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ABSTRACT Non-Rigid Structure from Motion (NRSfM) is the task of reconstructing the 3D point set of
a non-rigid object from an ensemble of images with 2D correspondences, which has been a long-lasting
challenging research topic. Compared to the state-of-the-art methods for NRSfM, the Procrustean Markov
Process (PMP) model has obtained a relatively good performance. However, the estimation error and the
convergence time of the PMP model will increase simultaneously when noise is present. To address this
problem, in this paper, a coherent constraint is constructed to suppress the noise in the initialization step
of the PMP algorithm. Moreover, an Accelerated Expectation Maximization (AEM) algorithm is devised
to optimize the PMP estimation model. Experimental results on several widely used sequences demonstrate
that our proposed algorithm achieves state-of-the-art performance, as well as its effectiveness and feasibility.

INDEX TERMS Non-rigid structure frommotion, accelerated expectationmaximization algorithm, coherent
constraint.

I. INTRODUCTION
Reconstructing the 3D object shapes from a set of 2D images
has become a valuable approach to enhance the tasks in com-
puter vision, such as virtual reality [1], object recognition [2],
biometrics [3], human-computer interaction [4], [5], etc.
Non-Rigid Structure fromMotion (NRSfM) provides a useful
approach to simultaneously estimate the 3D time-varying
deformed object and the relative camera motion from the
corresponding 2D observation points in a sequence of images.
Although many effective algorithms have been proposed for
NRSfM in the past few decades, it is still a very complex and
ill-posed problem due to the lack of prior information about
the 3D structure.
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In order to solve the uncertainty in NRSfM, many different
a priori information, assumptions and constraints have been
utilized in reconstructing the 3D shapes. Inspired by the
factorization technique for Structure from Motion (SfM) [6],
a low-rank constraint was proposed in [7] to model the
unknown time-varying deformable 3D shapes, represented as
a linear combination of a small number of 3D shape bases.
In the matrix factorization method, the 2D observed matrix
was factored into a 3D pose matrix and a 3D shape basis
matrix. Subsequently, many works have been proposed based
on the low-rank shape model. In [8], a closed-form solution
was reported, which considers both the low-rank constraint
and the rotation constraint. An approximate rank-3K solu-
tion was derived in [9] by utilizing a Gaussian prior and
a probabilistic principal component analysis shape model.
In [10], an approximate rank-3 solution was proposed to

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 145013

https://orcid.org/0000-0002-2405-2927
https://orcid.org/0000-0003-4587-3588
https://orcid.org/0000-0002-9774-7770


Y. Zhang et al.: Accelerated PMP Model With Coherent Constraint for NRSfM

solve NRSfM by considering very small semi-definite pro-
gramming and a nuclear-norm minimization problem. Fur-
thermore, a multilinear factorization algorithm was presented
in [11], which incorporates the shape basis assumption and
a time-independent latent smoothness characteristic of the
unknown 3D non-rigid shapes.

A dual approach to the shape basis representation was pro-
posed in [12] to reduce the number of unknown parameters.
The dual approach assumes that the 3D point trajectories
are constrained to lie in a linear trajectory space. The linear
space is compactly spanned by 3K predefined independent
basis trajectories, obtained via the Discrete Cosine Trans-
form (DCT). Nevertheless, the rank-3K constraint has limited
capability to model high-frequency deformation, represented
by trajectories. In [13] and [14], a better reconstruction of
high-frequency deformation was achieved without relaxing
the rank-3K constraint, by modeling a smoothly deforming
3D shape as a single point moving along a smooth time-
trajectory within a linear shape space. The predefined DCT
was applied to represent the coefficients of shape basis.

Based on the trajectory representation, a scalable monoc-
ular surface reconstruction method was proposed in [15] to
solve the NRSfM problem, for both sparse and dense data.
The optimized solution was obtained through singular value
thresholding, proximal gradient and alternating direction
method of multipliers. In [16], the dense NRSfM problem
with complex non-rigid deformations was solved based on
theGrassmannmanifold. The complex non-rigid deformation
was assumed lying on a union of local linear subspaces, both
spatially and temporally. In addition, a scalable, efficient, and
accurate solution was proposed in [17] to solve the NRSfM
problem, by combining the existing point-trajectory low-rank
models with a probabilistic framework for matrix normal
distributions.

For the trajectory-based methods, how to determine the
optimal number of shape bases is a difficult problem. In [18],
a Procrustean Normal Distribution (PND) was proposed to
represent the distribution of shape deformations by strictly
separating the motion and deformation components. The
3D structure can be accurately reconstructed via an EM
algorithm, without requiring any additional constraints or
prior knowledge. Although [18] and the improved version
(PND2) [19] have achieved a relatively good reconstruction
performance on most commonly used datasets, they do not
work well for shapes with some large drastic deformations
and noise, due to the lack of smoothing constraints.

In [20], a Procrustean Markov Process (PMP) model
was proposed to enforce the smoothness constraint between
two adjacent frames. The sequence of 3D shapes is con-
sidered as a simple stationary Markov process based on
Procrustes alignment. Nevertheless, the convergence of the
EM algorithm is relatively slow. Moreover, the PMP model
is sensitive to noise. In this paper, an accelerated PMP
model with a coherent constraint is proposed to improve the
robustness and the convergence speed of the EM algorithm.
Experimental results on several commonly used sequences

verify the effectiveness and feasibility of the proposed
algorithm.

The key contributions of the proposed approach are two
aspects, as follows:
• In order to suppress the noise, a coherent constraint,

corresponding to a displacement function, is proposed to
preserve the global structure of each shape by constraining
adjacent points to move coherently.
• An Accelerated Expectation Maximization (AEM) algo-

rithm is proposed to achieve faster convergence, when opti-
mizing the PMP estimation model.

The remainder of the paper is organized as follows.
A detailed description of the proposed method is presented
in Section II. Experimental results are given in Section III.
Finally, conclusions are made in Section IV.

II. METHODOLOGY
The proposed algorithm is composed of three main compo-
nents: formulation of the PMP model [20], initialization of
the PMP model with a coherent constraint, and the optimiza-
tion of the PMP model using the proposed accelerated EM
algorithm.

A. FORMULATION OF THE PMP MODEL
For the ith(i = 1, · · · , ns) frame in an image sequence, the
observed 3D structure Di can be represented as a collection
of 3D coordinates (x, y, z) of np feature points, i.e.

Di =

 xi,1 xi,2 · · · xi,np
yi,1 yi,2 · · · yi,np
zi,1 yi,2 · · · yi,np

 . (1)

Under the orthographic projection model, the z coordinates
are unknown forDi. Define a 3×np binary weight matrixWi,
whose elements in the first two rows and the third row are all
ones and zeros, respectively. Then, (1) can be represented as,

Di =Wi � (Xi − ti1T )+mi, (2)

where the 3×np hidden variableXi denotes the true 3D shape
of the ith frame, ti ∈ R3×1 is the translation, 1 ∈ Rnp×1 is a
vector with elements of one, and mi ∈ R3×np is a zero-mean
Gaussian noise with standard deviation σ . The operator �
denotes the Hadamard product.

As in [20], given the scale si and the rotation matrix
Ri ∈ R3×3, Xi can be aligned to Yi ∈ R3×np , as follows:

Yi = siRiXi. (3)

For Yi, the first-order linear Markov process can be given as
follows:

vec(Yi) = αvec(Yi−1 − Y)+ vec(Y)+ ni, (4)

where vec(Yi) is a vectorization form of Yi. Yi−1 and
Y ∈ R3×np are the (i − 1)th aligned 3D shape and the
mean shape of Yi(i = 1, · · · , ns), respectively [20]. The
smoothness parameter α is the transition probability of Yi
moving through the successive time periods. The noise term
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ni ∈ R3np×1 is a Gaussian random vector with independent
and identical distribution. In (4), the smoothness assumption
can effectively reduce the effect of large deformation.

The aligned 3D shapes Yi obeys the procrustean normal
distribution [18], i.e.

p(Yi) ∼ NP (Y,6R), (5)

where the symbol NP (·, ·) denotes the procrustean normal
distribution, and 6R ∈ R3np×3np denotes the covariance
matrix ofYi(i = 1, · · · , ns). As done in [18], in order to solve
the singular problem, 6R is decomposed as,

6R = Q6QT , (6)

where Q ∈ R3np×(3np−7) and 6 ∈ R(3np−7)×(3np−7) are
an orthogonal matrix and a non-singular positive definite
symmetric matrix, respectively.

Combining (4) and (5), the distribution of ni is given as
follows:

ni ∼ N (0,QHQT ), (7)

where the symbolN (·, ·) denotes the normal distribution, and
H ∈ R(3np−7)×(3np−7) is an unknown positive definite sym-
metric matrix [20]. Furthermore, the mean µYi|Yi−1 and the
variance 6Yi|Yi−1 of the conditional probability p(Yi|Yi−1)
can be computed as follows:

µYi|Yi−1 = αvec(Yi−1)+ vec(Y), (8)

6Yi|Yi−1 = QHQT . (9)

Considering (5), (8) and (9), the probability p({Yi})
(i = {1, 2, ..., ns}) can be given as,

p(Y1,Y2, · · · ,Yns |2) = p(Y1|2)
ns∏
j=2

p(Yj|Yj−1,2), (10)

where 2 = {Y,Ri, si, α,H,6,Q, σ }. Referring to [20],
the unknown parameters 2 can be estimated by maximizing
the following log-likelihood function,

log(p({Di,Xi}|2)) = log(p(X1,X2, ...,Xns |2))

+

ns∑
i=1

log(p(Di|Xi,2)). (11)

B. INITIALIZATION OF PMP MODEL WITH
A COHERENT CONSTRAINT
Considering the coherent constraint, a good initial value for
2 can be obtained for PMP via the following optimization
model,

min
9

ns∑
i=1

∥∥∥siRiXi + ti1T + CiGi − X
∥∥∥2
F
+ λtr(CiGiCT

i )

s.t. RT
i Ri = I3,

∥∥∥X∥∥∥2
F
= 1, (12)

where Ci ∈ R3×np is a coefficient matrix, X is the mean
matrix of Xi(i = 1, · · · , ns), 9 is a collection of unknown

parameters 9 = {si,Ri, ti,X,Xi,Ci}, and I3 is a 3 × 3
identity matrix. The matrix Gi ∈ Rnp×np is a kernel matrix,
whose element gmn is computed as follows:

gmn = G(Xi,m,Xi,n) = exp(−

∥∥Xi,m − Xi,n
∥∥2
F

2β
), (13)

where Xi,m and Xi,n are the mth and the nth point in Xi,
respectively; and β defines the width of the Gaussian kernel
function [25]. The transformation CiGi is assumed to be a
displacement function. The regularization term tr(CiGiCT

i )
is a global structure constraint, following the motion coher-
ence theory [23], [24], which can constrain the smoothness
of CiGi [25]. The parameter λ makes a trade-off between
Procrustes alignment and regularization.

First, X and ti can be obtained by combining (12) and the
constraint term X1 = 0,

X =
1
ns

ns∑
i=1

(siRiXi + ti1T + CiGi), (14)

ti = −
1
np

(siRiXi + CiGi)1. (15)

Substitute (15) into (12) and let B = Inp −
1
np
11T , where

B ∈ Rnp×np , we can get

min
Ri

∥∥∥siRiXiB− (X− CiGi)B
∥∥∥2
F
. (16)

For (16), considering the orthogonal Procrustes problem,
we have

Ri = ViUT
i , (17)

where Ui3iVT
i = svd

(
XiB[(X− CiGi)B]T

)
, and svd(·)

represents the singular value decomposition [26].
As each shape variation is assumed to be orthogonal to the

mean shape [18], we have

vec(siRiXi + CiGi − X)T vecX = 0. (18)

Considering
∥∥∥X∥∥∥2

F
= 1, we have

vec(siRiXi + CiGi)T vec(X) = 1. (19)

According to (19), si can be computed as follows

si =
1− vec(CiGi)T vecX

vec(RiXiBi)T vecX
. (20)

As in [20], the true 3D shape, Xi, can be decomposed as
follows:

Xi = Di + L(zi), (21)

where L(zi) transforms zi into a 3 × np matrix, in which the
elements of the first two rows are zeros and the elements of
the third row are zi. Furthermore, vec(L(zi)) = W̃zi, where W̃
is a truncated version of (I−diag(vec(W))) removing all-zero
columns.
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Considering (15) and (21), (12) can be rewritten as follows:

ns∑
i=1

∥∥∥(siRi(Di + L(zi))+ CiGi)B− X
∥∥∥2
F
+ λtr(CiGiCT

i ).

(22)

Then, we compute the one-order partial derivative of (22)
with respect to Ci and zi, respectively. As a result, Ci and zi
can be derived by setting these two partial derivatives to zeros,
as follows:

zi =
[
W̃T (B⊗ I3)W̃

]†
×

[
W̃T (B⊗ I3)vec(

1
si
RT
i (X̄+ CiGi)− Di)

]
, (23)

Ci =

[
(
1
si
RT
i X̄− XiB)

][
GB+

λ

s2i
I3np

]†
, (24)

where the operators ⊗ and † denote the Kronecker product
and the pseudo inverse, respectively.

C. THE PMP MODEL OPTIMIZATION USING
AN ACCELERATED EM ALGORITHM
For the model (11), an accelerated EM algorithm is pro-
posed to derive the solutions. Let µi|ns and Ci|ns be the
mean and covariance of p(Xi|Di, ...,Dns ), respectively. The
cross-covariance of vec(Xi) and vec(Xi+1) is denoted as
Ci,i+1|ns . The variables µi|ns , Ci|ns and Ci,i+1|ns can be com-
puted by the Kalman smoothing in the E-step [20].

In the M-step, all the unknown parameters 2 in (11) are
updated by maximizing the expectation of (11), i.e.

J(2|2t ) = E
[
log (p ({Di,Xi}|2)) |2

t] . (25)

Then, each element of 2t at the (t + 1)th iteration can be
obtained as follows:

2t+1
= arg max

θ∈2
J(2|2t ). (26)

The E-step and M-step of the original EM algorithm are
repeated to produce a series of estimates (2t+1,2t ,2t−1).
Denote φ as a vectorized variable of 2. Referring to [27],

for the accelerated EM algorithm, φ can be updated as
follows:

φtnew = φ
t
+

[[
φt−1 − φt ]−1

]
+

[
φt+1 − φt

]−1]−1
, (27)

where the operation [·]−1 is defined as follows:

[·]−1 =
·

‖·‖
2 . (28)

In (27), a problem is addressed here. In (11), H and 6
are both required to be positive definite symmetric matrices.
In order to satisfy this condition, the upper or lower triangular
part of Ht and 6t are first extracted and vectorized. After
updated by (27), they are transformed into the corresponding
positive definite symmetric matrices.

TABLE 1. The numbers of frames (ns) and the numbers of point tracks
(np) for eleven motion capture sequences.

As a result, we can obtain a set of new variables 2t
new

according to (26) and (27). Denote btnew as,

btnew =
[
vec(Ȳt

new); vec(R
t
new); vec(s

t
new);α

t
new;

vec(Ht
new); vec(6

t
new); vec(Q

t
new); σ

t
new

]
, (29)

where btnew ∈ Rc×1, and c = (3np − 7)(6np − 7) + 3np +
10ns + 2.

The iterations are repeated until,

e2 =
∥∥btnew − btold

∥∥2
F < ρ, or t > τ, (30)

where τ is the maximum number of iterations. The pseu-
docode of the PMP-CAEMalgorithm is given in Algorithm 1.

Algorithm 1 The Pseudocode of the PMP-CAEMAlgorithm

1: Initialize 20
= {Y

0
,R0

i , s
0
i , α

0,H0,60,Q0, σ 0
}, b0.

2: Set ρ = 1e− 05, τ = 1e+ 03.
3: 21

← 20, b1← b0,
4: 21

old ← 21, b1old ← b1

5: t ← 0,
6: repeat
7: Compute 2t

new by (26) and (27),
8: Compute e2 by (30),
9: 2t

old ← 2t
new, b

t
old ← btnew,

10: 2t−1
← 2t

new,
11: 2t

← 2t+1,
12: Update t ← t + 1,
13: until e2 < ρ or t > τ .

III. EXPERIMENTS
A. EXPERIMENT DATASETS AND SET-UP
The performance of the proposed method is evaluated on
eleven widely used motion sequences: walking, jaws, dance,
face1, face2, pickup, stretch, yoga, drink, Face Recognition
Grand Challenge (FRGC), and capoeira. These sequences
are publicly available from [9], [12], [18], [21]. Note
that the FRGC is a 3D facial-landmark dataset from [18],
by adding random rotation and scaling to the original FRGC
2.0 database without temporal dependence [22]. For these
sequences, the corresponding number of frames (ns) and
the number of points tracked (np) are listed in Table 1.
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FIGURE 1. One frame of the eleven widely used motion sequences.

TABLE 2. The 3D reconstruction error ε of eleven sequences without noise for six different methods, and the corresponding mean and standard deviation
(µ± σ ) for each method on all the sequences.

Figure 1 shows one frame of these eleven image sequences.
All simulations were conducted using MATLAB, running on
an ordinary personal computer.

In order to evaluate the reconstruction performance,
the normalized error ε of the 3D coordinates between the
estimated 3D shape (X̃i) and the ground-true 3D shape (Xi)
is used as the performance index, i.e.,

ε =
1
ns

ns∑
i=1

‖Xi − X̃i‖
2
F

‖Xi‖
2
F

. (31)

Smaller ε means that the estimation is more accurate.

B. COMPARISON TO RECENTLY REPORTED RESULTS
In order to evaluate the effectiveness of the proposed
method, denoted as PMP-CAEM, we compare it with
several state-of-the-art NRSfM algorithms, including the
well-known blockmatrixmethod (denoted as BMM) [10], the

TABLE 3. The computation runtimes (seconds) of eleven sequences
without noise for the six methods.

column-space-fitting method (denoted as CSF) [13],
the CSF2 method [14], the procrustean normal distribution
method (denoted as PND2) [19] and the procrustean Markov
process method (denoted as PMP) [20].
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TABLE 4. The 3D reconstruction errors ε of the six methods on eleven sequences when anoise is set at 0.26.

FIGURE 2. One frame of the sequences jaws and stretch with and
without noise. The symbols ’◦’ and ’+’ represent the observed ground
truth and the points with noise, respectively.

Among these methods, the low-rank parameter K has a
significant influence on the final estimation performance for
CSF, CSF2 andBMM. For a fair comparison, the parameterK
is successively set at {1, 2, · · · 13} for these three methods.
The parameter value corresponding to the smallest estima-
tion error is selected as the approximate optimum parameter
value of K .

Table 2 shows the 3D reconstruction errors ε on eleven
sequences without noise for the six methods. In order to
easily compare the performances of different algorithms,
the best result and the second-best result in Table 2 are
highlighted in red and blue, respectively. The reconstruction
errors of PND2, PMP and PMP-CAEM are generally lower
than that of other methods for most sequences. Moreover,
the reconstruction errors of PMP-CAEM are close to that
of PMP. Table 3 shows the computation times (seconds) of
the different methods on the eleven sequences without noise.
We can see that the computation runtimes of PND2, PMP and
PMP-CAEM are obviously longer than that of other methods.
However, the computation times of PMP-CAEM are signif-
icantly lower than that of PMP. This shows that the com-
putation runtimes required by PMP can be greatly reduced
by the use of the accelerated expectation maximization
algorithm.

TABLE 5. The number of iterations for the EM algorithm in PMP and
PMP-CAEM when anoise is set at 0.26.

In order to investigate the robustness to noise, we con-
ducted the experiments with the addition of the Gaussian
noise on the original sequences. The standard deviation or
level of the Gaussian noise is set as σnoise = anoisemaxi,j,k
{|dijk |}, where the noise rate anoise is set at {0.2, 0.22, 0.24,
0.26, 0.28}, respectively, and dijk is the (j, k)th elements of
Di, where i = 1, · · · , ns and j = 1, 2, 3; k = 1, · · · , np.
Figure 2 shows one frame of the sequences jaws and stretch
with and without noise. The symbols ’◦’ and ’+’ repre-
sent the points of the ground truth and points with noise,
respectively. We can see that the positions of the points
are randomly changed when noise is added to the original
data.

As an example, Table 4 shows the 3D reconstruction errors
ε of the six methods on the eleven sequences for the six
methods when anoise is set at 0.26. We can see from Tables 2
and 4 that the reconstruction errors of the various algorithms
are significantly increased when noises are added. The recon-
struction errors of PMP and PMP-CAEM are obviously lower
than that of other methods for most of the sequences. For CSF,
CSF2, and BMM, a 3D shape is assumed to be composed
by a linear combination of K shape bases. Such a model
cannot achieve a satisfactory result because the deformation
and translation caused by the noise are random and irregular
for the different points.
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FIGURE 3. The 3D reconstruction errors ε of the six methods on the eleven sequences, when anoise is set at different values.

TABLE 6. The mean and standard deviation (µ± σ ) of 3D reconstruction errors ε of the six methods on the eleven sequences, when anoise is set at
different values.

For PMP and PMP-CAEM, the smoothing constraint can
suppress the partial deformation and deviation caused by
noise. Different from PMP and PMP-CAEM, the smooth-
ing constraint is not considered in the PND2 model.
Therefore, the noise has a more serious effect on its
final estimation results. From Table 4, it can be seen that
the performance of PND2 is not yet as good as PMP
and PMP-CAEM. Moreover, the reconstruction errors of
PMP-CAEM are lower than that of PMP.

Table 5 shows the number of iterations for the EM
algorithm used in PMP and the accelerated EM used in
PMP-CAEM, when anoise is set at 0.26. The number of
iterations of PMP-CAEM is obviously lower than that of
PMP. Therefore, the accelerated expectation maximization
algorithm can significantly decrease the convergence time
of PMP.

Figure 3 shows the 3D reconstruction errors ε of the six
methods on the eleven sequences, when anoise is set at dif-
ferent values. Table 6 tabulates the corresponding mean and
standard deviation (µ±σ ) of the 3D reconstruction errors for
different noise rates. The reconstruction errors of PMP and
PMP-CAEM are obviously lower than that of other methods
for most sequences. Moreover, the reconstruction errors of
PMP-CAEM are lower than that of PMP, due to the use of
the coherence constraint.

IV. CONCLUSION
In this paper, an accelerated PMP model, with a coherent
constraint, is proposed for non-rigid structure from motion.
The experimental results demonstrated that the proposed
method can simultaneously decrease the estimation error and
the convergence time of EM algorithm for PMP.
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