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A point cloud registration algorithm
based on normal vector and particle
swarm optimization

Xu Zhan1,5, Yong Cai1, Heng Li3, Yangmin Li4 and Ping He2,3

Abstract
Based on normal vector and particle swarm optimization (NVP), a point cloud registration algorithm is proposed by
searching the corresponding points. It provides a new method for point cloud registration using feature point registra-
tion. First, in order to find the nearest eight neighbor nodes, the k-d tree is employed to build the relationship between
points. Then, the normal vector and the distance between the point and the center gravity of eight neighbor points can
be calculated. Second, the particle swarm optimization is used to search the corresponding points. There are two condi-
tions to terminate the search in particle swarm optimization: one is that the normal vector of node in the original point
cloud is the most similar to that in the target point cloud, and the other is that the distance between the point and the
center gravity of eight neighbor points of node is the most similar to that in the target point cloud. Third, after obtaining
the corresponding points, they are tested by random sample consensus in order to obtain the right corresponding
points. Fourth, the right corresponding points are registered by the quaternion method. The experiments demonstrate
that this algorithm is effective. Even in the case of point cloud data lost, it also has high registration accuracy.
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Introduction

In recent years, signal analysis and image processing
have been booming. In particular, laser scanning tech-
nology has made great progress in obtaining three-
dimensional (3D) point cloud model of physical objects
and made point cloud become the mainstream data in
3D processing. High-precision scanning equipment can
effectively obtain the detailed data of the physical
objects. Due to the limitations of measuring instru-
ments and environment, the data cannot be completed
in one laser scan. Point cloud data should be obtained
by scanning separately from different perspectives, and
then point cloud data from multiple perspectives should
be registered to obtain a complete point cloud model of
physical objects. Therefore, point cloud registration is
widely used in 3D reconstruction, reverse engineering,
target recognition and other fields, and it is an impor-
tant part in point cloud data processing. The accuracy
of point cloud registration directly affects the quality of
subsequent processing technology.1

The existing point cloud registration methods can be
divided into two types: one is the accurate positioning
of the navigation system in the scanning process and

the other is the accurate alignment of point clouds from
different perspectives. The algorithm in this paper
belongs to the second type.

The most classical algorithms in the automatic regis-
tration of point cloud model are iterative closest point
(ICP) and its improved algorithms. They are methods
based on point-to-point or point-to-surface search tech-
nology, and point cloud registration is completed by
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minimizing the distance between point clouds. ICP is
easy to implement, but it requires that there is a con-
straint between two point clouds, and the positions of
the two point clouds are relatively close. The algorithm
results depend on the initial position of the point cloud,
which is easy to cause the problem of rapid convergence
to local optimal. Therefore, there are a lot of works to
do to improve the ICP algorithm.2–4

Non-feature registration

One of the improvements in the ICP algorithm is non-
feature registration. The non-feature registration does
not need to extract the feature data. It aims at improv-
ing registration efficiency. Many scholars have pro-
posed non-feature registration algorithm. Some have
studied the key points or key areas how to detect to
reduce the mismatch points,5–7 some have studied the
corresponding points how to search and some speed up
the operation of ICP.8

Feature registration

The other improvement in the ICP algorithm is to fea-
ture registration. They usually study the rough registra-
tion first and then study the non-rough registration.
Rough registration is a registration method without
any initial position information at all. The main pur-
pose of this method is to quickly estimate a general
point cloud registration matrix with unknown initial
conditions. The whole calculation process requires a
high calculation speed, and the accuracy of the registra-
tion is not too high, such as the method based on local
feature description, based on global search strategy,
through statistical probability and so on.

The method based on local feature description is to
extract the neighborhood geometric features of source
and target point clouds. The corresponding points
between them can be quickly determined by geometric
features to achieve registration.

The representative algorithm based on global search
strategy is sampling consistency algorithm. The algo-
rithm randomly selects corresponding points with the
same geometric features between source and target
point clouds and obtains the optimal solution by calcu-
lating the transformation relationship of corresponding
points.

Statistical probability method based on normal dis-
tribution is that according to the normal distribution of
point cloud, the corresponding points are determined
so as to calculate the transformation relationship
between target and source point clouds.

In above strategy, the method based on feature
point matching is popular. There are a lot of research
achievements in feature registration.9,10 The method
which was proposed by Kase et al.11 is to extract effec-
tive feature correspondence points, determine the initial
position of two point clouds and then use ICP algo-
rithm to non-rough registration. However, feature

points are often defined as points with large-scale sur-
face gradient. A single feature point often has similar
geometric features, so using a single feature point to
rough registration ignores the local structural informa-
tion of feature points, which is prone to mismatching
and affects the precision of non-rough registration.

In order to solve the problem of the single feature
point, a point cloud registration algorithm based on
normal vector and particle swarm optimization (NVP)
is proposed. This method is the continuation of the pre-
vious article.12 The previous article mainly focused on
the noise of input point cloud and the accuracy of reg-
istration. The particle swarm optimization (PSO) in the
previous article was used to search the rotation matrix.
It was with randomness. In order to solve the random-
ness, the method of finding the corresponding points is
proposed in this paper and then the registration is
achieved by quaternion method. The main contribu-
tions are shown as shown follows:

� In order to extract multiple feature data, the k-d
tree is employed to find the nearest eight neigh-
bor nodes. Then, the normal vector of the node
and the distance between the point and the center
gravity of the eight neighbor nodes are defined.
The feature data will not change by the geo-
metric transformation; they are regarded as the
feature data of the node.

� In order to search the corresponding points with
the same feature data between the two point
clouds, PSO is used. The fitness function is that
the normal vector of the node in the original
point cloud is the most similar to that in the tar-
get point cloud and the distance between the
point and the center gravity of eight points of
the node is the most similar to that in the target
point cloud.

� After obtaining the corresponding points, they
are tested by random sample consensus
(RANSAC) and then the registration is
employed by quaternion method.

� The experiments demonstrate that this algorithm
is effective. Even in the case of point cloud data
lost, it also has high registration accuracy.

Related work and results

Definition of NVP

We propose NVP to find the corresponding points to
achieve registration. The main process is demonstrated
in Figure 1. First, it builds k-d tree in the point cloud
to search the nearest eight neighbor nodes and uses the
neighbor nodes to calculate the normal vector of the
point node and the distance between the point and the
center gravity of the eight neighbor nodes, which are as
two feature data of each node. Second, PSO is used to
search the corresponding points. The fitness function is
that the normal vector of the node in the original point
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cloud is the most similar to that in the target and the
distance between the point and the center gravity of
eight points of the node is the most similar to that in
the target point cloud. After obtaining the correspond-
ing points, they are tested by RANSAC in order to
obtain the right corresponding points. Finally, point
cloud registration is realized by quaternion method.

K-d tree

K-d tree is short for k-dimensional tree. It is a kind of
data structure that divides k-dimensional data. It is
mainly used in the key data search of multidimensional
space, such as range search and nearest neighbor
search.13,14K-d tree is used by scale-invariant feature
transform (SIFT) when matching feature points.

Feature point matching is actually a problem of simi-
larity retrieval between high-dimensional vectors by
distance function. How to find the nearest neighbor of
the query point quickly and accurately is a hot issue.
Many scholars have proposed their algorithms. K-d
tree is one of the algorithms which is applied widely.
There are two ways to search the similarity in an index
structure: one is the range search and the other is the
nearest neighbor search. The range search is finding all
the data in the data set whose distance from the query
point is less than the threshold value. The nearest
neighbor search is finding k data from the data set clo-
sest to the query point. If k is set to 1, it is the nearest
neighbor search.

There are two types of feature matching algorithms.
One is the linear scanning method. The points in the
data set are compared with the query points one by
one. It does not establish any data structures and the
search efficiency is very low. The other is to establish
data index and then to do the feature match quickly.
Because the actual data generally present a cluster-like
clustering form, the retrieval speed can be greatly accel-
erated by the effective index structure. K-d tree belongs
to the second type. The main idea is to divide the search
space into different levels.

The search space is to find the nodes in axis-aligned
rectangle by performing the following three steps: the
first step is to check whether point in node lies in given
rectangle, the second is to recursively search left/bottom
(if any could fall in rectangle) and the third is to recur-
sively search right/top (if any could fall in rectangle).

K-d tree is used in this paper to establish the data
structure in point cloud to search the nearest eight
neighbor nodes. After finding the nearest eight neigh-
bor nodes, the normal vector of the point node, the dis-
tance between the point and the center gravity of the
eight neighbor nodes can be calculated.

The normal vector

One of the essential features of the node in point cloud
is the normal vector. The accurate and high-quality
point-based drawing methods not only depend on the
normal vectors, but the precise reconstruction results
also need the precise normal vectors. The reconstruc-
tion algorithm especially needs normal vector aggrega-
tion, such as multi-level partition of unity (MPU),
implicit surface reconstruction algorithm and detection
and recovery of sharp features.

The point cloud normal vector calculation methods
can be divided into three types. They are methods
based on local surface fitting, Delaunay or Voronoi
and robust statistics. The point curvature calculation in
this paper belongs to the first type. The method was
first proposed by Hoppe15 when he studied the surface
reconstruction algorithm based on signed distance
function. Assume that the plane of the point cloud is
smooth everywhere. The steps of calculating curvature
are shown as follows.

Figure 1. The process of NVP.
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Suppose P= fpi(xi, yi, zi)ji=1, 2, 3, . . . ,Ng is the
input point cloud data and fpij(xij, yij, zij)
jj=1, 2, 3, . . . , kg is the k-nearest neighbors of point
cloud pi. Then, the neighbor center of gravity is defined
as follows

Oi =
1

k

Xk
j=1

pij ð1Þ

The covariance matrix of pi is calculated as follows

Ti =

pi1 �Oi

pi2 �Oi

. . .
pik �Oi

2
664

3
775
T

pi1 �Oi

pi2 �Oi

. . .
pik �Oi

2
664

3
775 ð2Þ

where Ti is a semi-positive symmetric matrix with geo-
metric information of surface and solved by Jacobian
method. The three eigenvalues (l1, l2, l3) and their fea-
ture vectors (n1, n2, n3) are obtained. If l35l25l1, the
point curvature Ci and the surface normal vector ni are
defined as follows

Ci =
l1

l1 + l2 + l3
, ni = n1i

1 ð3Þ

By definition, it is shown that greater the change of
surface is, the larger the point curvature is (see
Figure 2).

Distance between the point and its neighbor center
of gravity

Another feature of the node in point cloud is the dis-
tance between the point and its neighbor center of grav-
ity. It is defined as follows (see Figure 3)

D1i = jpi �Oij ð4Þ

PSO

After obtaining the two feature data of the node, we
need to find corresponding points with the same feature
data between the two point clouds. Therefore, we resort
to PSO.16 PSO and genetic algorithm (GA) are widely
used in many fields.17–19 PSO is a kind of evolutionary
algorithm and is similar to the simulated annealing
algorithm. It starts from the random solution and seeks
the optimal solution through iteration. It evaluates the
quality of the solution through fitness and is simpler
than GA. Crossover and mutation operation are not
needed in PSO. This algorithm has attracted academic

(a) (b)

Figure 2. Normal vectors from different surfaces: (a) the flat surface and (b) the non-flat surface.

(a) (b)

Figure 3. Different distances from the point to its neighbor center of gravity: (a) boundary point and its neighbor gravity center
and (b) interior point and its neighbor gravity center.
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attention because of its advantages such as easy imple-
mentation, high accuracy and fast convergence. The
formula of PSO is as follows

Vk+1
iD =Vk

iD+ c1r1(p
k
pD � Xk

iD)+ c2r2(p
k
gD � Xk

iD) ð5Þ

Xk+1
iD =Xk

iD +Vk+1
iD ð6Þ

where D is the number of dimension, X is the current
position of particle i0, V is the velocity of particle i0, pp
is the best position of the particle i in one iteration, pg
is the best position for all particles, c1, c2 are accelera-
tors or learning factors, which are set to 2. r1 and r2 are
pseudo random numbers, which are set to (0–1).

The particle of PSO in this paper starts by calculat-
ing the two feature data (the point curvature, the dis-
tance from the point to its neighbor center of gravity).
The particle from the target point cloud moves in the
search space by setting to zero or to small random val-
ues. If the search criterion meets, the particles’ velocities
are no more updated. The search criterion is that the
normal vector of the node in the original point cloud is
the most similar to that in the target point cloud, and
the distance between the point and the center gravity of
eight neighbor points of the node is the most similar to
that in the target point cloud. The main flow is shown
in Figure 4.

RANSAC

There are, usually, outlier data among the correspond-
ing points. Therefore, the RANSAC is employed in
searching the right corresponding points. The algo-
rithm was first proposed by Fischler and Bolles20 in
1981. RANSAC is based on the following assumptions:

� Data are composed of reasonable points, for
example, the distribution of data can be
explained by some model parameters.

� Outlier data do not fit the model.
� Other data are noise.

There are several reasons to generate the outlier data,
such as the extreme value of noise, wrong measurement
method and incorrect assumptions about data.
RANSAC is used in searching the right corresponding
points in this paper; the main steps are shown in
Algorithm 1.

Quaternion method

After obtaining the right corresponding points, point
cloud registration is realized by quaternion method. It
was proposed by Horn21 in 1987. He used a
quaternion-based least square method to solve the
motion parameters between adjacent point clouds.
ICP, which is the most widely used in point cloud regis-
tration, adopts this method too. The algorithm flow is
as follows.

Suppose P= fpi(xi, yi, zi)ji=1, 2, 3, . . . ,Ng is the
original point cloud, and Q= fqj(xj, yj, zj)
jj=1, 2, 3, . . . ,Ng is the target point cloud.

The center gravity of the two point clouds is defined
as follows

Gp =
1
N

PN
i=1

pi

Gq =
1
N

PN
j=1

qj

8>>><
>>>:

ð7Þ

Figure 4. The PSO flow diagram.
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Gravity-centralize the two point clouds.

P0=P� Gp

Q0=Q� Gq

�
ð8Þ

Construct the covariance matrix.

M= 1
N

PN
i=1

½P0Q0T�= 1
N

PN
i=1

½PQT� � GpG
T
q ð9Þ

Construct the symmetric matrix by the covariance
matrix

Pq =

M11 +M22 +M33 M23 �M32 M31 �M13 M12 �M21

M23 �M32 M11 �M22 �M33 M12 +M21 M13 +M31

M31 �M13 M12 +M21 M22 �M11 �M33 M23 +M32

M12 �M21 M13 +M31 M23 +M32 M33 �M11 �M22

2
664

3
775 ð10Þ

� Find and calculate the maximum eigenvalue of
Pq; the corresponding eigenvectors can form
quaternions, which is defined as follows

qR = q0 q1 q2 q3½ � ð11Þ

where q050 and q20 + q21 + q22 + q23 =1:

� Construct the rotation matrix R by the
quaternions

R=

q20 + q21 � q22 � q23

23(q13q2 + q03q3)

23(q13q3 � q03q2)

23(q13q2 � q03q3) 23(q13q3 + q03q2)
q20 � q21 + q22 � q23 23(q23q3 � q03q1)

23(q23q3 + q03q1) q20 � q21 � q22 + q23

8><
>: ð12Þ

� Calculate the translation matrix T

T=Gp � RGq ð13Þ

The experimental simulation

The performance of this algorithm is made in
MATLAB and the data sets are used from Stanford’s

experimental database http://graphics.stanford.edu/
data/3Dscanrep/.

The registration accuracy test

Two models (‘‘cow,’’ ‘‘feet’’ of ‘‘man’’) are adopted in
this experiment (see Figure 5): the red one is the original
point cloud and the blue one is the target point cloud.

In order to further test the performance of NVP, the
mean square error (MSE) is used in the experiment.
The formula is as follows

MSE=
1

n

Xn
k=1

min

xok � xtkð Þ2 + yok � ytkð Þ2 + zok � ztkð Þ2
h i ð14Þ

where MSE is the mean square error, xoi, yoi, zoi is the
source point cloud and xti, ytik, zti is the target. n is the
minimum size in the two point clouds. The experiment
steps are shown in Algorithm 2.

After obtaining the corresponding points, they are
tested by RANSAC (see section ‘‘RANSAC’’) and then
point cloud is registered by quaternion method (see sec-
tion ‘‘Quaternion method’’).

Algorithm 1. The steps of RANSAC.

Input: The corresponding points (s1
1, s2

1), (s1
2, s2

2), . . . , (s1
n , s2

n)
Output: The right corresponding points
1: Set the number M of iterations

2: for each j 2 ½1, M� do
3: Set the number Nj = 0 of iterations
4: Randomly select three pairs of points as a sample
5: Proposing the three pairs of points are right corresponding points, calculate the transformation matrix T

6: Set the threshold value e = 23 1
n

Pn
i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(T(s1

i )� s2
i )

2
q

7: Calculate the distance between other n� 3 corresponding points djj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T((s1

jj )� s2
jj )

2
q

, jj = 1, 2, . . . , n� 3

8: If djj \ e, the corresponding point (s1
jj , s

2
jj ) are the right corresponding point, save them and count the correct number Nj of

corresponding points. Otherwise, they are outlier data.
9: end for
10: Find the right corresponding points whose number N from Nj, j = 1, 2, . . . , M is the maximum.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Data sets: (a) Cowview1, (b) Cowview2, (c) Cowview3, (d) Feetview1, (e) Feetview2 and (f) Feetview3.

Algorithm 2. The experiment steps.

Input: The original point cloud P
The target point cloud Q
Output: The corresponding points

1: Establish k-d tree in two point clouds
2: Find the nearest eight neighbor nodes of each points
3: Calculate the normal vector and the distance from the point to the center gravity of eight neighbor points of each point
4: Obtain the number X of the original point cloud
5: Set the number Y = X of iterations
6: for each j 2 ½1, Y� do
7: Input the normal vector and the distance of the point pj from the original point cloud, which needs to find the corresponding

point in the target point cloud
8: Set the number M of iterations, the number N of randomly searching the points in the target point cloud
9: Generate randomly N index numbers Idi, i = 1, 2, . . . , N
10: Get the points ppIdi

, i = 1, 2, . . . , N of the corresponding index numbers
11: Set c1 = 2, c2 = 2
12: Obtain the normal vectors and the distances of the points ppIdi

, i = 1, 2, . . . , N in the target point cloud, which need to
compare with the input point

13: Compare the normal vectors of the points ppIdi
, i = 1, 2, . . . , N in target point cloud with the one of the input points and find

the closest normal vector, save the index number NVj

14: Compare the distances of the points ppIdi
, i = 1, 2, . . . , N in target point cloud with the one of the input points and find the

closest distance, save the index number D1j

15: If NVj is equal to D1j, the corresponding point is found and set Idp = NVj, Idg = NVj. Otherwise, Idp = 0, Idg = 0, where Idp is the
particles’ best position in one iteration, Idg is the best position for all particles

16: for each jj 2 ½1, M� do
17: set r1i = rand(), r2i = rand(), i = 1, 2, . . . , N, where r1i, r2i are pseudo random numbers, rand() is the random function, which

generates a random number (0� 1) in the uniform distribution.
18: Idi = Idi + (Idp � Idi)3c13r1i + (Idg � Idi)3c23r2i, i = 1, 2, . . . , N.
19: Get the points ppIdi

, i = 1, 2, . . . , N of the corresponding index numbers.
20: Obtain the normal vectors and the distances of the points ppIdi

, i = 1, 2, . . . , N in the target point cloud, which need to
compare with the input point.

21: Compare the normal vectors of the points ppIdi
, i = 1, 2, . . . , N in target point cloud with the one of the input points and find

the closest normal vector, save the index number NVY.
22: Compare the distances of the points ppIdi

, i = 1, 2, . . . , N in target point cloud with the one of the input points and find the
closest distance, save the index number D1jj.

23: If NVjj is equal to D1jj, the corresponding point is find and set Idp = NVjj.
24: Compare Idp and Idg . If Idp is the best, set Idg = Idp.
25: end for
26: end for

Zhan et al. 7



Point cloud registration without data lost. The point cloud
registration without data lost is that the size of original
point cloud is the same as the target. The experiment is
made by comparing NVP with the descriptor Scale-
ICP22 and CPD (Coherent Point Drift).23

The results of the experimental data set are shown in
Figures 6 and 7, and the size of the experimental data
sets and the MSE are shown in Table 1. It can be seen
from the results that the Scale-ICP registration accu-
racy depends on the initial position, but the accuracy is
very high if the good initial position is provided. The
CPD does not depend on the initial position, but it is
sometimes not workable. The description which we pro-
posed can work well and sometimes show high registra-
tion accuracy.

Point cloud registration with data lost. The point cloud regis-
tration with data lost is that the size of original point

cloud is not same as the target. A random data loss
experiment is tested by comparing NVP with the descrip-
tor Scale-ICP22 and CPD.23 The results of the experi-
mental data set are shown in Figures 8 and 9 and Table
2. It can be seen from the results that the Scale-ICP reg-
istration and CPD are not workable, but the NVP still
works well when facing such challenging case.

Conclusion

Point cloud registration algorithm based on normal
vector and particle swarm optimization is proposed in
this paper. It provides a new method for point cloud
registration using feature point registration. First, it is
given a method on how to extract the feature data of
each point in the point cloud, and the feature data are
used to search the corresponding points in two point
clouds in PSO. Second, the corresponding points are

(a) (b) (b)

(d) (e) (f)

(g) (h) (i)

Figure 6. Point cloud registration without data lost: (a) Cow1 (Scale-ICP), (b) Cow2 (Scale-ICP), (c) Cow3 (Scale-ICP), (d)
Cowview1 (CPD), (e) Cowview2, (f) Cowview3 (CPD), (g) Cowview1 (NVP), (h) Cowview2 (NVP) and (i) Cowview3 (NVP).

Table 1. Point cloud registration without data lost.

Name Size MSE (Scale-ICP) MSE (CPD) MSE (NVP)

Cow-view1 290433 2:83310�31 9:21310�5 1:60310�2

Cow-view2 290433 4:25310�31 1:30310�3 1:46310�2

Cow-view3 290433 1:50310�3 1:30310�3 1:43310�2

Feet-view1 200033 6:79310�4 2:93310�5 3:78310�16

Feet-view2 200033 3:14310�4 2:93310�5 4:83310�16

Feet-view3 200033 6:79310�4 1:00310�3 5:09310�16

MSE: mean square error; ICP: Iterative Closest Point; CPD: Coherent Point Drift.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Point cloud registration without data lost: (a) Feet1 (Scale-ICP), (b) Feet2 (Scale-ICP), (c) Feet3 (Scale-ICP), (d)
Feetview1 (CPD), (e) Feetview2 (CPD), (f) Feetview3 (CPD), (g) Feetview1 (NVP), (h) Feetview2 (NVP) and (i) Feetview3 (NVP).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Point cloud registration with data lost: (a) Cow (data lost 5%), (b) Result (Scale-ICP), (c) Result (CPD), (d) Result (NVP),
(e) Cow (data lost 15%), (f) Result (Scale-ICP), (g) Result (CPD), (h) Result (NVP), (i) Cow (data lost 25%), (j) Result (Scale-ICP), (k)
Result (CPD) and (l) Result (NVP).

Zhan et al. 9



tested by RANSAC to obtain right corresponding
points. After receiving the right corresponding points,
the original point cloud is transformed to the target by
the quaternion method. The experiments demonstrate
that this algorithm is effective. Even if the data are lost,
it still works well.
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Figure 9. Point cloud registration with data lost: (a) Feet (data lost 5%), (b) Result (Scale-ICP), (c) Result (CPD), (d) Result (NVP),
(e) Feet (data lost 15%), (f) Result (Scale-ICP), (g) Result (CPD), (h) Result (NVP), (i) Feet (data lost 25%), (j) Result (Scale-ICP), (k)
Result (CPD) and (l) Result (NVP).

Table 2. Point cloud registration with data lost.

Name Size MSE (Scale-ICP) MSE (CPD) MSE (NVP)

Cow (data lost 5%) 290433 1:70310�3 1:30310�3 1:36310�2

Cow (data lost 15%) 290433 2:20310�3 1:30310�3 1:17310�2

Cow (data lost 25%) 290433 3:30310�3 1:40310�3 1:85310�2

Feet (data lost 5%) 200033 7:90310�4 1:00310�3 7:66310�4

Feet (data lost 15%) 200033 1:20310�3 1:00310�3 1:2310�3

Feet (data lost 25%) 200033 2:00310�3 1:00310�3 9:48310�4

MSE: mean square error; ICP: Iterative Closest Point; CPD: Coherent Point Drift.
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