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-is study proposes a trial-and-error congestion pricing method to achieve system optimum under day-to-day flow dynamics
with unknown demand. Travelers are assumed to adjust their route choice day by day so that the resultant traffic flow under a trial
of tolls evolves from one day to another. We rigorously demonstrate that if psychological inertia is considered in travelers’ day-to-
day route choice behavior, the convergence of the proposed trial-and-error congestion pricing method can be guaranteed without
requiring the observed network flows to be in user equilibrium. Furthermore, the proposed method also allows tolls to be updated
at irregular time intervals, which greatly relaxes the implementation requirements of existing congestion pricing schemes in the
literature.-is study is very significant from a practical point of view because it provides a flexibility approach that greatly reduces
the implementation time of the traditional trial-and-error congestion pricing method. Numerical experiments are conducted to
validate our theoretical findings.

1. Introduction

Congestion pricing has been recognized as an efficient ap-
proach to alleviate traffic congestion and improve social
welfare [1–4]. -e theoretical background of congestion
pricing is based on the fundamental economic principle of
marginal-cost pricing, which states that travelers using
congested roads should pay a toll equal to the difference
between the marginal social cost and the marginal private
cost [5, 6]. -e marginal-cost pricing internalizes the con-
gestion externalities exerted by participants on each other so
that a system optimum flow pattern can be achieved in the
network.

Traditionally, the determination of the marginal-cost toll
requires to solve a system optimal traffic equilibrium
problem, which takes the link travel time function and the
OD demand as its inputs. However, in practice, it is time
consuming, expensive, and challenging to evaluate the ac-
curate demand for each OD pair [7–10]. To circumvent this

problem, trial-and-error congestion pricing methods, which
do not require explicit knowledge of the OD demand, are
proposed [11–13].-e general procedure of these methods is
as follows: observe the traffic flow on each link, based on
which a trial link flow pattern is generated. -e toll for each
link is then set using the trial link flows and implemented for
the next trial. -is procedure is repeated until the system
optimum is achieved.

In the literature, the trial-and-error congestion pricing
method was first proposed by Li [14], who used a bisection
procedure to adjust the toll iteratively according to the
observed UE flow on a single road link. Yang et al. [11]
incorporated an iterative marginal-cost toll adjustment
procedure into the method of successive averages (MSA)
and demonstrated its convergence to a system optimum in a
general network. Han and Yang [15] further extended Yang
et al.’s method to networks with asymmetric, nonseparable
link travel time functions and improved its convergence rate.
In addition to driving a user equilibrium flow pattern to a
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system optimum, the trial-and-error method can also be
used in congestion control. Based on the Lagrange dual
theory, Meng et al. [16] put forward a practical trial-and-
error method for seeking the desirable link tolls to restrict
the link flows to some predetermined thresholds. Meng and
Liu [17] further developed a trial-and-error method for
cordon-based congestion pricing scheme under side-con-
strained probit-based SUE conditions. Yang et al. [18]
proposed a variational inequality-based trial-and-error
method for effective congestion control. -is method en-
hances the convergence rate of themethod ofMeng et al. and
allows for nonseparable, asymmetric link cost functions.
Zhou et al. [19] developed a unified framework for the trial-
and-error congestion pricing scheme, which not only
considers the minimization of the total system cost but also
addresses the problem of congestion control. Liu et al. in-
vestigates the nonlinear distance-based congestion pricing in
a network considering stochastic day-to-day dynamics.

In another branch of the literature, day-to-day dynamic
models have also received much attention in the past two
decades [20–22]. -ese models are widely used to simulate
travelers’ learning behaviors and the traffic flow fluctuations
from one day to another in a transportation network.
Generally speaking, the day-to-day dynamic model can be
divided into route-based or link-based models according to
the type of variables in use. -e route-based models are
expressed using route flow variables. Examples of this type of
models include the simplex gravity flow dynamics [23], the
proportional-switch adjustment process [20], the network
tatonnement process [24], the projected dynamical system
[25], and the evolutionary traffic dynamics [26]. As a gen-
eralization of the aforementioned five models, Yang and
Zhang [27] proposed a rational behavior adjustment process
(RBAP) under the assumption that the aggregated travel cost
of the entire network would decrease when the route flows
change from day to day. -ey proved that RBAP includes as
its special cases the aforementioned five continuous day-to-
day route flow adjustment models. Xiao et al. [28] showed
that the day-to-day flow dynamics is analogous to a damped
oscillatory system. -ey developed a route-based day-to-day
dynamical model by considering travelers’ learning process
and route swapping behavior, which offers a new look at the
network flow dynamics from the viewpoint of physics.

-e link-based day-to-day dynamic models are formu-
lated in terms of link flows. -e first link flow adjustment
model was proposed by He et al. [29]. -is model captures
travelers’ cost-minimization behavior as well as their re-
luctance to make significant changes, which overcome the
shortcomings of the route-based models. Han and Du [30]
extended He et al.’s model to the case where the link travel
cost functions are asymmetric, and they performed a sta-
bility analysis of the continuous link flow adjustment model
by using Lyapunov stability theory. Cantarella [31] in-
troduced a discrete dynamic process model in terms of link
flows and costs to investigate the evolution of the total user
surplus. Guo et al. [32] put forward a discrete link-based
day-to-day dynamic model called the discrete rational ad-
justment process (DRAP). -e DRAP is very general in its
form such that it can deal with the cases such as UE or SUE

principle, fixed or elastic demand. Guo et al. [33] further
extended the DRAP to a continuous link-based day-to-day
dynamic traffic assignment model. Several properties of this
model are established in their research, including the in-
variance of its evolutionary trajectories, the uniqueness, and
the stability of its stationary points.

So far, there is only limited research that simultaneously
addresses trial-and-error congestion pricing and day-to-day
dynamics of network flows.-emotivation of the joint study
of these two problems is to relax an implementation re-
quirement of traditional trial-and-error congestion pricing
schemes. -is requirement emphasizes that after imposing
each trial of link tolls, equilibrium link flows can be achieved
and observed. However, in reality, travelers take time to
learn the effect of the link tolls so that their route choices are
adjusted from one day to another. -erefore, it requires an
extended period for the resultant link flow pattern to evolve
towards an equilibrium state. If the interval between two
consecutive trials is not long enough, the link flows observed
by the planner may not be in equilibrium. Under such a
circumstance, the global convergence of the trial-and-error
congestion pricing method cannot be achieved. To overcome
this problem, Ye et al. [34] assumed that the adjustment
process of the day-to-day dynamic network flow is fast
enough such that the relative decreasing rate along the path
flow trajectory is not larger than 1 (cf. equation (18) in [34]).
Based on this assumption, Ye et al. demonstrated that the
trial-and-error congestion pricing method still converges to
system optimum, even with disequilibrium observed net-
work flows. However, note that this assumption is artificial
and idealistic and it has not been validated in reality, which
weakens the usefulness of the trial-and-error method.

In this research, we will drop the assumption that was
adopted in Ye et al. [34]. Instead, we assume that travelers
have some degree of psychological inertia. -at is to say,
travelers (especially commuters) who are familiar with their
routes tend to avoid the effort of making a new route de-
cision, and hence are usually not willing to reconsider their
route choice every day. We use a 0-1 sequence to represent a
specific inertia pattern and propose a day-to-day dynamic
flow adjustment model that considers travelers’ heteroge-
neous inertia patterns. On top of that, we develop a new
trial-and-error congestion pricing method by incorporating
the day-to-day dynamic flow adjustment process with
heterogeneous inertia patterns. -is method inherits the
merit of Ye et al.’s approach, i.e., it does not require the
observed flows to be in equilibrium. Furthermore, it extends
Ye et al.’s approach to the case where the tolls are allowed to
be updated at irregular time intervals, which further relaxes
the implementation requirements of the trial-and-error
method. We show that the proposed trial-and-error con-
gestion pricing method can be interpreted as the solution
procedure of the truncated cost approximation method and
rigorously demonstrated the convergence of the trial-and-
error congestion pricing method by using the theory of cost
approximation [35]. -erefore, the result of this study
greatly facilitates the application of the trial-and-error
congestion pricing method in both theoretical and practical
perspectives.
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-e rest of the paper is organized as follows. Section 2
proposes a day-to-day dynamic model with heterogeneous
travel inertia. Section 3 develops a trial-and-error congestion
pricing method that incorporates the inertia-based day-to-
day dynamic model. -e convergence of the proposed trial-
and-error method is rigorously demonstrated in Section 4.
Section 5 provides a numerical example to evaluate the
performance of the trial-and-error method under different
circumstances. Conclusions are drawn in Section 6.

2. A Day-to-Day Dynamic Model considering
Heterogeneous Travel Inertia

Travelers are a fundamental component of road traffic.-eir
decisions and actions affect the traffic flows on the network
every day. To describe the response of travelers to exogenous
traffic factors, e.g., congestion pricing, day-to-day dynamic
models have been proposed to formulate the daily route
adjustment process of travelers. For the sake of simplicity, it
is usually assumed in the traditional day-to-day dynamic
models that travelers are sufficiently active to reconsider
their routes of the next day. However, in reality, everyone
has some degree of psychological inertia. Some travelers
(especially the commuters, for example) are not accustomed
to evaluating and comparing different routes every day.-ey
generally use the same route for a few days after which they
decide whether or not to change their routes.

In this study, the psychological inertia of a traveler will
be characterized by a binary variable (0 or 1), which indicates
whether the traveler is willing to evaluate and reconsider his/
her route choice on a particular day. As such, the traveler’s
inertia pattern can be defined as a series of binary variables
that represent the evolution of the traveler’s psychological
inertia over time. For example, Figure 1 shows the inertia
patterns of three typical travelers. -e inertia pattern of
Traveler 1 is described by the sequence (1, 0, 1, 0, 1, 0, 1, 0, 1,
0, . . .), which implies that this traveler makes a route choice
evaluation every two days.-e inertia pattern of Traveler 2 is
represented by the sequence (1, 0, 0, 1, 0, 0, 1, 0, 0, . . .),
meaning that he/she reconsiders his/her route choice every
three days. According to the same logic, we can see that the
inertia pattern of Traveler 3 is (1, 0, 1, 1, 1, 1, 0, 1, 0, 1, . . .),
which indicates that his/her route choice evaluation is ir-
regularly conducted on different days. It is worth noting that
even if a traveler is willing to evaluate his/her route choice,
he/she does not have to take different routes because, after
evaluation, he/she may end up using the same route as
before. Conversely, if the traveler is unwilling to make a
route choice evaluation, he/she must travel on the same
route as before.

Consider a general transportation network denoted by
G(N, A), where N and A are the sets of nodes and links,
respectively. Let W be the set of all OD pairs in the network
and Rw be the set of routes between OD pair w ∈W.
Without loss of generality, we assume that there are m

classes of travelers with each class being represented by i.
Travelers in each class have the same inertia pattern. All class
indices are grouped into a set denoted by M � 1, 2, . . . , m{ },
and accordingly, we have i ∈M. Also, the demand of class i

for OD pairw ∈W is denoted by (dw)i, and the flow of class i

on route r ∈ Rw, w ∈W is represented by (frw)i. With the
above notation, the multiclass route flows should satisfy the
flow conservation and nonnegativity constraints given by


r∈Rw

frw( i � dw( i, ∀w ∈W, i ∈M, (1)

frw( i≥ 0, ∀w ∈W, r ∈ Rw, i ∈M. (2)

Let (xa)i denote the flow of user class i on link a and xa

be the total flow on link a; we have the following equality
linking the link flow and route flows of user class i:

xa( i � 
w∈W


r∈Rw

frw( iδar, ∀a ∈ A, i ∈M, (3)

where δar � 1 if route r traverses link a and 0 otherwise.
In addition, the total flow on link a can be expressed by

the summation of link flows of all user classes, i.e.,

xa � 
i∈M

xa( i, ∀a ∈ A. (4)

Denote ca(xa), a ∈ A as the link cost function and
(ca(xa))i≜ (ca)i as the link travel cost of user class i. Assume
that ca(xa) is nonnegative, twice continuously differentiable,
strictly increasing, and convex with respect to xa. Clearly, for
any link in the network, its travel cost is the same for all
classes of travelers, i.e.,

ca( 1 � ca( 2 � · · · � ca( m � ca, ∀a ∈ A. (5)

-e route cost of user class i, denoted by (prw)i, r ∈ Rw,
w ∈W, can be expressed as follows:

prw( i � 
a∈A

ca( iδar, ∀a ∈ A. (6)

Let Mt ⊆M be the set of class indices of travelers whose
inertias at day t are represented by 1, i.e., the set of class
indices of travelers who are willing to evaluate and re-
consider their route choice. It follows that Mt is a nonempty
subset of M � 1, 2, . . . , m{ }, i.e., Mt ⊂M.

In order to facilitate the presentation of related for-
mulations, for a particular class i, we introduce the class-
specific link flow vector xi and class-specific link cost vector
ci, which are denoted by

xi � x1( i, x2( i, . . . , x|A| 
i

 
T
,

ci � c1( i, c2( i, . . . , c|A| 
i

 
T
.

(7)

Based on the above class-specific flow variable, the day-
to-day dynamic model with heterogeneous travel inertia is
proposed as follows:

xt+1
i − xt

i � lt yt
i − xt

i( , i ∈Mt,

xt+1
i � xt

i , i ∉Mt,

⎧⎨

⎩ (8)

where xt
i denotes the link flow of user class i on day t, yt

i

represents the target link flow of user class i for the next day
(which is determined on day t when travelers finish their
trip), lt ∈ (0, 1) indicates the flow changing rate, and xt+1

i is
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the actual link flow of user class i on day t + 1. -e upper
equation in equation (8) implies that if travelers of class i are
willing to reconsider their routes on day t (i.e., i ∈Mt), the
link flows of these travelers will move from the current flow
xt

i on day t to a future flow xt+1
i on day t + 1 with a flow

changing direction yt
i − xt

i and a flow changing rate lti . On the
contrary, the lower equation in equation (8) suggests that if
travelers of class i are reluctant to reconsider their routes on
day t (i.e., i ∉Mt), the link flows of this user class will remain
unchanged on day t + 1 because they will use the same routes
on day t + 1.

-e determination of the target flow yt
i in equation (8)

adopts the approach in He et al. [29]. Specifically, yt
i is

obtained by solving the following cost minimization
problem given the current link flow xt:

min
yi∈Ωi

ci xt
 

T
yi + Di yi, x

t
i , ∀i ∈M

t
, (9)

where Ωi has the form of

Ωi � xi | xa( i � 
w∈W


r∈Rw

frw( iδar, ∀a ∈ A;


r∈Rw

frw( i � dw( i, frw( i≥ 0, ∀w ∈W, r ∈ Rw,

(10)

and Di(yi, xt
i) is a function that measures the distance be-

tween the target flow yi and the current flow xt
i of class i. -e

target flow yt
i has an interesting behavioral interpretation. It

means when travelers seek to minimize their travel costs,
they are reluctant to make significant changes and hence
tend to form a flow that is closest to the current flow xt

i .
Clearly, Di(yi, xt

i) is a function of two vector variables
conditioned on the 2nd variable xt

i being known. In this
study, we denote ∇1Di(yi, xt

i ) as the gradient of Di(yi, xt
i)

with respect to the 1st vector variable. As is indicated in He
et al. [29], in order for the day-to-day dynamic model to be
well defined, the following assumptions on Di(yi, xt

i) should
be made:

Assumption 1. Di(yi, xt
i) is nonnegative and satisfies

∇1Di(yi, xt
i ) � 0 if and only if yi � xt

i .

Assumption 2. Di(yi, xt
i ) is continuously differentiable and

strongly convex on Ωi for every fixed xt
i . i.e.,

∇1Di yi, x
t
i  − ∇1Di zi, x

t
i  

T
yi − zi( 

≥ mDi
yi − zi

����
����
2
, ∀yi ∈ Ωi, zi ∈ Ωi, i ∈M,

(11)

where mDi
is a bounded modulus of the strongly convex

function Di.
-e above two assumptions have significant implica-

tions. As is discussed in He et al. [29], Assumption 1 implies
that the distance function Di(yi, xt

i) becomes unnecessary if
and only if travelers of class i do not have any incentive to
reconsider their routes. Assumption 2 ensures that the so-
lution to the cost minimization problem (9) is unique, which
means the target flow can be reasonably predicted. Both
assumptions are widely adopted in the literature.

Furthermore, we make an additional assumption on
Lipschitz continuity of the class-specific link cost function
ci(x). -is assumption is crucial to the convergence analysis
of the trial-and-error congestion pricing method that will be
discussed in Section 4.

Assumption 3. -e class-specific link cost function ci(x) is
Lipschitz continuous on Ω, that is,

ci(x) − ci(y)


≤Lci
‖x − y‖, ∀x, y ∈ Ω, i ∈M, (12)

where Lci
is a bounded modulus of the link cost function

ci(x).
Assumption 3 can be fulfilled in common cases. In fact, if

the link travel cost function ca(xa) takes the following
widely used BPR (Bureau of Public Roads, 1964) function
form

ca xa(  � c
0
a 1 + β

xa

Ca

 

n

 , (13)

where Ca and c0a are the capacity and free-flow travel time of
link and a, β, and n are deterministic parameters, then it is
easy to verify that Assumption 3 holds.

3. A Trial-and-Error Congestion Pricing
Method for the Inertia-Based Day-to-Day
Dynamic Model

In this section, we first discuss the multiclass system opti-
mum problem and some relevant concepts, and then pro-
pose a trial-and-error congestion pricing method for day-to-

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Traveler 1

Traveler 2

Traveler 3

The traveler is willing to evaluate 
and reconsider his/her route at 
some day

The travelers are not willing to evaluate 
and reconsider his/her route at 
some day

Figure 1: Inertia patterns for 3 typical travelers.
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day dynamic network flows which takes into account the
heterogeneous inertia patterns of travelers.

3.1.Multiclass SystemOptimum,Multiclass User Equilibrium,
and Marginal-Cost Pricing on Networks. -e multiclass
system optimum problem aims at minimizing the total travel
cost spent in the network subject to the flow conservation
conditions. -is problem can be formulated as follows [36]:

[MC-SO]

min
x∈Ω

Z1(x) � 
a∈A

ca xa( xa, (14)

where Ω has the form of

Ω � x � · · · , xa( i, . . .( 
T

 xa( i satisfies (1), (2), (3) , and (4) .

(15)

Let x∗a , ∀a ∈ A be the optimal solution to [MC-SO]. Note
that the travel cost for any link in the network is the same for
all classes of travelers (cf. equation (5)); then, the first-order
optimality conditions of [MC-SO] yield the following
relationship:


a∈A

ca x
∗
a(  + x

∗
aca
′ x
∗
a(  δar �

� μw( i, if frw( i> 0,

≥ μw( i, if frw( i � 0,


∀r ∈ Rw, w ∈W, i ∈M,

(16)

where (μw)i is the Lagrange multiplier associated with
constraint (1).

If we define

ca x
∗
a(  � ca x

∗
a(  + x

∗
aca
′ x
∗
a( , a ∈ A, (17)

then ca(x∗a ) can be regarded as a generalized link travel cost
function on link a, which involves the true travel cost ca(x∗a )

and an additional cost term x∗aca
′(x∗a ). In the literature,

x∗aca
′(x∗a ) is referred to as the marginal-cost toll, which can

be interpreted as the marginal contribution of an additional
user on link a to the total link travel cost.

-erefore, equation (16) can be simplified to

prw( i �
� μw( i, if frw( i> 0,

≥ μw( i, if frw( i � 0,


∀r ∈ Rw, w ∈W, i ∈M,

(18)

where (prw)i≜a∈Aca(x∗a )δar, a ∈ A is the generalized
route travel cost of OD pair w for travelers of class i.

From equation (18), we know that, at system optimum,
for any class i ∈M, all used routes have the same generalized
travel costs. -is means if a marginal-cost toll x∗aca

′(x∗a ) is
charged on each link, the first-order optimality conditions of
[MC-SO] are consistent with the definition of the multiclass
user equilibrium principle [36, 37].

On the contrary, for any given link toll pattern
ca,∀a ∈ A , the equilibrium link flow pattern can be ac-
quired by solving the following multiclass-tolled user
equilibrium problem [34, 38]:

[MC-TUE]

min
x∈Ω


a∈A


xa

0
ca(s) + ca( ds. (19)

-e link toll pattern in equation (19) can take different
forms. A typical form is to let ca � x∗aca

′(x∗a ), where x∗a ,
a ∈ A is the optimal solution to the multiclass system op-
timum problem (14). In this case, it is easy to verify that
[MC-SO] and [MC-TUE] coincide with each other. -is
implies that if there are different classes of travelers with
heterogeneous inertia patterns, the corresponding multiclass
system optimum problem can be supported as a multiclass
user equilibrium problem by charging a marginal-toll
x∗aca
′(x∗a ) on each link. Note that these tolls are identical for

all classes of travelers, which means they can be efficiently
implemented without considering travelers’ inertia patterns.

Another form of the choice of ck
a is to let ck

a � xk
aca
′(xk

a),
where xk

a is any iterative point on Ω. We will see in Section
3.2 that the trial-and-error congestion pricing method is
designed by employing ck

a in this form.

3.2.%eTrial-and-ErrorCongestionPricingMethodwithDay-
to-Day Flow Dynamics. As discussed above, in order to
obtain the optimal link tolls, we need to solve problem (14),
which requires the demand for each OD pair as its input.
However, existing origin-destination survey or data col-
lection technology is not able to evaluate the OD demand
precisely [39–42]. To deal with this issue, Yang et al. [11]
developed a trial-and-error congestion pricing method to
find the system optimal link flows and link tolls.-is method
does not need any knowledge of the OD demand. What is
required is to observe the resultant equilibrium network flow
after each trial of link toll pattern. However, in reality, it
takes a long time for travelers to learn the traffic conditions
and evolve to such an equilibrium state. If the planner
chooses to observe the traffic flow just a short time after
charging the link toll, the observed network flow may not be
in equilibrium. In such a case, the convergence of the trial-
and-error congestion pricing method is undetermined.
-erefore, it is critical to investigate under what circum-
stances the trial-and-error congestion pricing method can
still be implemented without requiring the observed link
flows to be in equilibrium.

Fortunately, if psychological inertia is considered in
travelers’ day-to-day flow adjustment process, it can be
shown that the aforementioned trial-and-error congestion
pricing method still converges to system optimum, even if
disequilibrium link flows are observed and used to update
the interim congestion tolls. In what follows, we will elab-
orate on this trial-and-error method.

Given a set of trial link flows xk
a, ∀a ∈ A , assume that a

marginal-cost toll pattern xk
aca
′(xk

a),∀a ∈ A  is charged at
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someday, called a “trial” day, and kept constant until the next
trial. Let γk

i denote the class-specific toll pattern for user class
i. Clearly, we have

γk
1 � γk

2 � · · · � γk
m

� x
k
1c1′ x

k
1 , x

k
2c2′ x

k
2 , . . . , x

k
|A|c|A|
′ x

k
|A|  

T
, ∀i ∈M.

(20)

During each intertrial period, the network flow evolves
according to the inertia-based day-to-day dynamic model
that is presented in Section 2. Note that in this situation, the
toll xk

aca
′(xk

a) is regarded by travelers as an additional travel
cost on each link, and the flow adjustment process (8) and
(9) is hereby altered as

xt+1
i − xt

i � lt yt
i − xt

i( , i ∈Mt,

xt+1
i � xt

i , i ∉Mt.

⎧⎨

⎩ (21)

Here, yt
i is the target flow of class i at each day during the

intertrial period under the toll pattern γk
i , and yt

i can be
acquired by solving the following tolled cost minimization
problem:

min
yi∈Ωi

ci xt
  + γk

i 
T
yi + Di yi, x

t
i , ∀i ∈M

t
. (22)

-e above inertia-based day-to-day flow adjustment
process (21) and (22) evolves over an intertrial period of Δk

days. At the end of this period, the disequilibrium link flows
are observed, and the trial link flows are then updated
according to some criterion.-is procedure is repeated until
system optimum flow is achieved.

We would like to emphasize that from a mathematical
point of view, the solution to equation (22) requires the
travel demand and inertia patterns as its inputs. However, in
practice, the flow adjustment process (21) and (22) is in-
herently determined by travelers on the network. -erefore,
these inputs do not need to be known by the practitioner.
-e practitioner only needs to observe the resultant link
flows at the end of the intertrial period, and then decide the
marginal-cost link tolls for the next trial. -e detailed step of
the trial-and-error congestion pricing method with inertia-
based day-to-day flow adjustment process is presented as in
Algorithm 1:

An essential feature of the proposed trial-and-error
method is that it allows the trial tolls to be updated at ir-
regular time intervals.-is is different from the method used
in Ye et al. [34], in which the tolls are adjusted on a given
regular basis, i.e., daily or weekly. Evidently, updating tolls at
irregular time intervals offers more options and flexibility for
practical implementations. It is also worth to note that the
upper bound Δ that imposed on the intertrial period is a
necessary condition for the convergence of the trial-and-
error congestion method (cf. Proposition 6 in Section 4).
However, from a practical point of view, this is not a re-
strictive condition. By choosing Δ large enough, most in-
tertrial periods that are met in reality can satisfy this
condition.

4. The Convergence of the Trial-and-Error
Congestion Pricing Method

In this section, we demonstrate the convergence of the trial-
and-error congestion pricing method that is proposed in
Section 3. -roughout this section, it is assumed that As-
sumptions 1–3 hold. First, we will show that the trial-and-
error congestion pricing method with inertia-based day-to-
day flow adjustment process can be interpreted as solving the
multiclass system optimum problem (14) through the
truncated cost approximation method ([35], Chapter 5.3).
-e overall procedure of the truncated cost approximation
method consists of two phases: the outer iteration phase
applies the cost approximation framework to [MC-SO] and
creates a cost approximation subproblem. -e inner level
iteration phase uses an essential cyclic-type Gauss–Seidel
decomposition method to solve the subproblem inexactly.

-e following proposition is related to the outer iteration
phase of the truncated cost approximation method.

Proposition 1. %e trial-and-error congestion pricing
method that is given in Algorithm 1 can be regarded as solving
the multiclass system optimum problem (14) with the cost
approximation framework, in which the approximation
function is specified by

Φk
(x) � 

a∈A
ca xa( xa + 

a∈A
x

k
aca
′ x

k
a xa − 

a∈A


xa

0
sca
′(s)ds.

(23)

Proof. -e multiclass system optimum problem is
[MC-SO]

min
x∈Ω

Z1(x) � 
a∈A

ca xa( xa. (24)

At iteration k, we introduce a function Φk(x) : Ω⟼R,
convex and continuously differentiable on Ω, and express
the objective function of [MC-SO] as

Z1(x) � Φk
(x) + Z1(x) − Φk

(x) . (25)

-e second term in equation (25) can be seen as
expressing the error when replacing the original objective
Z1(x) by the function Φk(x). -e idea of the cost ap-
proximation method is to take this error into account by a
linearization of the error term [35]. Replacing the second
term in equation (25) with a first-order expansion around xk,
the cost approximation subproblem solved in iteration k

then is
[CA-SUB(k)]

min
x∈Ω

Z
k
1(x), (26)

where

Z
k
1(x) � Φk

(x) + ∇xZ1 xk
  − ∇xΦ

k xk
  

T
x − xk

 .

(27)
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By choosing the function Φk(x) in different forms,
various methods can be obtained [35]. In order to coincide
with the trial-and-error procedure investigated in this re-
search, we choose

Φk
(x) � Z

k
1(x) + 

a∈A
x

k
aca
′ x

k
a xa − 

a∈A


xa

0
sca
′(s)ds

� Z
k
1(x) + φk

(x).

(28)

Obviously,

zφk(x)

zxa

� 
a∈A

x
k
aca
′ x

k
a  − 

a∈A
xaca
′ xa( . (29)

-en, it follows from equations (28) and (29) that

∇xZ1 xk
  − ∇xΦ

k xk
  � 0. (30)

As a result of equations (27) and (30), the objective
function of [CA-SUB(k)] reduces to

Z
k
1(x) � Φk

(x)

� 
a∈A

ca xa( xa + 
a∈A

x
k
aca
′ x

k
a xa − 

a∈A


xa

0
sca
′(s)ds

� 
a∈A


xa

0
ca(s) + sca

′(s)( ds + 
a∈A


xa

0
x

k
aca
′ x

k
a ds

− 
a∈A


xa

0
sca
′(s)ds

� 
a∈A


xa

0
ca(s) + x

k
aca
′ x

k
a  ds.

(31)

Hence [CA-SUB(k)] becomes

min
x∈Ω

Z
k
1(x) � 

a∈A


xa

0
ca(s) + c

k
a ds, (32)

where ck
a � xk

aca
′(xk

a) is the marginal-cost link toll evaluated
at xk

a.
Comparing equation (32) with equation (19), it can be

seen that [CA-SUB(k)] is, in essence, a multiclass-tolled user
equilibrium problem. In this case, the toll pattern is given by
a marginal-cost formulation that is evaluated at xk

a. If an
appropriate method is employed, then the solution pro-
cedure of [CA-SUB(k)] can be viewed as simulating travelers’
day-to-day flow evolution process under the condition that

ck
a is charged on each link (cf. Steps 1 and 2 in Algorithm 1).

Assume that Δk inner iterations are performed to solve [CA-
SUB(k)]. At the end of this process, the iterative point xk can
thus be regarded as the link flow pattern that is observed after
an intertrial period of Δk days (cf. Step 2 in Algorithm 1).

From-eorem 2.14 in [35], it is known that if the vector
xk − xk is nonzero, it defines a descent direction with respect
to the objective function Z1(x). If the step size βk is chosen
according to the exact line search rule (26), then the new
iteration point can be given by

xk+1
� xk

+ βk xk
− xk

 , (33)

which coincides with Step 4 in Algorithm 1. In view of the
above discussions, the equivalence between the trial-and-
error congestion pricingmethod and the cost approximation
framework is established. □

Proposition 2 below concerns the solution procedure of
[CA-SUB(k)]. It corresponds to the inner iteration phase of
the truncated cost approximation method.

Proposition 2. %e inertia-based day-to-day flow adjust-
ment process (21) and (22) for Step 2 of Algorithm 1 can be
regarded as the procedure of solving the cost approximation
subproblem (32) through an essential cyclic-type Gauss–Seidel
decomposition method with constant step size.

Proof. Given an arbitrary set of link toll pattern
ck

a, ∀a ∈ A , the cost approximation subproblem (32) is
[CA-SUB(k)]

min
x∈Ω

Z
k
1(x) � 

a∈A


xa

0
ca(s) + c

k
a ds. (34)

Let xt be an iterative point for [CA-SUB(k)]. If we ap-
proximate Zk

1(x) with a first-order Taylor series around xt

and regulate the resultant series through the addition of a
strongly convex function D(y, xt), the following subproblem
can be obtained:

[CA-SUB(k)-GS-SUB(t)]

min
y∈Ω

c xt
  + γk

 
T
y + D y, xt

 , (35)

where c � (cT
1 , cT

2 , . . . , cT
m)T and γ � (γT

1 , γT
2 , . . . , γT

m)T are
the vector of all class-specific link travel costs and link tolls.

Note that the feasible set Ω in equation (34) can be
expressed as a Cartesian product of Ωi in equation (10), i.e.,

Step 0 (initialization). Let x0
a, ∀a ∈ A  be an initial set of trial link flows, and Δ be the upper bound of the intertrial period. Set k � 0.

Step 1 (impose link tolls). For each link a ∈ A, implement the marginal-cost toll ck
a by: ck

a � xk
aca
′(xk

a), ∀a ∈ A.

Step 2 (observe link flows). After an intertrial period of Δk (Δk ≤Δ) days, observe the resultant link flows following the inertia-based
day-to-day flow adjustment process (21) and (22). Let xk

a, a ∈ A  denote the set of observed link flows.
Step 3 (check convergence). If ‖xk − xk‖/‖xk‖< ε, then stop; otherwise, continue with Step 4.
Step 4 (update the trial link flows). Set xk+1

a � xk
a + βk(xk

a − xk
a), a ∈ A, where βk ≥ 0 is a step size that satisfies the following exact line

search rule: βk � argminxk+β(xk
− xk)∈ΩZ1[xk + β(xk − xk)].

Set k � k + 1 and go to Step 1.

ALGORITHM 1
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Ω � 
m

i�1
Ωi. (36)

If the function D(y, xt) has the form

D y, xt
  � 

m

i�1
Di yi, x

t
i , (37)

then equation (35) can be decomposed into the following m

independent problems:
[CA-SUB(k)-GS-SUB(t)-(i)]

min
yi∈Ωi

ci xt
  + γk

i 
T
yi + Di yi, x

t
i . (38)

From Chapter 8 in [35], a fundamental feature of the
essential cyclic-type Gauss–Seidel decomposition method is
that it allows only part of the above m problems to be solved
at each inner iteration step. Clearly, at inner iteration t, if we
gather equation (38) for all i ∈Mt, then we recover the tolled
cost minimization problem (22). Let yt

i be an optimal so-
lution to [CA-SUB(k)-GS-SUB(t)-(i)] for all i ∈Mt and yt

i �

xt
i for all i ∉Mt. By aggregating all yt

i that belongs or not
belongs to Mt, the optimal solution yt to [CA-SUB(k)-GS-
SUB(t)-(i)] can be obtained. Let yt − xt be the search di-
rection for the inner iteration phase. By choosing a constant
step size lt in this direction, the new iteration point would be

xt+1
� xt

+ l
t yt

− xt
 . (39)

Clearly, equation (39) can be decomposed into the
following disaggregated form:

xt+1
i − xt

i � lt yt
i − xt

i( , i ∈Mt,

xt+1
i � xt

i , i ∉Mt,

⎧⎨

⎩ (40)

which is the same as the flow adjustment process presented
in equation (21).

From the discussions above, we can conclude that the
inertia-based day-to-day flow adjustment process (21) and
(22) is equivalent to solving [CA-SUB(k)] through an essential
cyclic-type Gauss–Seidel decomposition method. □

It is worth to note that in Step 2 of Algorithm 1, the
interval Δk between two consecutive trials is bounded above.
-is means only a finite number of inner iterations is
performed to solve [CA-SUB(k)]. Hence, [CA-SUB(k)] can-
not be solved exactly, which implies that the observed link
flows are not in equilibrium. As is indicated in [35], the
truncated cost approximation method is able to deal with
this issue. -e idea of this method is to bound the work
performed on [CA-SUB(k)] by limiting the number of inner
iterations, which introduces a trade-off between the com-
putational effort spent on the subproblem and the quality of
the generated search direction. However, convergence of the
truncated cost approximation method relies on the algo-
rithmic map that is used to solve [CA-SUB(k)]. Next, we will
investigate the properties of this algorithmic map.

Let xt ∈ Ω be an iterative point for [CA-SUB(k)] and
Y(xt) be the solution set to [CA-SUB(k)-GS-SUB(t)]. -en,
the target flow in equation (39) satisfies yt ∈ Y(xt), and the

search direction for the inner iteration phase can be
expressed as dt � yt − xt.

Denote

B(x) � (x, d), (41)

as the direction finding map and

C(x,d) � l
t
, (42)

as the step size map.
Clearly, the algorithmic map A for the essential cyclic-

type Gauss–Seidel decomposition method is the composi-
tion of B and C, i.e.,

A � C ∘B. (43)

To prove the convergence of the truncated cost ap-
proximation method, we will apply-eorem 5.17 in [35]. To
fulfill the assumptions of this theorem, we need to show the
algorithmic map for the essential cyclic-type Gauss–Seidel
decomposition method satisfies the properties of fixed point,
descent, closedness, and finite termination. In what follows,
we will verify these properties theoretically.

Proposition 3 below provides a fixed point character-
ization of the optimal solution points to [CA-SUB(k)].

Proposition 3. Let xt ∈ Ω be an iterative point of the es-
sential cyclic-type Gauss–Seidel decomposition method for the
inner iteration phase. %en xt is an optimal solution to [CA-
SUB(k)] if and only if it solves [CA-SUB(k)-GS-SUB(t)].

Proof. We first prove the “only if” part. Assuming that xt is
an optimal solution to [CA-SUB(k)-GS-SUB(t)], by -eorem
3.4.3 in [43], the following variational inequality holds:

c xt
  + γk

+ ∇1D xt
, xt

  
T
z − xt

 ≥ 0, ∀z ∈ Ω. (44)

In view of equations (36) and (37), this variational in-
equality can be decomposed into

ci xt
  + γk

i + ∇1Di xt
i , x

t
i  

T
zi − xt

i ≥ 0, ∀zi ∈ Ωi, ∀i ∈M.

(45)

By Assumption 1, ∇1Di(xt
i , xt

i) � 0, then it follows that

ci xt
  + γk

i 
T
zi − xt

i ≥ 0, ∀zi ∈ Ωi, ∀i ∈M. (46)

Adding these inequalities over all i ∈M, we have

c xt
  + γk

 
T
z − xt

 ≥ 0, ∀z ∈ Ω, (47)

which, by -eorem 3.4.3 in [43] and the convexity of [CA-
SUB(k)], shows that xt is an optimal solution to [CA-SUB(k)].

By reversing the above proof, it is straightforward to
establish the “if” part. -erefore, Proposition 3 holds. □

-e following proposition establishes the descent
property of the algorithmic map A.

Proposition 4. Let mD � mini∈M mDi
  be the smallest

modulus defined in equation (11) and Lc � maxi∈Mt Lci
  be

the largest modulus defined in equation (12). If the step size lt

belongs to a compact subset of (0, min(1, 2mD/Lc)), then the
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objective function Zk
1(x) for [CA-SUB(k)] is a descent function

with respect to the map A.

Proof. -e optimality conditions for [CA-SUB(k)-GS-
SUB(t)-(i)] is

ci xt
  + γk

i + ∇1Di yt
i , x

t
i  

T
zi − yt

i ≥ 0, ∀zi ∈ Ωi, ∀i ∈M
t
.

(48)

By substituting zi � xt
i in the above equation, we obtain

ci xt
  + γk

i 
T
yt

i − xt
i ≤ − ∇1Di yt

i , x
t
i 

T
yt

i − xt
i , ∀i ∈M

t
.

(49)

Assumption 2 suggests that

∇1Di yi, x
t
i  − ∇1Di zi, x

t
i  

T

yi − zi( ≥mDi
yi − zi

����
����
2
, ∀yi ∈ Ωi, zi ∈ Ωi.

(50)

By substituting yi � yt
i and zi � xt

i in equation (50) and
using Assumption 1, we have

∇1Di yt
i , x

t
i 

T
yt

i − xt
i  � ∇1Di yt

i , x
t
i  − ∇1Di xt

i , x
t
i  

T

· yt
i − x

t
i ≥mDi

yt
i − xt

i

����
����
2
.

(51)

In view of equations (49) and (51), we get

ci(x)
t

+ γk
i 

T
yt

i − xt
i ≤ − mDi

yt
i − xt

i

����
����
2
, ∀i ∈M

t
.

(52)

On the contrary, by applying Taylor’s formula, the
difference of objective values of [CA-SUB(k)] in equation
(32) between inner iteration t + 1 and t can be expressed as

Z
k
1 xt+1
  − Z

k
1 xt
  � 

lt

0
yt

− xt
 

T
∇Zk

1 xt
+ s yt

− xt
  ds

� 
lt

0


i∈Mt

yt
i − xt

i 
T
∇iZ

k
1 xt

+ s yt
− xt

  ds

� 
i∈Mt


lt

0
yt

i − xt
i 

T
∇iZ

k
1 xt

+ s yt
− xt

  ds

� 
i∈Mt


lt

0
yt

i − xt
i 

T
ci xt

+ s yt
− xt

   + γk
i ds.

(53)

Rearranging terms in equation (53) and taking norms,
we have

Z
k
1 xt+1
  − Z

k
1 xt
 ≤ 

i∈Mt


lt

0
yt

i − xt
i 

T
ci xt

  + γk
i ds

+ 
i∈Mt


lt

0
yt

i − xt
i

����
���� ci xt

+ s yt
− xt

   − ci xt
 

�����

�����ds.

(54)

Since mD � mini∈M mDi
  and Lc � maxi∈Mt Lci

 , it fol-
lows from equation (52) and Assumption 3 that

Z
k
1 xt+1
  − Z

k
1 xt
 ≤ − l

t


i∈Mt

mD yt
i − xt

i

����
����
2

+ 
i∈Mt

yt
i − xt

i

����
���� 

lt

0
Lc yt

i − xt
i

����
����sds

� 
i∈Mt

− mDl
t

+
Lc

2
l
t2

 
T

yt
i − xt

i

����
����
2
.

(55)

Equation (21) implies that

yt
i − xt

i � 0, ∀i ∉M
t
. (56)

Hence, equation (55) can be rewritten as

Z
k
1 xt+1
  − Z

k
1 xt
 ≤ 

i∈Mt

− mDl
t

+
Lc

2
l
t2

 
T

yt
− xt

����
����
2
.

(57)

Since lt belongs to a compact subset of
(0, min(1, 2mD/Lc)), we have


i∈Mt

− mDl
t

+
Lc

2
l
t2

 
T

yt
− xt

����
����
2 ≤ 0, (58)

which, together with (57), implies that Zk
1(xt) is monotone

decreasing. □

Proposition 5 below proves the closedness of the algo-
rithmic map A.

Proposition 5. %e algorithmic mapA for the essential cyclic-
type Gauss–Seidel decomposition method is closed on Ω.

Proof. Let xt ∈ Ω be an iterative point of the essential cyclic-
type Gauss–Seidel decomposition method and Yi(xt) be the
solution set to [CA-SUB(k)-GS-SUB(t)-(i)]. We first show
that the map Yi(x) is closed on Ω. For an arbitrary x ∈ Ω,
assume that xt ⟶ x, yt

i ⟶ yi, and yt
i ∈ Yi(xt).

Since [CA-SUB(k)-GS-SUB(t)-(i)] is convex, its first-or-
der conditions are equivalent to the following variational
inequality (-eorem 3.4.3 in [43]):

ci xt
  + γk

i + ∇1Di yt
i , x

t
i  

T
zi − yt

i ≥ 0, ∀zi ∈ Ωi, ∀i ∈M
t
.

(59)

Using Proposition 1.3 in [35], this variational inequality
can be equivalently written as

− ci xt
  − γk

i − ∇1Di yt
i , x

t
i  ∈ NΩi

yt
i , ∀zi ∈ Ωi, ∀i ∈M

t
,

(60)

where

NΩi
(yt

i) �
zi | zT

i (xi − yt
i)≤ 0,∀xi ∈ Ωi , yt

i ∈ Ωi

∅, yt
i ∉ Ωi

⎧⎨

⎩ is the

normal cone operator for the set Ωi.
-en, it follows from -eorem 24.4 in [44] and the

continuity of ci(xt) and ∇1Di(yt
i , x

t
i) that

− ci(x) − γk
i − ∇1Di yi, xi(  ∈ NΩi

yi( , ∀i ∈M. (61)
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By the convexity of [CA-SUB(k)-GS-SUB(t)-(i)],-eorem
3.4.3 in [43] implies that

yi ∈ Yi(x). (62)

Hence, the map Yi(x) is closed on Ω.
Since the map Y(x) is the Cartesian product of Yi(x), it

follows from-eorem 4.5 in [45] that Y(x) is also closed on
Ω.

We are then in a position to show that the map A is
closed.

Let

G≜ (x, y) | y ∈ Y(x) , (63)

denote the graph of the map Y(x).
It is clear that the graph of the map B(x) in equation (41)

is obtained from G through an affine transformation.
According to -eorem 3 in Chapter 6 of [46], B(x) is also
closed onΩ. Evidently, the step size map C(x, d) in equation
(42) is, in essence, a continuous function. Applying Cor-
ollary 4.2.2 in [47], we can conclude that the composition
map A � C ∘B in equation (43) is closed on Ω. □

Up to now, all the assumptions that are required by
-eorem 5.17 in [35] are established. We can invoke this
theorem to prove the convergence of the trial-and-error
congestion pricing method.

Proposition 6. %e trial-and-error congestion pricing
method with inertia-based day-to-day flow adjustment pro-
cess can drive the aggregated link flows to system optimum.

Proof. By Propositions 1 and 2, the trial-and-error con-
gestion pricing method with inertia-based day-to-day flow
adjustment process can be interpreted as solving [MC-SO]
through the truncated cost approximation method. Prop-
ositions 3–5 establish that the algorithmic map for the inner
iteration phase of the truncated cost approximation method
has fixed point, descent, and closedness properties. -e
upper boundΔ on the intertrial period Δk implies that only a
finite number of inner iterations are performed to solve [CA-
SUB(k)], which verifies the finite termination property.-en,
it follows from-eorem 5.17 in [35] that every limit point of
the class-specific link flow sequence xt  generated by the
truncated cost approximation method is an optimal solution
to [MC-SO]. Evidently, this optimal solution is unique in
terms of the aggregated link flows. -erefore, applying
-eorem 14.1.4 in [48], we can conclude that the sequence of
the aggregated link flows generated by the trial-and-error
congestion pricing method convergences to a steady state
which is system optimum. □

5. Numerical Experiments

-is section examines the convergence performance of the
proposed trial-and-error congestion pricing method under
day-to-day flow dynamics incorporating travelers’ hetero-
geneous inertia patterns. -e numerical experiments are

conducted on two typical networks: -e Hearn–Ramana
network is adapted from [49]. It consists of 18 links, 8 nodes,
and 4 OD pairs, as shown in Figure 2. -e values in the
parenthesis beside each link in Figure 2 represent the cor-
responding free-flow travel time and capacity. -e Sioux
Falls network is illustrated in Figure 3. It consists of 76 links,
24 nodes, and 528 OD pairs.-is network is taken from [50].

We consider four classes of travelers on both networks.
-e true but unknown demand for each class is, respectively,
assumed to be 1/8, 3/8, 1/8, and 3/8 of the original demand.
For both networks, the link travel cost function is expressed
by equation (13) with β � 0.15 and n � 4. -e distance
function Di(yi, xt

i) in equation (22) is assumed to be a
quadratic proximal function given by

Di yi, x
t
i  � yi − xt

i

����
����
2
, (64)

which offers a compromise between choosing the shortest
route and being near to travelers’ current flow xt

i . It is easy to
verify that Assumptions 1 and 2 are satisfied if Di(yi, xt

i)

follows equation (64). -e target flow for each class is de-
termined by equations (22) and (64), and the flow changing
rate in equation (21) is set to be 0.1. Based on the free-flow
travel time, the class-specific OD demands are assigned to
the shortest route to obtain the initial network condition.

5.1. Convergence Performance under Different Inertia
Patterns. In order to explore the impact of different inertia
patterns on the resultant flows and tolls under the proposed
trial-and-error method, we consider the following two cases:

Case 1. -e true but unknown inertia patterns for 4 classes
of travelers are given by (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .), (1, 0, 1,
0, 1, 0, 1, 0, 1, 0, ...), (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .), and (1, 1, 1,
1, 1, 1, 1, 1, 1, 1, . . .), as depicted in Figure 4.

Case 2. -e true but unknown inertia patterns for 4 classes
of travelers are given by (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, . . .), (0, 1, 0,
0, 0, 1, 0, 0, 0, 1, . . .), (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, . . .), and (0, 0, 0,
1, 0, 0, 0, 1, 0, 0, . . .), which are illustrated in Figure 5.

-e intertrial period Δk for both cases is assumed to be
10 days. We first compare the resultant link flows and link
tolls generated by the trial-and-error method in Case 1 and
Case 2 on the Hearn–Ramana and Sioux Falls network. -e
results are presented in Tables 1 and 2. Due to space lim-
itation, we only list the aggregated traffic flow on nine typical
links in each table. It can be found that the resultant link
flows and link tolls are almost identical in both cases. By
substituting the aggregated link flows into equation (14), it is
easy to verify that these flows do minimize the system cost
for both networks. -is validates the fact that if the flows on
each link are treated as a whole, the optimal solution for the
multiclass system optimum would be unique [36].

Figures 6 and 7 display the evolution processes of ag-
gregated flows on links 2–5 and 5–7 in Case 1 and Case 2 on
the Hearn–Ramana network. By comparing the flow evo-
lution on links 2–5 (or links 5–7), in both cases, we can see
that the trajectories are different from each other. However,
both of them evolve towards a unique link flow value. -is
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phenomenon is similar to the numerical results presented in
Ye et al. [34], in which distinct link flow evolution trajec-
tories converge to the same equilibrium state under different
parameter settings.

Figures 8 and 9 illustrate the evolution processes of
aggregated flows on links 9 and 10 and 15–19 in Case 1 and
Case 2 on the Sioux Falls network. Similar to the results
shown in Figures 6 and 7, the flows on both links of the Sioux
Falls network can also evolve to a stable state which is system
optimum. If we compare Figures 6 and 8 (or Figures 7 and 9)

together, we find that it requires more trials for the flows on
the Sioux Falls network to evolve to system optimum. -is
phenomenon may be attributed to the larger size and more
congested network condition of the Sioux Falls network
compared to the Hearn–Ramana network. It indeed needs a
greater number of trials to drive its flows to system
optimum.

5.2. Convergence Performance under Different Intertrial
Periods. To illustrate the effectiveness of the proposed trial-
and-error method, in this section, we compare the perfor-
mance of the classical trial-and-error method developed in
Yang et al. [11] with the method proposed in this research.
-e two methods are termed as “exact method” and “inexact
method,” respectively. Here, the exact method means the
inner iteration phase (i.e., the subproblem [CA-SUB(k)]) of
the truncated cost approximation method is solved exactly,
which implies that after imposing each trial of link tolls,
equilibrium link flows can be achieved and observed.
Analogously, the inexact method means the inner iteration
phase is solved inexactly, which suggests that the observed
link flows are not in equilibrium. It is clear that the exact
method requires a much longer intertrial period than the
inexact method. In order to further evaluate the influence of
different intertrial periods on the convergence speed of the
inexact method, three forms of the inexact method with
different intertrial periods are considered, i.e., Δk

1 � 5 days,
Δk
2 � 15 days, and Δk

3 � 5 + floor(k/10) days (floor(·) is the
round down function and k is the number of trials of link
toll). Obviously, the lengths of Δk

1 and Δ
k
2 are fixed, whereas

the length of Δk
3 is dynamically changed according to the

number of trials. We use the following convergence measure
proposed by Leurent [51] to evaluate the performance of the
trial-and-error congestion pricing method at different trial
stages:

ln
Zk

Z∗
− 1




, (65)

where Zk is the objective value of [MC-SO] at the k-th trial
and Z∗ is the minimum objective value of [MC-SO]. We will
test both methods on the Hearn–Ramana network and the
Sioux Falls network. In the numerical test, travelers’ inertia
patterns are assumed to follow Case 1 introduced in Section
5.1.

Figure 10 shows the convergence performance of the
exact and inexact method in terms of the number of trials on
the Hearn–Ramana network. As can be observed in this
figure, the inexact trial-and-error method can drive the
network flow to system optimum no matter whether the
intertrial period is variable (i.e., Δk

3 � 5 + floor(k/10)) or
fixed (i.e., Δk � 5 and Δk � 15). -is validates the theoretical
results in Section 4 that the convergence of the proposed
trial-and-error method can be achieved even if the tolls are
updated at irregular time intervals. When comparing the
convergence speed of the exact and inexact method, we can
observe that at the early evolution stage, the convergence
speed of the exact method and the inexact method with Δk
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Figure 4: Inertia patterns for 4 classes of travelers in Case 1.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Class 1

Class 2

Class 3

Class 4

�e class of travelers is willing 
to evaluate and reconsider their 
routes at some day

�e class of travelers is not willing 
to evaluate and reconsider their 
routes at some day

Figure 5: Inertia patterns for 4 classes of travelers in Case 2.

Table 1: Resultant link flows and link tolls generated by the trial-and-error method in Case 1 and Case 2 on the Hearn–Ramana network.

Link
Link flows

Link
Link tolls

Case 1 Case 2 Case 1 Case 2
1–5 9.41 9.41 1–5 1.14 1.13
1–6 20.59 20.59 1–6 6.16 6.16
2–5 38.33 38.33 2–5 2.59 2.59
2–6 31.67 31.67 2–6 3.62 3.62
5–6 0.00 0.00 5–6 0.00 0.00
5–7 21.30 21.30 5–7 16.88 16.89
5–9 26.44 26.45 5–9 5.13 5.13
6–5 0.00 0.00 6–5 0.00 0.00
6–8 39.47 39.48 6–8 7.37 7.37

Table 2: Resultant link flows and link tolls generated by the trial-and-error method in Case 1 and Case 2 on the Sioux Falls network.

Link
Link flows (×104)

Link
Link tolls

Case 1 Case 2 Case 1 Case 2
1–3 1.1240 1.1240 1–3 0.1277 0.1277
2–6 0.6620 0.6620 2–6 9.535 9.535
4–5 1.8732 1.8732 4–5 1.478 1.478
5–6 0.6995 0.6995 5–6 9.584 9.584
8–7 1.3225 1.3225 8–7 14.559 14.559
9–10 2.1765 2.1765 9–10 10.771 10.772
10–15 2.3361 2.3361 10–15 32.168 32.168
11–12 0.7325 0.7325 11–12 17.850 17.849
15–19 1.8557 1.8557 15–19 4.743 4.743
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15 are similar, both of which are slightly higher than the
inexact method with Δk

1 � 5 and Δk
3 � 5 + floor(k/10). At the

late evolution stage, the exact method converges faster than
all the three forms of the inexact method. -is means to
achieve the same level of solution accuracy, the method with
a longer intertrial period requires fewer trials. -e reason for
this phenomenon is that if the intertrial period is longer,
travelers will have more time to learn the traffic conditions
and adjust their route choice, so that the observed network
flow at the end of each intertrial period becomes closer to the
equilibrium state. -erefore, the generated search direction
(cf. equation (33)) under longer intertrial period would be
more effective in improving the convergence speed of the
trial-and-error method.

Figure 11 depicts the convergence of the exact and in-
exact trial-and-error method in terms of the number of
evolutionary days on the Hearn–Ramana network. We find
from this figure that the performance of all the three forms of
the inexact method is uniformly superior to the exact
method. -is is because in comparison with the exact
method, although the inexact method consumes a little more
trials to get to the same convergence tolerance (cf. Fig-
ure 10), it requires much less number of evolutionaryd days
between any two consecutive trials. -erefore, the total
number of evolutionary days for the inexact method will be
greatly decreased. -is explanation can also account for the
phenomenon in Figure 10 that the performance of the in-
exact method with Δk

1 � 5 and Δk
3 � 5 + floor(k/10) is
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Figure 6: Evolutionary trajectories of total flows on links 2–5 and 5–7 in Case 1 on the Hearn–Ramana network (left).
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similar and both of which outperform the inexact method
with Δk

2 � 15.
Figures 12 and 13, respectively, depict the convergence of

the exact and inexact method with respect to the number of
trials and number of evolutionary days on the Sioux Falls
network. Inspection of Figure 12 reveals that as far as the
number of trials is concerned, the exact method is slightly
faster than the inexact method with Δk

2 � 15, more faster than
the inexact method with Δk

1 � 5 and Δk
3 � 5 + floor(k/10).

However, from Figure 13, it can be observed that all the three
forms of the inexact method consume much less number of
evolutionary days than the exact method, among which the

inexact method with Δk
1 � 5 performs best. -e two phe-

nomena have already been observed in the performance
analysis on the Hearn–Ramana network, and the reasons are
similar. -erefore, in view of practical implementation, the
selection of the trial-and-error congestion pricing method
depends on the specific objective of a practitioner. If the
purpose is to reduce the number of trials so as tominimize the
inconvenience caused by the toll charge variation, then the
exact method or the inexact method with a long interval is
preferred. On the contrary, if the practitioner aims to reduce
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Figure 8: Evolutionary trajectories of total flows on links 2–5 and
5–7 in Case 1 on the Sioux Falls network (left).
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Figure 9: Evolutionary trajectories of total flows on links 2–5 and
5–7 in Case 2 on the Sioux Falls network (right).
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the implementation times so that system optimum can be
achieved as soon as possible, then the inexact method with a
short intertrial period is more attractive.

6. Conclusions and Future Research

In this study, we developed a trial-and-error congestion
pricing method with day-to-day dynamic network flows
which takes into account the heterogeneous inertia patterns
of travelers. -e implementation of this method does not
require any knowledge of the OD demands. In addition, it
allows the link tolls to be updated at irregular intervals

without waiting for the network flow achieving the user
equilibrium state. We presented a theoretical proof for the
convergence of this method. -e findings of this study can
significantly facilitate the application of the trial-and-error
congestion pricing method in practice.

For further research, several extensions can be made in
the following directions. First, the current method focuses
on achieving system optimum by implementing the con-
gestion pricing. To maintain the traffic flow on each link
within a desirable threshold, it is highly anticipated to de-
velop a trial-and-error method for the traffic restraint
congestion pricing scheme with inertia-based day-to-day
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Figure 12: Convergence of the exact and inexact trial-and-error method in terms of number of trials on the Sioux Falls network (left).
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flow adjustment processes in the future. Second, the day-to-
day flow adjustment model employed in the proposed trial-
and-error congestion pricing method is based on link flows.
It is interesting to develop a trial-and-error congestion
pricing scheme under a route flow adjustment model, which
also incorporates travelers’ heterogeneous inertia patterns.
In addition, the concept of robust optimization can also be
integrated into the trial-and-error congestion pricing
scheme [52], which takes into account the inertia-based flow
adjustment process on each day.
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