+
∑M

i=1
1αi(n)K (ui, x(n− l)), (39)
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for l = 0, 1, . . . ,M − 1. With

E(n+ 1) ≡ [ê(n), ê(n− 1), . . . , ê(n−M + 1)]T ,

E(n) ≡ [e(n), e(n− 1), . . . , e(n−M + 1)]T ,

1α(n) ≡ [1α1(n),1α2(n) . . . , 1αM (n)],

Kn ≡


K (u1, x(n)) · · · K (uM , x(n))

K (u1, x(n− 1)) · · · K (uM , x(n− 1))
... · · ·

...

K (u1, x(n−M−)) · · · K (uM , x(n−M−))


where M− = M − 1, (39) is denoted as

E(n+ 1) = E(n)+Kn1α(n). (40)

It is also noted that in the subspace H s
K

||1w(n)||2 = <
M∑
i=1

1αi(n)φ(ui),
M∑
i=1

1αi(n)φ(ui) >

= 1α(n)TG1α(n), (41)

where G = [K (ui,uj)]i,j=1,2,...,M is the kernel Gram matrix.
Therefore, the index of LQR (35) can be reduced accordingly
to a formula with finite control inputs

V = min
1wn(1),...,

∑∞

t=1
En(t)TEn(t)+ γ1αn(t)TG1αn(t),

s.t. En(t + 1) = En(t)+Kn1αn(t). (42)

By the same method presented in Theorem 2, the optimal
update law can be obtained

1α(n) = −(γG +KT
n PnKn)−1KT

n PnE(n), (43)

where Pn is given by the following matrix equation

PnKn(γG +KT
n PnKn)−1KT

n Pn = I . (44)

The computation for solving this matrix equation can be
implemented by using the optimization toolbox in Matlab.
For φ, we have the following results [15], [40].
Lemma 3: The feature mapping φ is a compact map-

ping, i.e. φ maps any bounded set onto a relatively compact
set in HK .

By the properties of relatively compact set [41], it can be
concluded that there exists a finite open coverage for the
range of φ in HK , which implies that for a given degree of
accuracy, the range can be approximated by the linear combi-
nation of the vectors in H s

K . Regarding the selection of basis
vectors BS = {φ(u1),φ(u2), . . . ,φ(uM )}, the approximate
linear dependence (ALD) method is utilized here [15], [17].
Suppose at time n we have already identified w(n) =∑M

i=1 αi(n)φ(ui). For the incoming data (x(n+1), y(n+1)), let

ζ (n) = minc ||
∑M

i=1
c(i)φ(ui)− φ(x(n+ 1))||2, (45)

and ζ (n) can be easily expanded as ζ (n) = K (x(n + 1),
x(n+1))−KM (x(n+1))TK−1M KM (x(n+1)), whereKM (x(n+
1)) = (K (u1, x(n + 1)), . . . ,K (uM , x(n + 1)))T and K−1M =
[K (ui,uj)]−11≤i,j≤M .

If ζ (n) is large, φ(x(n+ 1)) cannot be linearly represented
very well. The approximation ability of the space spanned by
{φ(u1),φ(u2), . . . ,φ(uM )} is weaker than the space spanned
by {φ(u1),φ(u2), . . . ,φ(uM )} ∪ {φ(x(n+ 1))}, which means
the model obtained from the former space may be inadequate
for the learning. If ζ (n) is very small, there is negligible differ-
ence between the spaces, and φ(x(n+1)) can be redundant to
be a basis vector. A predetermined constant ν can be chosen
as a threshold for the update of BS . The selection strategy is
proposed as follows. If ζ (n) < ν, φ(x(n + 1)), BS remains
unchanged. If ζ (n) ≥ ν, x(n+ 1) is added into BS . Moreover,
ν determines the number of the basis vectors and the sparsity
of H s

K . A small ν leads to a complicated model, in contrast,
a relatively big ν may bring a parsimonious one, but with less
approximation ability.

We propose that if x(n + 1) is added into BS , w(n) =
M∑
i=1
αi(n)φ(ui) is rewritten as w(n) =

M∑
i=1
αi(n)φ(ui) +

0φ(uM+1), where uM+1 = x(n+ 1), and Kn is updated as


K (u1, x(n)) · · · K (uM+1, x(n))

K (u1, x(n− 1)) · · · K (uM+1, x(n− 1))
... · · ·

...

K (u1, x(n−M + 1)) · · · K (uM+1, x(n−M + 1))

 .
(46)

E(n+ 1) and E(n) are expanded as (ê(n), ê(n− 1), . . . , ê(n−
M ))T and (e(n), e(n− 1), . . . , e(n−M ))T , respectively. α(n)
is updated as (α1(n), . . . , αM (n), 0). Then, the learning can
be conducted by (43) and (44) accordingly. Our algorithm
is summarized as online kernel linear quadratic regulator
algorithm (OKLQR) and presented as follows

1) Initialization: the number of variables M , the kernel
bandwidth σ , the threshold value ν, the basis vector set
BS = ∅. Let the system run for at least M steps. For
n = M , β(n) = 0.

2) Suppose at time n, n ≥ M , BS = {µ1,µ2, . . . ,µM }.
If ζ (n) ≤ ν,BS remains unchanged, andα(n) is updated
as α(n+ 1) according to (43) and (44).
Else, ζ (n) > ν, BS = {µ1,µ2, . . . ,µM ,µM+1}, α(n)
is updated as α(n + 1) by solving (42) based on (46),
(43) and (44).

3) If data flow ends, stop; otherwise n=n+1, go to step 2.
Remark 4: Based on the theory of LQR, the updates of

β(n) and w(n) are more likely to be restricted by a large
γ [38], [39]. This may increase the robustness of the method
but also make the learning model adapt the new dynamics at
a relatively low speed. On the contrary, a small γ brings rela-
tively fast learning andmakes the model trance the changes of
the data more efficiently due to the fewer restrictions on the
update size, but may also result in the over-fitting problem.
Therefore, the second terms in (25) and (42) can be treated
as regularization for the learning. By borrowing the concepts
of ‘‘passive’’ and ‘‘aggressive’’ that defined in [20], [23],
the method can be described to be more passive with a
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FIGURE 1. The estimations by OLQR, LMS, OPA and MWLS for system (47).

larger γ , but more aggressive with a smaller γ . Therefore,
a moderate γ is apt to be chosen for most of the learning tasks.
We also remark that in gradient based method, the learning
parameters such as learning rate should be carefully chosen
to avoid divergence. Unlike the gradient based methods, γ
is the only parameter that needs to be adjusted in OLQR
and OKLQR. More importantly, no matter what γ is finally
selected, the methods are still exponential convergence and
stable as long as γ > 0. This is the main advantage of our
method. Also, the new method can also be extended for the
leaning problems with polynomial kernels.
Remark 5: As discussed in section 4 and 5, in the gradient

based learning methods, β(n) and w(n) are supposed to be
updated on feature plane (Euclid plane for linear model,
hyperplane for kernel model) by decreasing the quadratic
risk index. In the best cases, we wish that β(n) and w(n) are
updated in the ‘‘perfectly correct’’ direction, i.e. β(n) and
w(n) directly converge to β? and w?. However, ‘‘perfectly
correct’’ cannot be achieved since the feature plane will be
no longer smooth due to the noise effects. This situation can
be even worse if the noise disturbances are complex. The
derivative in the gradient algorithms may indicate incorrect
information for the distance between β(n) and β?, and pro-
vide a wrong update direction. In our method, the learning
problem is solved through a completely different approach
with optimal control techniques. By employing the control
input obtained by LQR, the prediction errors and distance
between β(n) and β? will always be exponentially convergent

to the neighborhood of origin point regardless of the charac-
teristics of the noise effects. It means that despite ‘‘perfectly
correct’’ cannot be achieved due to the noise effects, β(n)
and w(n) are still updated in a ‘‘generally correct’’ direction.
Therefore, the new method is able to provide more robust
modeling performance on both convergence speed and pre-
diction accuracy in the case of complex noise disturbances.
This is another main advantage of our method.

VII. NUMERICAL EXAMPLES
This section provides numerical results obtained by our
method using simulation data and realistic data. We also
compare our results with those from the existing benchmark
online methods.

A. ONLINE REGRESSION ANALYSIS
Consider following discrete, adaline system
y(n) = z(n− 1)+ 0.5z(n− 2)+ 0.25z(n− 1)z(n− 2)

− 0.3z3(n− 1)+ ε(n), 1 ≤ n ≤ 200,
y(n) = 2z(n− 1)− 0.5z(n− 2)+ 0.25z(n− 1)z(n− 2)

− 0.3z3(n− 1)+ ε(n), 201 ≤ n ≤ 400.
(47)

The input vector for this system is (z(n − 1), z(n − 2),
z(n− 1)z(n− 2), z(n− 1)3). Let B be the back-shift operator.
The random term ε(n) = (0.5+ ς3(n))(1− 0.5B)−1(ς1(n)+
ς2(n)), is temporal correlated and heterogenous, where ς1(n)
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FIGURE 2. The estimation errors by different online learning methods for system (47).

is uniformly distributed on [−0.5, 0.5], ς2(n) ∼ N (0, 1),
and ς3(t) is uniformly distributed on [−1, 1]. This system
is perturbed by high intensity, temporal correlated, and non-
stationary random disturbances, which means the learning is
conducted in a complex noise environment. Learning results
of four methods are presented in Fig. 1 and Fig. 2. The
hyper-parameters of each method are chosen to give the
optimal performance. In OLQR, γ is set as 1.5. The learning
rate η is 0.2 in LMS. In OPA, υ is chosen to be 0.05, and the
window length is 8 in WMLSR.

Consider following linear system with classical online
learning setting{
y(n) = z1(n)− z2(n)+ ε(n), 1 ≤ n ≤ 200,
y(n) = −1.5z1(n)+ 2.5z2(n)+ ε(n), 201 ≤ n ≤ 400.

(48)

For system (48), z1(n) is uniformly distributed on
[−1, 1], z2(n) is generated by N (0, 1), ε(n) is a Gaus-
sian noise with variance of 0.05. Fig. 3 gives the
online estimation results obtained by OLQR, least mean
square algorithm (LMS) [6], online passive aggressive algo-
rithm (OPA) [20] and least square regression with moving
window algorithm (MWLSR) [26]. The estimation errors are
compared in Fig. 4. In MWLSR, the window length is chosen
to be 5. In OPA, the value of υ for hinge loss function is
0.01. The learning rate of LMS is 0.15. The regularization
γ in OLQR is set to be 5. The instances and variables are set
to be independent in (48). This also illustrates that although

this paper focuses on the data streams with complex noise
disturbances, the proposed method can also be well applied
to the learning problems with the classical online learning
setting.

Although the system undergoes significant changes dur-
ing the learning process, i.e. the objective parameter vector
(β?1, β

?
2, β

?
3, β

?
4) in (47) shifts from (1, 0.5, 0.25,−0.3) to

(2,−0.5, 0.25,−0.3), and (β?1, β
?
2) shifts from (1,−1) to

(−1.5, 2.5) in (48), the changes of the systems are imme-
diately detected and traced, and the objective parameters
are online estimated very well. The estimations by OLQR
converge quickly to the true values as shown in figures,
suggesting that the proposed newmethod provides better per-
formance in terms of both learning accuracy and convergence
rate for this test system.

B. NONLINEAR SYSTEM IDENTIFICATION
In this example, we compare the proposed method with
some benchmark algorithms based on their performances on
nonlinear system identification. The nonlinear system with
heterogenous noise term is given as follows

y(n) = 4 sin(z(n))+ 2 cos(z(n))+ ε(n), 1 ≤ n ≤ 1000,

(49)

where z(n) ∼ N (0, 2). This system is perturbed by
white noise or heterogenous noise. For the former case
ε(n) = 0.05ς1(n), where ς1(n) ∼ N (0, 1). Two
series of datasets are generated. For the latter case
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FIGURE 3. The estimations by OLQR, LMS, OPA and MWLS for system (48).

FIGURE 4. The estimation errors by different online learning methods for system (48).

ε(n) = 0.1ς1(n)ς2(n), where ς2(n) is uniformly distributed
on interval [0, 1]. In both cases, the data at the first 900 points
are chosen as the training data and the subsequent 100 ones
are used for evaluation. The testing mean square error (Test-
ing MSE) is defined as

MSE(n) =
1
100

1000∑
j=901

(
ŷn(j)− y(j)

)2

,

where n = 1, . . . , 900, and ŷn(j) is the prediction output of
the learning model for y(j) at time slot n.
The comparison results are shown by comparing the

proposed algorithm with some existing online kernel

learning algorithms including the kernel least mean square
algorithm (KLMS) [6], online kernel passive aggres-
sive algorithm (OKPA) [20], and online independent
reduced least square support vector regression algo-
rithm (OIRLSSVR) [13]. The Gaussian kernel is applied in
this example and the optimal kernel bandwidth is chosen as
1 for all the algorithms. In both OKPA and OIRLSSVR, υ is
chosen to be 0.001. The learning rate of KLMS is 0.9. The
regularization parameter γ in OLQR is 1.

Fig. 5a and 5b demonstrate the testing MSE of the
900 training steps for homogeneous and heterogenous cases,
respectively. The results are the average performance calcu-
lated from 50 independent Monte Carlo simulations. It can be
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FIGURE 5. The testing MSEs for system (49) with white noise and heterogenous noise.

FIGURE 6. The prediction output by OKLQR and the prediction errors by
different online learning methods.

seen that all MSEs obtained by different algorithms converge
to a steady state after a number of learning iterations. OLQR
outperforms the other algorithms for its smaller testing error
and fast convergence rate in both cases.

C. NONLINEAR TIME SERIES ANALYSIS
In this section, a widely used benchmark system [43], is con-
sidered to examine the efficiency of our new method.

The system is given by

y(t)

=
y(t − 1)y(t − 2)y(t − 3)(y(t − 3)− 1)u(t − 1)+ u(t)

1+ y(t − 2)2 + y(t − 3)2

+ ε(t), 4 ≤ t ≤ 1000,
y(t ′

=
y(t − 1)y(t − 2)y(t − 3)(y(t − 2)− 2)u(t − 1)+ u(t)

1+ 5y(t − 3)2

+ ε(t), 1001 ≤ t.
(50)

where u(t) = 0.4 sin(π t/125) + 0.6 sin(π t/25). The initial
values are y(1) = y(2) = y(3) = 1. The noise term ε(t)
is temporal correlated and governed by ε(t) = 0.05(1 −
0.8B)−1ς (t), where ς (t) ∼ N (0, 1). The input vector of
the learning model consists of u(t) and y(t) as well as their
delayed terms, i.e. (y(t − 1), y(t − 2), y(t − 3), u(t)), and
various kernel methods are applied for the learning. The
system undergoes significant changes at point 1000 and a
sequence of 2000 samples is generated.

The actual data of the system and prediction outputs by
OKLQR with bandwidth σ = 1, penalty γ = 10 and ALD
threshold parameter ν = 0.5 are shown in Fig.7a. The com-
parison results with the prediction errors obtained by OKPA,
KLMS, and OIRLSSVR are presented in Fig.7b. To achieve
the optimal performance, the regularization parameter γ in
OLQR is set to be 1, the learning rate of KLMS is 0.9, For
both OKPA and OIRLSSVR, υ is 0.05.

It shows that after a short period of transient effects,
the system dynamics can be well predicted by OKLQR in one
step ahead manner. In this example, the mean square error is
defined as

MSE =
1

1960

2000∑
t=41

(
ŷ(t)− y(t)

)2

,

by removing the initial transient response effects, where ˆy(t)
is the predicted output for y(t). The average MSEs obtained
by different algorithms calculated from 100 independent
Monte Carlo simulations are shown in Table 1 to further
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FIGURE 7. The actural data, predictions by OKLQR and prediction errors
by different learning methods.

TABLE 1. Learning results for nonlinear time series prediction.

illustrate the advantages of our method. It can be seen that
OKLQR can achieve better learning results with faster con-
vergence and smaller prediction error than the other learning
algorithms.

D. REALISTIC DATA: BOX-JENKINS GAS
FURNACE PROBLEM
In this section, we demonstrate our method on a real world
data set. The Box-Jenkins gas furnace problem is a common
benchmark to test learning methods [43], [44]. The data con-
sists of 296 pair of samples and are measured from a gas
furnace with the CO2 concentration y(t) and the gas flow rate
u(t). The input vector is chosen to be (y(t − 1), y(t − 2),
y(t − 3), u(t − 1), u(t − 2), u(t − 3)).
The prediction outputs by OKLQR with bandwidth

σ = 10, penalty γ = 0.2 and ALD threshold parameter
ν = 0.001 are shown in Fig.6a. The comparison results
with the prediction errors obtained by OKPA, KLMS, and

TABLE 2. Learning results for real world data prediction.

FIGURE 8. The estimation errors by different online learning methods.

OIRLSSVR are shown in Fig.6b. To achieve the optimal
performance, the regularization parameter γ in OLQR is set
to be 1. The learning rate of KLMS is set as 1.5. For both
OKPA and OIRLSSVR, υ is 0.01. The MSE for this example
is defined as

MSE =
1
293

296∑
t=4

(
ŷ(t)− y(t)

)2

,

where ˆy(t) is the predicted output for y(t). TheMSEs obtained
by different algorithms are demonstrated in Table 2. It can
be seen that the OKLQR can achieve satisfactory and better
performance than the other learning methods in this example.

E. PRACTICAL APPLICATION: FULL LOAD ELECTRICAL
POWER OUTPUT PREDICTION
In this application, we apply our new algorithms to a
real-world online predicting problem. Predicting electrical
power output is of great importance for the efficiency and
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FIGURE 9. Evaluation of final testing MSEs in terms of boxplot by Monte Carlo simulations.

economic operation of a power plant. Electrical power output
can be expressed as either linear or nonlinear function of
environmental variables such as temperature and humidity
recorded by sensors. This problem has been studied in many
literature using other machine learning tools [45]–[47].

Consider a combined cycle power plant (CCPP) with
two gas turbines, one steam turbine, and two heat recovery
systems [45], [47], those types of equipment are sensitive to
four main variables: ambient temperature (AT), atmospheric
pressure (AP), relative humidity (RH) and exhaust steam
pressure (or vacuum, V). Thus, the full load electrical power
output (PE ) is affected by the above four variables. The
dataset in [45] is utilized for modeling, where the four vari-
ables and one target variable are recorded by different sensors
hourly over six years (2006-2011). Thus 9568 data points are
included. The proposed algorithms (OLQR and OKLQR) and
five benchmark online learning algorithms are employed to
predict in the context of linear and kernel regression model.
In the experiments, after shuffling the whole dataset, first
8000 samples are used as training set and the rest 1568 are
for testing. For this example, the MSE at learning step n is
defined as follows

MSE(n) =
1

1568

9568∑
j=8001

(
ŷn(j)− y(j)

)2

,

where ŷn(j) is the predicting output of jth test sample. To
remove the transient effects, the prediction results obtained
from the first 400 samples are abandoned and average
MSE (AMSE) aiming at measuring the average predicting
error is defined as

AMSE =
1

7600

8000∑
n=401

MSE(n).

Using the linear model, the testing MSEs obtained by OLQR,
LMS and OPA are shown in Fig. 8(a). We can observe that
LMS and PA methods are seriously affected by chaotic noise
perturbing, and OLQR show advantage on prediction accu-
racy with fewer peaks in the figure. Using kernel models,

TABLE 3. Learning results for real world data prediction.

the testing MSEs obtained by OKLQR, KLMS, OKPA and
OIRLSSVR are presented in Fig. 8(b). Our control-based
methods also show advantages in robustness, convergence
speed, and average predicting accuracy. The learning param-
eters of each algorithm are chosen for the best learning per-
formance. Details of the hyperparameter setting and AMSE
are given in Table 3.

To further illustrate our methods, the whole dataset is
shuffled 50 times, the training and testing sets are constructed
using the same strategy for 50 times. The Mento Carlo simu-
lation results using different algorithms are shown in terms of
boxplot in Fig. 9. OLQR and OKLQR algorithms can achieve
better predicting accuracy with less fluctuation.

VIII. CONCLUSION AND DISCUSSION
In this paper, we have proposed a new learningmethod named
the ‘‘online linear quadratic regulator’’ learning algorithm.
By using a carefully designed scheme, the online learning
problem is transformed into a state feedback control prob-
lem of a group of controllable, observable and time-varying
systems. Two dynamical linear quadratic regulator based
numerical algorithms are developed to give the model update
law for the online learning of adaline models and reproduc-
ing kernel Hilbert space models. This method provides a
novel online learning approach from the perspective of state
feedback optimal control with solid theoretical basis. Com-
pared with the existing online learning methods, the proposed
method has better convergence rate and prediction accuracy
for data streams with complex noise. Some key limitations

117792 VOLUME 7, 2019



H. Ning et al.: Robust Online Learning Method Based on Dynamical Linear Quadratic Regulator

of the existing methods such as robustness to noise effects,
restrictions of learning parameters et.al. can be therefore
overcome. The effectiveness and efficiency of our theory are
also demonstrated by the encouraging experimental results.
Our future work will focus on the further extensions and
potential applications of the novel optimal control based
online learning algorithms.

APPENDIX A
From (17) and (18), we haveE(n+1) = B(n) ˜β(n+ 1)−d(n),
and E(n) = B(n)β̃(n) − d(n). Substitute the above equation
into (22),

B(n) ˜β(n+ 1)− d(n) = T (n)(B(n)β̃(n)− d(n))
= T (n)B(n)β̃(n)− T (n)d(n). (51)

Let H(n) = B(n)−1T (n)B(n) and then

˜β(n+ 1) = B(n)−1T (n)B(n)β̃(n)+B(n)−1(I−T (n))d(n)

= H(n)β̃(n)+ B(n)−1(I − T (n))d(n). (52)

By iteration, we have

˜β(n+ k)

=

k−1∏
i=0

H(n+ i)β̃(n)+ B(n)−1(I − T (n))d(n)

+

k−1∑
j=1

(
k−1∏
i=j

H(n+ i))B(n+ k − 1− i)−1

× (I − T (n+ k − 1− i))d(n+ k − 1− i). (53)

If H(n) is contractive and positive, H(n) = B(n)−1T (n)B(n)
is also positive and contractive. We can conclude from the
assumptions that, for any i,B(n+i) is bounded and invertible,
and I − T (n + i) is positive and contractive, which implies
B(n+ i)−1 and I−T (n+ i) are bounded linear operators [48].
Thus, for the Euclid norm of ˜β(n+ k), there exist positive
constants Ch < 1 and C? < 1, such that

|| ˜β(n+ k)||

≤

k∏
i=0

H(n+ i)β̃(n)|| + ||B(n)−1(I − T (n))d(n)||

+ ||

k−1∑
j=1

(
j∏

i=0

H(n+ i))B(n+ i− j)−1

(I − T (n+ i− j))d(n+ j− 1)||

≤ Ck
h ||β̃(n)|| +

k−1∑
j=0

C j
?D

= Ck
h ||β̃(n)|| +

1− Ck
?

1− C?
D. (54)

Let De =
C?

1−C?
ρD and k →∞, the theorem is proved. �

APPENDIX B
For given n, V is quadratic i.e., there exists a positive
definite and systematical matrix Pn such that V (E(n)) =
E(n)TPnE(n). A Hamilton-Jacobi equation [39] is given as

V (E(n)) = min
Un(1)

(En(1)TQEn(1)+ Un(1)TRUn(1)

+V (En(1)+ BnUn(1))). (55)

It follows

V (E(n))

= min
Un(1)

(En(1)TQEn(1)+ Un(1)TRUn(1)

+ (En(1)+ BnUn(1))TPn(En(1)+ BnUn(1))). (56)

To minimize V , we set the partial derivative with respect to
Un(1) to zero,

2Un(1)TR+ 2(En(1)+ BnUn(1))TPnBn = 0. (57)

Then, the solution is given as

U?n(1) = −(R+ BTn PnBn)−1BTn PnEn(1). (58)

Therefore, we have Hamilton-Jacobi equation as follows

En(1)TPEn(1)
= En(1)TQEn(1)+ U?n(1)TRU?n(1)
+ (En(1)+ BnU?n(1))TPn(En(1)+ BnU?n(1)), (59)

and

En(1)TPnEn(1)
= En(1)TQEn(1)+ U?n(1)TRU?n(1)
+ (En(1)+ BnU?n(1))TPn(En(1)+ BnU?n(1))

= En(1)TQEn(1)+ En(1)TPnBn(R+ BTn PnBn)−1R
× (R+ BTn PnBn)−1BTn PnEn(1)
+En(1)TPnEn(1)+ En(1)TPnBn(R+ BTn PnBn)−1

×BTn PnBn(R+ BTn PnBn)−1BTn PnBnEn(1)
− 2En(1)TPnBn(R+ BTn PnBn)−1BTn PnBnEn(1)

= En(1)TQEn(1)+ En(1)TPnEn(1)
−En(1)TPnBn(R+ BTn PnBn)−1BTn PnEn(1). (60)

Since this must hold for all En(1), we have following alge-
braic Riccati equation [37]

Pn = Q+ Pn − PnBn(R+ BTn PnBn)−1BTn Pn. (61)

The update law of the online learning is given by the optimal
input law Un(1) = FnEn(1) = FnE(n), where Fn = −(R+
BTn PnBn)−1BTn Pn. Let Q = I andR = γ I . We have

Pn = I + Pn − PnBn(γ I + BTn PnBn)−1BTn Pn. (62)

Thus, the algebraic Riccati equation for Pn is simplified as

PnBn(γ I + BTn PnBn)−1BTn Pn = I . (63)
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Let A?
n denote the transit matrix of closed loop sys-

tem. With the optimal control input Un(1) = −(γ I +
BTn PnBn)−1BTn PnEn(1), we have

E(n+ 1) = A?
nE(n)

= (I + BnFn)E(n)

= (I − Bn(R+ BTn PnBn)−1BTn Pn)E(n)
= (I − Bn(γ I + BTn PnBn)−1BTn Pn)E(n)
= (I − (γ (BnBTn Pn)−1 + I )−1)E(n)
= γ (BnBTn Pn)−1(γ (BnBTn Pn)−1 + I )−1E(n)

E(n+ 1) = A?
nE(n)

= (I − Bn(R+ BTn PnBn)−1BTn Pn)E(n)
= (I − Bn(γ I + BTn PnBn)−1BTn Pn)E(n)
= (I − P−1n )E(n). (64)

It is noted that γ (BnBTn Pn)−1 and P−1n are positive definite,
therefore γ (BnBTn Pn)−1(γ (BnBTn Pn)−1 + I )−1 � 0 is also
positive definite and I − P−1n ≺ I . It can be obtained that
0 ≺ A?

n ≺ I , and A?
n is contractive. Denote β̃(n) = (β1(n)−

β?1, β2(n)− β
?
2, . . . , βM (n)− β?M )T . Noticed that E(n+ 1) =

Bn ˜β(n+ 1)− d(n) and E(n) = Bnβ̃(n)− d(n), we have

Bn ˜β(n+ 1)− d(n) = A?
n(Bnβ̃(n)− d(n)). (65)

It follows

˜β(n+ 1) = B−1n A?
nBnβ̃(n)+ B−1n (I −A?

n)d(n). (66)

It is obvious that the eigenvalues of B−1n A?
nBn andA?

n are the
same, which implies thatB−1n A?

nBn is also contractive. By the
same techniques presented in (52), (53) and (54), the theorem
can be completed. �
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