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ABSTRACT The Screen Content Coding (SCC) extension of High Efficiency Video Coding (HEVC)
is developed to improve the coding efficiency of screen content videos. To meet the diverse network
requirement of different clients, bitrate transcoding for SCC is desired. This problem can be solved by a
conventional brute-force transcoder (CBFT) which concatenates an original decoder and an original encoder.
However, it induces high computational complexity associated with the re-encoding part of CBFT. This
paper presents a convolutional neural network based bitrate transcoder (CNN-BRT) for SCC. By utilizing
information from both the decoder side and the encoder side, CNN-BRT makes a fast prediction for all
coding units (CUs) of a coding tree unit (CTU) in a single test. At the decoder side, decoded optimal mode
maps that reflect the optimal modes and CU partitions in a CTU is derived. At the encoder side, the raw
samples in a CTU are collected. Then, they are fed to CNN-BRT to make a fast prediction. To imitate the
optimal mode selection in the original re-encoding part, CNN-BRT involves a loss function that takes both
of the sub-optimal modes and the final optimal modes into consideration. Compared with the HEVC-SCC
reference software SCM-3.0, the proposed CNN-BRT reduces encoding time by 54.86% on average with a
negligible Bjøntegaard delta bitrate increase of 1.01% under all-intra configuration.

INDEX TERMS Transcoding, screen content coding (SCC), fast algorithm, convolutional neural network.

I. INTRODUCTION
Screen content videos have gained popularity with the fast
development of mobile and cloud technologies, and they
have many applications such as online education, video con-
ference with document sharing, remote desktop, and wire-
less display [1]. Screen content videos are captured from
the display screens of various electronic devices, and they
usually show a mixed content of camera-captured natural
image blocks (NIBs) and computer-generated screen content
blocks (SCBs). Compared with NIBs, SCBs have different
characteristics, such as no sensor noise, large flat areas with a
single color, repeated patterns in a frame and limited colors.
To improve the coding efficiency of screen content videos,
the Joint Collaborative Team on Video Coding (JCT-VC)
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launched Screen Content Coding (SCC) extension [2] on top
of High Efficiency Video Coding (HEVC) [3] in 2014.

SCC is developed based on the main framework of HEVC.
Besides the traditional Intra mode that has been included
in HEVC, SCC additionally induces two important coding
modes, intra block copy (IBC) [4], [5] and palette (PLT) [6],
to address the new SCBs. With the observation that screen
content videos contain many repeated patterns within the
same frame, IBC performs motion estimation for the current
coding unit (CU) in the reconstructed areas of the current
frame. Since a SCB usually has limited colors, PLT mode is
designed to encode it with several representative colors and an
indexmap. As a result, SCC outperforms HEVC by achieving
over 50% Bjøntegaard delta bitrate (BDBR) [7] reduction for
typical screen content videos [2].

SCC is expected to be widely used for many screen content
based applications due to its high coding efficiency. In the
real application, a single video stream cannot meet the diverse
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FIGURE 1. Structure of an efficient video transcoder.

network requirement of different clients. For example, a client
under 3G environment prefers a video stream with a lower
bitrate than a client with aWi-Fi connection. A possible solu-
tion is to store several copies of a video with different quality
levels on the server, and then sending the bitstream that well
satisfies the network constraints. However, it significantly
increases the storage cost in the server, and the pre-encoded
video stream may not exactly match the network constraints.
To solve this problem, a video can be encoded at high bitrate
in a server and followed by a bitrate transcoder that bridges
the server and the clients.

Bitrate transcoding is popular for digital video adaption
and distribution, which transforms a high-bitrate input stream
to a low-bitrate output stream within the same video for-
mat. This variable bitrate transcoding is the concern in this
paper. A simple solution is to use a conventional brute-force
transcoder (CBFT), which is concatenated by an original
decoder and an original encoder. The input video is encoded
using a low value of the quantization parameter (QP1). CBFT
first decodes the incoming bitstream to obtain the recon-
structed video, and then the reconstructed video is com-
pletely re-encoded to a bitstream with lower bitrate by using
a high value of QP2. By introducing a parameter 1QP
= QP2− QP1, different levels of bitrate reduction can be
achieved. The advantage of CBFT is that it provides high
rate-distortion (RD) performance since it searches all CU
partitions and mode candidates in the re-encoding process.
However, the exhaustive search in the re-encoding part also
induces very high computational complexity because of the
flexible coding tree unit (CTU) partitioning structure and a
large number of mode candidates. To solve this problem,
an efficient transcoder should utilize information from both
of the decoder and encoder sides to simplify the re-encoding
part, as shown in Fig. 1.

In the literature, many transcoding algorithms have been
proposed based on similar structures in Fig. 1, and they can be
mainly divided into two categories: homogeneous transcod-
ing and heterogeneous transcoding. Heterogeneous transcod-
ing converts bitstream between different video formats such
as MPEG-2 to H.264/AVC transcoding [8], [9], MPEG-2 to
HEVC transcoding [10], H.264/AVC to HEVC transcod-
ing [11], [12], HEVC to SCC transcoding [13]–[15], and SCC
to HEVC transcoding [16]. Homogeneous transcoding refers
to the conversion within the same format to meet new func-
tionalities such as different bitrates [17], [18], different frame
rates [19], [21], different spatial resolutions [22], and the

insertion of error resilience layers [23]. Although the works
in [17], [18] discuss the bitrate transcoding of H.264/AVC
and HEVC, they are not optimal for SCC since the adoption
of new modes makes the transcoding more complicated.

To reduce the computational complexity of SCC bitrate
transcoding, one solution is to replace the original SCC
encoder in CBFT by various fast SCC encoders [24]–[28].
In [24], a fast CU size decision method was proposed for sta-
tionary CUs in screen content videos. All modes are searched
if the depth level of the current stationary CU is equal to its
collocated CU. Otherwise, only PLT mode is checked for the
stationary CU. In [25], three sets of decision tree-based clas-
sifiers were proposed. First, CUs are classified into NIBs and
SCBs so that NIBs only check Intra mode while SCBs only
check IBC and PLT modes. Then the CU partitioning process
is early terminated for smooth NIBs and the direction of Intra
mode is also predicted. In [26], incoming CUs are classified
into NIBs and SCBs by analyzing CU content. Only Intra
mode is checked for NIBs to reduce encoding time. However,
all modes need to be checked for SCBs due to the low classifi-
cation accuracy. Then, the bit cost and the depth information
from the temporal and spatial neighboring CUs are utilized
to early terminate CU partitions. In [27], Intra mode is firstly
searched for all CUs with 2N×2N prediction units (PUs) to
collect some features. Based on these features and CU con-
tent, incoming CUs are classified into partitioning CUs and
non-partitioning CUs. Partitioning CUs directly go to the next
depth level while non-partitioning CUs terminate partitions
in the current depth level. Furthermore, non-partitioning CUs
are classified into NIBs and SCBs. Both PLT and IBC modes
are searched for SCBs, while only Intra mode is checked
for NIBs with N×N PUs. In [28], a sequential arrangement
of decision trees was proposed to directly make mode clas-
sification for incoming CUs. The encoding time is further
reduced since the different decision for PLT and SCB can be
considered for a SCB. Although the complexity of the SCC
encoder is reduced by these techniques, the reduction is still
limited. First, the fast prediction rules in [24]–[28] rely on
the assumption that the computer-generated SCBs are noise-
free, but this assumption does not hold for decoded videos in
the CBFT due to the lossy encoding and decoding. Second,
they only utilize the information from the encoder side for
computational complexity reduction but do not consider the
information from the decoder side.

A more efficient solution is to design a transcoder using
information from both the encoder side and the decoder
side, as shown in Fig. 1. In the literature, there is only one
work [29] studying the fast bitrate transcoding scheme of
SCC using the structure in Fig. 1. It records the optimal
mode, PU size, and CU size in the decoder side. Then several
hand-crafted rules are derived to skip the unnecessary mode
candidates by using the correlation between the current CU
and the corresponding decoded CU. Besides, another set of
hand-crafted rules are derived to skip partial PUs to further
reduce the complexity of the re-encoding part. Although it
shows better performance than the aforementioned fast SCC
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encoder techniques [24]–[28], it still leaves large room for
further improvement. Since only limited hand-crafted rules
are derived in [29], it may not handle the complicated sit-
uation in SCC transcoding well. Therefore, learning based
approaches utilizing a large amount of training data are
desired.

In this paper, we propose a convolutional neural net-
work (CNN) based bitrate transcoder for SCC (CNN-BRT).
With the help of CNN, CNN-BRT can extract extensive
features automatically by utilizing large-scale training data.
Specifically, CNN-BRT makes fast predictions in the CTU
level, whichmeans all CUs in a CTU get their predicted labels
in a single test. To alleviate the burden of implementation,
we integrate the mode decision and CU partitioning decision
into a single network, where skipping a CU level is treated
as a special case of mode decision. Therefore, four classes
are defined for a CU, which are ωIntra, ωIBC , ωPLT , ωAllskip,
i.e. selecting Intra, IBC, PLT and skipping all modes for the
CU. At the decoder side, the decoded optimal mode maps
that present the optimal modes and partitioning structure of a
CTU is extracted. At the encoder side, the raw samples of a
CTU associated with the decoded optimal mode map are fed
to CNN-BRT to make a fast prediction. To imitate the optimal
mode selection in the original re-encoding part, CNN-BRT
involves a loss function that considers both the sub-optimal
modes and the final optimal modes. The difference between
our contributions and the related schemes can be summarized
as 1) unlike the fast SCC encoders in [24]–[28] that only
consider information from the encoder side, CNN-BRT addi-
tionally utilizes information from the decoder side. 2) Com-
pared with the fast SCC bitrate transcoder [29], CNN-BRT
employs extensive learnable parameters to replace the lim-
ited hand-crafted rules. 3) Unlike [24]–[29] only focus on
the final optimal modes, CNN-BRT additionally utilizes the
sub-optimal modes to guide the extraction of feature maps.
With these advantages, CNN-BRT outperforms the existing
approaches [24]–[29] by a large margin.

The rest of this paper is organized as follows. Section II
presents the review and analysis of bitrate transcod-
ing. Section III presents the proposed efficient bitrate
transcoder CNN-BRT. The experimental results are pre-
sented in Section IV to verify the performance of the pro-
posed CNN-BRT. Finally, Section V concludes the paper.
Table 1 lists the abbreviations used in this paper.

II. REVIEW AND ANALYSIS OF SCC BITRATE
TRANSCODING
A. REVIEW ON INTRA PREDICTION IN SCC
SCC inherits the quadtree-based block partitioning scheme
from HEVC. Each video frame is divided into many
non-overlapped CTUs of 64×64 pixels. For each CTU,
a recursive partitioning process is performed. A CU
of 2N×2N pixels can be partitioned into four smaller CUs
of N×N pixels, and the value of 2N can be 64, 32, and 16 in
SCC. Therefore, the size of a CU can be 64, 32, 16, and 8, and

TABLE 1. List of abbreviations.

they are referred to as CUs at the depth level of 0, 1, 2, and 3,
respectively. In total, a CTU have 85 different CUs (1, 4, 16,
and 64 CUs at the depth level of 0, 1, 2, and 3, respectively).
To select the sub-optimal mode of each CU, an exhaustive
mode searching process is adopted. The RD cost is calculated
for each mode x, x ∈{Intra, IBC, PLT}, as

Jx = Dx + λ× Rx (1)

where λ is a Lagrange multiplier,Dx and Rx are the distortion
and bit cost of the CU being coded with a mode x. The sub-
optimal mode associated with a CU is selected as the one
with the smallest value of Jx . To determine the optimal CTU
structure, RD costs are compared between a CU and its four
sub-CUs. The partitions of a CU are removed if the sum of
the RD costs of its four sub-CUs is larger than the RD cost
of the CU. Otherwise, the CU is divided into four sub-CUs.
Finally, the best combination of CU sizes within a CTU is
determined as the one with the smallest sum of RD costs,
and the corresponding sub-optimal modes become the final
optimal modes of the CTU.

Tomodel the mode decision of a CTU, a sub-optimal mode
map and an optimal mode map in each depth level can be
derived. Fig. 2 shows the representation of the mode decision
of a CTU. Each element in a mode map contains a class label
of 0 to 3, which represent ωAllskip, ωIntra, ωIBC , and ωPLT ,
respectively. The recursive partitioning process is started at
the CTU, as shown in Fig. 2(b). By comparing the RD costs
among Intra, IBC and PLT modes, a sub-optimal mode is
selected for each CU. After calculating the RD costs for all
CUs, the sub-optimal modes of the CTU are represented by
four sub-optimal mode maps, as shown in Fig. 2(a). Noted
that the sub-optimal mode maps only contain class labels of 1
to 3 since a CU can only select a sub-optimal mode from
classωIntra,ωIBC , andωPLT . Then the RD costs are compared

VOLUME 7, 2019 107213



W. Kuang et al.: Efficient Intra Bitrate Transcoding for SCC Based on CNN

FIGURE 2. Representation of the mode decision of a CTU: (a) sub-optimal mode maps of a CTU; (b) recursive partitions in a CTU; (c) optimal partitioning
structure of a CTU (denoted by blue squares); (d) optimal mode maps of a CTU.

between a CU and its four sub-CUs to decide whether the
CU should be partitioned or not. By selecting the structure
with the smallest sum of RD costs, the optimal partitioning
structure of the CTU is shown in Fig. 2(c), which are denoted
by blue squares. Then the optimal mode maps of the CTU are
shown in Fig. 2(d). Since the CTU in Fig. 2 is not coded as
a single 64×64 CU, the label of the mode map in the depth
level of 0 is set to 0, whichmeans that all modes are skipped in
the depth level of 0. Then, the CTU contains two 32×32 CUs
coded by Intra mode and PLTmode so that the corresponding
labels of the mode map in the depth level of 1 are set to
1 and 3. The remaining labels of the mode map are set to 0 to
denote that they are not coded as 32×32 CUs. This process is
repeated until the four optimal mode maps are all generated.
By using this representation, the optimal mode decision in
a CTU can be modeled as a classification problem, and the
computational complexity of CBFT is reduced significantly
if the classification problem can be solved.

B. ANALYSIS OF SCC BITRATE TRANSCODING
To analyze the impact of different values of 1QP on the
bitrate of the output video stream, we performed the bitrate
transcoding for sequences in the common test conditions
(CTC) [30] by using CBFT. In CTC, sequences are classi-
fied into four categories according to their content: text and
graphics with motion (TGM), mixed content (M), anima-
tion (A) and camera-captured content (CC). A representative
sequence is selected from each category for the analysis, and
they are shown in Fig. 3. Each sequence was encoded and
decoded by the SCC reference software HM-16.2+SCM-
3.0 [31] with QP1 ∈ {22, 27, 32, 37} under all-intra (AI)
configuration, and then the decoded sequencewas re-encoded
by HM-16.2+SCM-3.0 with QP2, where QP2 = QP1+1QP,
and 1QP ∈ {2, 4, 6}. It is noted that the value of 1QP is
limited to 6 in the proposed transcoding scheme. As sug-
gested by [18], further bitrate reduction should be achieved
by other transcoding methods such as temporal transcoding
and spatial transcoding. Table 2 shows the bitrate reduction by

TABLE 2. Bitrate reduction by applying different values of 1 QP.

applying different values of 1QP. It is observed that a larger
value of1QP leads to a larger reduction of bitrate. By setting
1QP to 2, 4, and 6, 21.29%, 38.72% and 51.14% bitrates are
reduced on average, respectively.

Table 3 presents the percentage of areas that share the
same CU sizes and optimal modes between the high-bitrate
input stream and the low-bitrate output stream under QP1
of 32 and 1QP ∈ {2, 4, 6}, and similar results are observed
for other values of QP1. It is observed that there exists a
strong correlation of the CU size and optimal mode between
the high-bitrate stream and the low-bitrate stream, and the
strength of the correlation increases as the value of 1QP
decreases. On average, 79.16%, 70.85%, and 66.65% areas
share the same optimal modes between the high-bitrate and
low-bitrate streams for 1QP of 2, 4, and 6, respectively.
Based on this observation, the information from the decoder
side is useful to speed up the re-encoding process.

Furthermore, the re-encoding time distribution of each
mode is also analyzed with QP1 ∈ {22, 27, 32, 37} and1QP
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FIGURE 3. Examples of screen content sequences.

TABLE 3. Percentage of areas with the same CU sizes and optimal modes
between the input and output streams.

∈ {2, 4, 6}. The average results are shown in Table 4 for
each sequence. It is observed that Intra mode takes the largest
percentage of re-encoding time, which is 58.53%, followed
by IBC mode and PLT mode, which are 35.64% and 6.04%,
respectively. Therefore, it is very efficient to skip unnecessary
Intra mode and IBCmode, while less re-encoding time reduc-
tion can be obtained by skipping unnecessary PLT mode.

III. PROPOSED EFFICINET BITRATE TRANSCODER
CNN-BRT
The computational complexity of the CBFT mainly comes
from the exhaustive mode searching process in the
re-encoding part. To simplify the transcoding process,
we model the optimal mode selection in the re-encoding
part as a classification problem. Since there exists a strong
correlation of the optimal mode between the high-bitrate
input stream and the low-bitrate output stream, information
from the decoder side is collected to speed up the re-encoding
process. Instead of deriving limited hand-crafted rules based
on humans’ observation as in [29], a CNN based transcod-
ing approach is proposed. Since it contains many trainable

TABLE 4. Re-encoding time distribution of each mode.

parameters and learns extensive features, better performance
can be provided.

A. NETWORK STRUCTURE
To improve the prediction efficiency, CNN-BRT is designed
to predict the modes of all CUs in a CTU. For each CU,
CNN-BRT outputs the probabilities of selecting each class,
i.e., P(ωIntra), P(ωIBC ), P(ωPLT ), and P(ωAllskip). If the proba-
bility of selecting a mode x, x ∈{Intra, IBC, PLT}, is smaller
than a threshold, x is skipped so that the encoding time is
reduced. The structure of CNN-BRT is shown in Fig. 4,
and the kernel sizes and feature map dimensions are also
presented. CNN-BRT mainly contains convolutional layers
and deconvolutional layers for feature extraction, and con-
catenated layers are adopted to join the extracted features
maps and the decoder side information. To imitate the optimal
mode selection in the original re-encoding part, CNN-BRT
involves the auxiliary classifiers to predict the sub-optimal
modes and the final classifiers to predict the final optimal
modes for each CU. The components of CNN-BRT are
described as follows.

1) CONVOLUTIONAL LAYERS
CNN-BRT contains 13 convolutional layers. The lumi-
nance component of a decoded CTU is input to CNN-BRT
and it firstly goes through five convolutional layers, i.e.,
conv1–conv5, for feature extraction. conv1 adopts the ker-
nel size of 4×4 and conv2–conv5 adopt the kernel size
of 2×2. Since the CTU partitioning structure contains non-
overlapping CUs, the strides of conv1–conv5 are set to
the width of their kernel sizes to perform non-overlapping
convolutions. The width and height of the feature maps in
conv1–conv5 are down-sampled by half in the next layer
because of the non-overlapping convolutions, and we also
double the channel number of feature maps in the next
layer. It is noted that the sizes of the output feature maps of
conv2–conv5 in Fig. 4 are equal to the number of CUs in the
depth levels of 3 to 0 in Fig. 2, which are 8×8, 4×4, 2×2, and
1×1, respectively. By using this arrangement, the receptive
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FIGURE 4. Network structure of CNN-BRT.

field of each element in a feature map is always equal to a CU
size in the corresponding depth level, so that conv2–conv5
can extract local features for CUs in the depth levels of 3 to
0 without the influence of other CUs. Another two sets of
convolutional layers, i.e., conv6–conv9 and conv10–conv13,
are adopted to incorporate the outputs of the concatenating
layers and generate the feature maps in auxiliary classifiers
and final classifiers.

2) DECONVOLUTIONAL LAYERS
CNN-BRT contains three deconvolutional layers,
deconv1–deconv3, to enlarge the feature maps of conv5 using
the kernel size of 2×2 and stride of 2. Since the receptive field
of each element in the feature maps of conv5 is the entire
CTU, the receptive field of each node in the feature maps of
deconv1–deconv3 also becomes the entire CTU. Therefore,
deconv1–deconv3 can extract global features for CUs in the
depth levels of 1 to 3 by introducing the influence of other
CUs. At each feature map enlarging step, the channel number
of the feature maps is halved. Finally, the global feature maps
and local feature maps have the same dimension for each
depth level.

3) CONCATENATING LAYERS
To join the decoder side information and the encoder side
features, the concatenating layers concat1–concat4 concate-
nate the feature maps of conv2–conv5 to the correspond-
ing decoded optimal mode maps before going to the next
layer. Besides, the outputs of concat1–concat3 are further
concatenated to the corresponding global feature maps by

concat5–concat7 to join the local feature maps and global
feature maps.

4) AUXILIARY CLASSIFIERS AND FINAL CLASSIFIERS
As reviewed in Section II.A, a SCC encoder first decides
the sub-optimal mode of a CU by its local content and
then decides the final optimal mode of a CU by com-
paring it with CUs in other depth levels. To imitate the
original SCC re-encoding part, CNN-BRT includes both of
the auxiliary and final classifiers, and the softmax func-
tion is used to predict the probability for each class. Since
the receptive field of each element in the feature maps of
conv6–conv9 is a local CU, Auxiliary Classifier0–Auxiliary
Classifier3 are designed to predict the sub-optimal modes for
CUs in the depth levels of 0 to 3, respectively. Comparatively,
the receptive field of each element in the feature maps of
conv10–conv13 is the entire CTU. Therefore, Final
Classifier0–Final Classifier3 are designed to predict the final
optimal modes for CUs in the depth level 0 to 3, respectively.
Noted that the auxiliary classifiers only predict the labels
of ωIntra, ωIBC , and ωPLT since a CU can only select a
sub-optimal mode from Intra, IBC, and PLT, while the final
classifiers predict labels of ωPLT , ωIntra, ωIBC , and ωAllskip
since a CU can select an optimal mode from Intra, IBC and
PLT, or skip all modes and be coded in other depth levels.
The auxiliary classifiers can guide the learning process of the
training parameters by considering the loss of the sub-optimal
mode prediction, and their impact will be investigated in the
ablation study in Section IV.A. As seen in Fig. 4, the auxiliary
classifiers and the final classifiers output 1, 4, 16, and 64
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labels for CUs in the depth levels of 0 to 3, respectively,
in accordance with the hierarchical CTU partitioning struc-
ture in Fig. 2. Therefore, the 85 CUs in a CTU get their
predictions in a single test by running CNN-BRT.

In CNN-BRT, each convolutional or deconvolutional layer
is followed by the rectified linear unit (ReLU) activation
function, except for conv6–conv13, where softmax is utilized
to generate the output labels.

B. TRAINING STRATEGY
To train the proposed CNN based network in CNN-BRT,
22 sequences are carefully selected from [32]–[37] to cover
various video content, and they are divided into training
sequences and validation sequences. Based on the same con-
tent classification criterion of CTC, we also classify those
sequences into the four categories of TGM, M, A, and CC,
and they are shown in Table 5. It should be noted that
sequences in [32]–[37] are not included in CTC [30] so that
the trained CNN-BRT does not bias the testing sequences
in CTC [30], which are used to evaluate the performance
of CNN-BRT and compare with other methods [24]–[29].
To generate the training data, 50 frames were extracted with
an equal interval from each training sequence. They were
firstly encoded by the original HM-16.2+SCM-3.0 with QP1
of 22, 27, 32 and 37 to generate the high-bitrate streams.
Second, the high-bitrate streams were decoded to get the
decoded videos with the decode optimal mode maps. Finally,
the decode videos were re-encoded by HM-16.2+SCM-
3.0 with QP2 to generate the low-bitrate streams while col-
lecting the luminance component and the ground-truth labels
of each CTU. In this way, 1,400,000 CTUs were collected as
the training data, and a single model was obtained by using
mixed training data from the four QPs.

The model of CNN-BRT was trained by Caffe [38], and
a GPU of GeForce GTX 1080 Ti was used to accelerate
the training process. In the training process, the trainable
parameters in CNN-BRT are initialized by the ‘‘msra’’ fil-
ter [39], and the Adam optimizer [40] is adopted to update
the trainable parameters. The learning rate policy of ‘‘step’’ is
used with the base learning rate of 0.01, and the learning rate
is multiplied by 0.1 every 10,000 iterations. To alleviate the
overfitting problem, a weight decay of 0.005 is also adopted.

To imitate the original SCC re-encoding part, a loss func-
tion is derived to optimize both the sub-optimal mode deci-
sion of the auxiliary classifiers and the optimal mode decision
of the final classifiers. The loss function of an i-th training
sample in a batch is defined as the weighted summation of the
losses from the final classifiers and the auxiliary classifiers

li = lFinal +W ·lAuxiliary (2)

where lFinal and lAuxiliary are the losses from the final clas-
sifiers and the auxiliary classifiers, respectively. A weighted
factor W is adopted to balance these losses. Since the labels
of the final classifiers are directly used for fast prediction,
W is set to 0.5 so that the loss function is more focused on
the final classifiers. lAuxiliary and lFinal are defined as the sum

TABLE 5. Training and validation sequences for CNN-BRT.

of cross-entropy over the 85 labels in a CTU, and they are
represented by

lAuxiliary =
∑84

j=0
f (ωAuxiliary,j, ω̂Auxiliary,j) (3)

lFinal =
∑84

j=0
f (ωFinal,j, ω̂Final,j) (4)

where ωAuxiliary,j and ωFinal,j are the ground-truth classes of
the auxiliary classifiers and the final classifiers for the j-
th CU. ω̂Auxiliary,j and ω̂Final,j are the predicted classes of
the auxiliary classifiers and the final classifiers for the j-th
CU. f (·, ·) represents the cross-entropy function between the
ground-truth class and the predicted class, and it is repre-
sented as

f
(
ω, ω̂

)
= −

∑
c
y (ωc = ω)log(P(ωc = ω̂)) (5)

where c denotes the class index, and c ∈ {Intra, IBC, PLT,
Allskip}. y (ωc = ω) is 1 if ωc is the same as the ground-truth
class ω, otherwise, y (ωc = ω) is 0. P(ωc = ω̂) denotes the
probability that ωc is the same as the predicted class ω̂. The
loss function for all training samples in a batch is derived by
averaging the loss of each sample, and it is written as

L =
1
N

∑N

i=1
li (6)

where N is the batch size, and it is set to 1024. The training
loss of CNN-BRT is shown in Fig. 5. It is observed that the
training process of CNN-BRT converges very fast, and we
terminate the training after 50,000 iterations.

C. FAST RE-ENCODING
After generating the model of CNN-BRT, it is invoked in
HM-16.2+SCM-3.0 by the DNN tool of OpenCV 3.4.1 for
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TABLE 6. Performance of the proposed CNN-BRT for validation sequences with different values of α.

FIGURE 5. Training loss of CNN-BRT alongside iterations.

fast re-encoding. For each CTU, the final classifiers in
CNN-BRT output the 85 labels for 85 CUs in it, and
each label contains the probabilities of four classes, i.e.,
P(ωc), c∈{Allskip, Intra, IBC, PLT}. Unlike the fast algo-
rithms [24]–[29] that proposed different models for making
fast mode decision and fast CU partitioning decision sepa-
rately, CNN-BRT integrates the fast mode decision and fast
CU partitioning decision into a single model by including
the class ωAllskip. In the fast re-encoding phase, a threshold
α is used to decide whether a CU needs to check a mode
x, x ∈{Intra, IBC, PLT}. If the probability of checking a
mode x is smaller than the value of α, i.e., P(ω = x) < α,
the mode x is regarded as unnecessary, and it is skipped to
speed up the transcoder. Furthermore, if the probabilities of
selecting Intra, IBC and PLT modes are all smaller than α,
ωAllskip will be selected, which means that the current CU
size can be skipped. Before a CU continues the partitioning
process, the labels of the CUs in the deeper depth levels
are analyzed to perform the early CU partitioning decision.
If an area of a CU always selects the class ωAllskip in all
deeper depth levels, the CU cannot be encoded if it continues
partitioning. Therefore, CU partitions are early terminated to
avoid unnecessary computation.

IV. EXPERIMETNAL RESULTS
For the simplicity of comparison, the proposed CNN-BRT
has been implemented in the same reference software as
in the only work of fast SCC bitrate transcoding [29],
HM-16.2+SCM-3.0, and the proposed Caffe model can be
found on our website [41]. Extensive experiments were

conducted on a HP EliteDesk 800 G1 computer with a 64-bit
Microsoft Windows 10 OS running on an Intel Core i7-4790
CPU of 3.6 GHz and 32.0 GB RAM. All experiments were
conducted under AI configuration and CTC [30]. All test
sequences were firstly encoded by HM-16.2+SCM-3.0 with
QP1 ∈ {22, 27, 32, 37}, and then the decoded sequences were
re-encoded by a transcoder with the QP2 = QP1+1QP,1QP
∈ {2, 4, 6}. By using this arrangement, three groups of QP2
are tested for each sequence, i.e., {24, 29, 34, 39}, {26, 31, 36,
41}, and {28, 33, 38, 43} in accordance with1QP of 2, 4, and
6, respectively. The coding efficiency and re-encoding time of
the proposed CNN-BRTwere compared with CBFT, and they
are measured by BDBR and re-encoding time increase, 1
Time, in percentage (%). To calculate 1 Time, the inference
time of the CNN model and the re-encoding time are both
included. To calculate BDBR, the final transcoded video is
compared to the uncompressed video. First, various ablation
experiments were performed to decide the optimal structure
of CNN-BRT by using the validation sequences in Table 5.
Second, the performance of CNN-BRTwas investigated from
various aspects by using the testing sequences in CTC and it
is compared with existing fast methods [24]–[29].

A. ABLATION STUDY
In this sub-section, various ablation experiments were con-
ducted to investigate the performance of CNN-BRT by using
the validation sequences shown in Table 5, and the average
results with the three groups of QP2 for different ablation
experiments are presented in Table 6 and Table 7.

1) THRESHOLD DETERMINATION
In the fast re-encoding stage, a confidence threshold α is set
to decide whether to check a mode x, x∈{Intra, IBC, PLT},
and it controls the trade-off between1 Time and BDBR. If α
is set to a larger value, more mode candidates are skipped,
and it leads to more re-encoding time reduction with a larger
increase in BDBR. Otherwise, a smaller value of α results
in less re-encoding time reduction with a smaller increase
in BDBR. Therefore, the proposed CNN-BRT is complexity
scalable. Table 6 shows the performance of CNN-BRT with
α from 0.03 to 0.09. It is observed that CNN-BRT pro-
vides 45.64%–62.55% encoding time reduction with BDBR
increased by 0.61%–1.35%. In the following sub-sections,
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TABLE 7. Performance comparison of CNN-BRT and other possible structures.

α is set to 0.05 for further discussions, where 55.72% encod-
ing time is reduced with a 0.81% increase in BDBR.

2) UTILIZING ONLY LOCAL FEATURES AND ONLY GLOBAL
FEATURE
As shown in Fig. 4, CNN-BRT utilizes convolutional layers
conv2–conv5 and deconvolutional layers deconv1–conv3 to
extract local feature maps and global feature maps in a CTU,
respectively. Then the local feature maps and the global fea-
ture maps are concatenated together to feed to the final clas-
sifiers. To show the importance of this design, experiments
were performed to decouple the local feature maps and global
feature maps by removing concat5–concat7. First, only the
feature maps of conv2–conv5 are fed to the final classifiers
so that only local feature maps are utilized. Second, only the
feature maps of conv5 and deconv1–deconv3 are fed to the
final classifiers so that only global feature maps are utilized.
Their results are shown in Table 7, and the performance of
the proposed CNN-BRT with α of 0.5 is also shown in this
table for the convenience of comparison. It is observed that
utilizing only local features provides a similar re-encoding
reduction to the proposed CNN-BRT, but it induces a much
higher increase in BDBR, which is 2.08%. On the other
hand, utilizing only global features also shows worse per-
formance than the proposed CNN-BRT, which provides a
51.72% re-encoding time reduction with BDBR increased
by 1.24%. Therefore, concatenating the local features and
the global features helps to improve the performance of the
proposed CNN-BRT.

3) REMOVAL OF DECODED OPTIMAL MODE MAPS
To investigate the importance of the decoded optimal mode
maps, experiments were performed by removing it from the
proposed CNN-BRT, and the results are shown in Table 7. It is
observed that the removal of the decoded optimal mode maps
provides inferior performance than the proposed CNN-BRT,
where 40.69% re-encoding time is reduced with BDBR
increased by 2.99%. Therefore, the decoded optimal mode
maps are important to the proposed CNN-BRT.

4) RE-ARRANGEMENT OF DECODED OPTIMAL MODE MAPS
In the proposed CNN-RBT, the decode optimal mode maps
are concatenated to the local feature maps of conv2–conv5
before being fed to the next layer and the auxiliary classifiers.
Therefore, they have an impact on the feature map generation
of the next layer, the auxiliary classifiers, and the final clas-
sifiers. Alternatively, they can be input to CNN-BRT after all
feature maps are generated, where they are concatenated to
the local feature maps and the global feature maps before
going to the final classifiers. By re-arranging the decode
optimal mode maps, they only have an impact on the final
classifiers, and the results are shown in Table 7. It is observed
that re-arranging the feature maps provides worse perfor-
mance than the proposed CNN-BRT, where 45.55% encoding
time is reduced with BDBR increased by 1.26%. Therefore,
inputting the decode optimal mode maps into CNN-BRT in
an early stage can help its performance.

5) REMOVAL OF AUXILIARY CLASSIFIERS
In the proposed CNN-BRT, the final classifiers and the auxil-
iary classifiers are both included to imitate the mode decision
of the original re-encoding part. The auxiliary classifiers
utilize the local features to predict the sub-optimal mode
while the final classifiers utilize both the local features and
the global features to predict the final optimal mode. Alter-
natively, the auxiliary classifiers can be removed so that only
final classifiers guide the learning process of the training
parameters. The results are shown in Table 7. It is observed
that the removal of the auxiliary classifiers provides inferior
performance than the proposed CNN-BRT, where 52.95% re-
encoding time is reduced with BDBR increased by 1.02%.
This observation proves the importance of the auxiliary clas-
sifiers, which can guide the learning process of the training
parameters.

B. PERFORMANCE EVALUATION OF CNN-BRT
Table 8 presents the detailed experimental results for each
sequence with each 1QP by using the proposed CNN-BRT.
It is observed that as the value of1QP decreases from 6 to 2,
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TABLE 8. Performance of the proposed CNN-BRT for sequences in YUV 4:4:4 form at under different QPs.

better performance is provided because the correlation
between the final optimal mode and the decoded optimal
mode increases. Specifically, for 1QP with the values of 2,
4, and 6, re-encoding time of 55.63%, 54.86%, and 54.11%
is reduced with BDBR increased by 0.61%, 0.97% and
1.45% on average, respectively. By average the results of
different 1QPs, 54.86% re-encoding time is reduced with
BDBR increased by 1.01%. Table 9 shows the average results
with the three groups of QP2 by applying CNN-BRT to
the training sequences, where 52.60% re-encoding time is
reduced with BDBR increased by 0.89%. It is observed that
similar results are provided for both training sequences and
testing sequences. Therefore, CNN-BRT does not run into
the overfitting problem and it is generalizable to the unseen
sequences.

We also evaluate the performance of CNN-BRT by inves-
tigating the hit rate of the proposed CNN-BRT, which is
calculated as the percentage of areas coded by the same mode
as the original CBFT, and the results are shown in Table 10.
It is observed that the hit rate of CNN-BRT is above 90% for
all sequences under different values of QP1 and 1QP. Under
a certain value of QP1, the hit rate increases as the value of
1QP decreases. For example, hit rates of 97.31%, 96.55%,
and 96.18% are provided on average for 1QP of 2, 4, and
6 under QP1 of 22, respectively. It is due to the same reason
that the correlation between the final optimal mode and the
decoded optimal mode map increases as the value of 1QP
decreases.

Then, the performance of CNN-BRT is compared with the
existing methods to evaluate its efficiency. These methods
include the fast encoders in [24]–[28] and the fast transcoder
in [29]. It should be noted that the fast encoders in [24]–[28]
are incorporated into CBFT by replacing the original SCC
encoder for re-encoding time reduction. Zhang et al. [29]
is the only existing fast bitrate transcoding method in the
literature. We re-implemented the fast encoders in [24]–[28]
and the proposed CNN-BRT in the same reference software
as the fast transcoder in Zhang et al. [29], and all experi-
mental settings are kept the same as in Zhang et al. [29]

TABLE 9. Performance of the proposed CNN-BRT for training sequences.

for a fair comparison. The indirect comparison is given
between the proposed CNN-BRT and Zhang et al. [29] by
using the results from its original publication. The results for
sequences in YUV 4:4:4 format are provided in Table 11,
and the largest decrease in 1Time and the smallest increase
in BDBR are highlighted by boldface for each sequence.
It is observed that the proposed CNN-BRT outperforms the
existing methods by a large margin. Since the fast prediction
rules in [24]–[28] do not utilize the information from the
decoder side, and they rely on the assumption that the SCBs
are noise-free, they show poor performance compared with
the proposed CNN-BRT. Specifically, CBFT+Zhang [24],
CBFT+Duanmu [25], CBFT+Lei [26], CBFT+Yang [27],
and CBFT+Kuang [28] provides 31.83%, 30.15%, 31.61%,
22.00% and 41.62% with BDBR increased by 1.65%, 6.08%,
2.34%, 2.38%, and 4.59% on average, respectively. Although
the fast bitrate transcoder of Zhang et al. [29] utilizes both the
decoder side information and the encoder side information,
it shows inferior performance than the proposed CNN-BRT
because it only derives limited hand-crafted rules to speed up
the re-encoding process. For their selected sequences, Zhang
et al. [29] provides a 44.49% re-encoding time reduction
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TABLE 10. Hit rate of the proposed CNN-BRT.

TABLE 11. Performance evaluation of different methods compared with HM-16.2+SCM-3.0 under CTC for sequences in YUV 4:4:4 format.

with a 1.75% increase in BDBR. Comparatively, the pro-
posed CNN-BRT contains extensive learnable parameters to
address the classification task, and it outperforms Zhang et al.
[29] by providing a 55.82% re-encoding time reduction with
BDBR increased by 1.01%.

In the fast re-encoding process, the proposed CNN-BRT
gives the probabilities of four classes, i.e, P(ωIntra), P(ωIBC ),
P(ωPLT ), and P(ωAllskip). These probabilities allow the adap-
tive skipping of Intra, IBC, PLT, or an entire CU by skipping
all modes for it. To evaluate the contribution of each individ-
ual skipping, Table 12 presents the performance of CNN-BRT
by enabling adaptive skipping of an individual mode or an
entire CU separately. As analyzed in Table 3, Intra mode
takes up the largest percentages of re-encoding time, followed
by IBC and PLT modes. Similar to this trend, it is observed
in Table 12 that enabling the adaptive skipping of Intra mode
provides the largest re-encoding time of 28.04%, followed
by the adaptive skipping of IBC and PLT modes, where

10.03% and 2.77% re-encoding time is reduced, respectively.
Furthermore, enabling the adaptive skipping of an entire CU
provides 15.75% re-encoding time reduction.

Table 13 shows the computational overhead of the pro-
posed CNN-BRT for each sequence, and it is calculated as the
percentage of the inference time of the CNNmodel to the total
re-encoding time of the proposed CNN-BRT. It is observed
that the computational overhead of CNN-BRT is only 4.24%
on average based on a CPU. Since CNN-BRT adopts the
non-overlapping convolution and it makes the predictions for
all CUs in a CTU in a single test, the computational overhead
of the proposed CNN-BRT is negligible.

Furthermore, we investigate the performance of the
CNN-BRT applied to sequences in YUV 4:2:0 and RGB
4:4:4 formats, and the results are shown in Table 14. For
sequences in YUV 4:2:0 format, the luminance component
of a CTU is directly input into CNN-BRT. For sequences in
RGB 4:4:4 format, color space conversion is performed to

VOLUME 7, 2019 107221



W. Kuang et al.: Efficient Intra Bitrate Transcoding for SCC Based on CNN

TABLE 12. Performance of the proposed CNN-BRT by enabling the adaptive skipping of intra, IBC, PLT modes, or an entire CU.

TABLE 13. Computational overhead of each sequence.

TABLE 14. Performance of CNN-BRT for sequences in RGB 4:4:4 and YUV
4:2:0 formats.

obtain the luminance component. Although the CNN model
is trained by data in YUV 4:4:4 formats, it is also gener-
alizable to sequences in other formats. It is observed that
CNN-BRT provides 54.96% and 37.15% re-encoding time

reduction with 0.93% and 0.51% increase in BDBR for
sequences in RGB 4:4:4 and YUV 4:2:0 formats, respec-
tively. The time reduction is relatively smaller for YUV
4:2:0 sequences because there are many coding techniques
disabled, such as cross component prediction and adaptive
color transform. Since YUV 4:4:4 is the most widely used
format for screen content sequences, and most existing meth-
ods in [24]–[29] do not support sequences in other formats,
we cannot make the comparison for sequences in YUV 4:2:0
and RGB 4:4:4 formats.

V. CONCLUSION
In this paper, an efficient bitrate transcoder CNN-BRT
was proposed by using a convolutional neural network.
To reduce the computational complexity in the re-encoding
part, CNN-BRT can skip the checking of unnecessary mode
candidates. By modeling the mode decision from the decoder
side as the decoded optimal mode maps, the decoder side
information is fed to CNN-BRT together with the raw sam-
ples from the encoder side, and CNN-BRT eliminates unnec-
essary mode candidates for the entire CTU in a single
test. To imitate the optimal mode selection in the origi-
nal re-encoding part, a loss function considering both the
sub-optimal modes and the final optimal modes is derived.
Experimental results show that the proposed CNN-BRT
outperforms all existing methods by providing 54.86% re-
encoding time reduction with only 1.01% increase in BDBR
on average for typical screen content sequences under AI
configuration.
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