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Abstract: Total basin discharge is a critical component for the understanding of surface water exchange
at the land–ocean interface. A continuous decline in the number of global hydrological stations over
the past fifteen years has promoted the estimation of total basin discharge using remote sensing.
Previous remotely sensed total basin discharge of the Yangtze River basin, expressed in terms of runoff,
was estimated via the water balance equation, using a combination of remote sensing and modeled
data products of various qualities. Nevertheless, the modeled data products are presented with large
uncertainties and the seasonal error characteristics of the remotely sensed total basin discharge have
rarely been investigated. In this study, we conducted total basin discharge estimation of the Yangtze
River Basin, based purely on remotely sensed data. This estimation considered the period between
January 2003 and December 2012 at a monthly temporal scale and was based on precipitation data
collected from the Tropical Rainfall Measuring Mission (TRMM) satellite, evapotranspiration data
collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and terrestrial
water storage data collected from the Gravity Recovery and Climate Experiment (GRACE) satellite.
A seasonal accuracy assessment was performed to detect poor performances and highlight any
deficiencies in the modeled data products derived from the discharge estimation. Comparison of
our estimated runoff results based purely on remotely sensed data, and the most accurate results
of a previous study against the observed runoff revealed a Pearson correlation coefficient (PCC)
of 0.89 and 0.74, and a root-mean-square error (RMSE) of 11.69 mm/month and 14.30 mm/month,
respectively. We identified some deficiencies in capturing the maximum and the minimum of
runoff rates during both summer and winter, due to an underestimation and overestimation of
evapotranspiration, respectively.

Keywords: total basin discharge; GRACE satellite gravimetry; TRMM satellite precipitation; MODIS
satellite-derived evapotranspiration; Yangtze River Basin

1. Introduction

Total basin discharge (TBD) is a fundamental water balance component of river basins [1,2] and
it has been traditionally measured at in-situ hydrological stations near estuary mouths. TBD can be
converted into surface runoff (R) when considering a surface area unit over the entire river basin.
Continuous TBD time series are necessary for the monitoring of hydrological extremes (i.e., droughts
and floods) in deltaic regions. Such monitoring is important for better water management, allowing an
increase in water usage efficiency and minimizing unpredictable human, agricultural, and economic
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losses [3–7]. Nevertheless, a comprehensive global river water discharge (RWD) observing network
has not been established yet [8]; moreover, the number of in-situ stations has been decreasing since the
late 1970s due to the absence of sufficient funding for the upgrade and maintenance of facilities [9,10].
Consequently, a gauge-independent method, which would provide a synoptic mean of observing the
global RWD, remains elusive [11].

Remotely sensed RWD estimations based on the most recent (passive and active) remote sensing
(RS) advances, have been demonstrated to be viable alternatives [12]. Over the long period, it is
anticipated that remotely sensed RWD estimations will compensate the scarcity of in-situ hydrological
data, particularly in remote regions. Current remotely sensed RWD methods can be classified into the
following four categories:

(1) The correlation between passive remotely sensed variables (e.g., Normalized Difference Vegetation
Index (NDVI), and Land Surface Temperature (LST) [13–16]) and the water level (WL) or RWD
data [17–22]. Notably, the above remotely sensed variables have no direct causal relationship
with RWD.

(2) The calculation of the RWD from passive remotely sensed hydraulic variables, via hydraulic
geometric equations (e.g., [23–29]). In this case, the accuracy of RWD estimation would be
region-dependent: the resolution of RS images might be insufficient to detect small changes in
river width [30] and the roughness coefficient might be unavailable in some regions [31,32].

(3) The correlation between active remotely sensed WL (collected from satellite radar altimetry) and
in-situ RWD data (collected from hydrological stations) via stage–discharge rating curves [1,33–35].
In this case, the altimetry radar signals are partially contaminated by land surfaces when crossing
rivers with short widths: the accuracy of the observed altimetric WL is limited (e.g., [36]).

(4) The calculation of the RWD near the estuary mouth (or of R), based on the land water balance [37]
or on the combined land–atmosphere water balance equation [38]. However, both observed and
modeled data of various qualities have been utilized in previous studies based on this process
(e.g., [39,40]).

The fourth method represents a purely hydrological modeling method that can be applied to
the basin-wide estimation of R and does not rely on in-situ ground observations. This method
involves the combined use of remotely sensed precipitation (P), terrestrial water storage (S), modeled
evapotranspiration (ET) and/or modeled atmospheric moisture budget data (i.e., moisture flux
divergence (∇·Q), and the changes in the total column water vapor (∂W∂t )). Both in the case of land-based
(i.e., R = P−ET−∆S) [41,42] and combined land–atmosphere water balance (i.e., R = −∆S− ∂W∂t −∇·Q)
e.g., [43] equations, the quality of the modeled ET and of the atmospheric moisture budget results is
limited by large uncertainties [44–46]. This is due to the fact that different land cover types and physical
assumptions are considered for their calculation. Moreover, before the launch of Gravity Recovery and
Climate Experiment (GRACE), the S values were unavailable and their change (∆S) was assumed to be
zero [41,47]. This assumption caused further uncertainties in the estimation of the remotely sensed R.

The land–atmosphere water balance equation used for R estimation has been applied efficiently
for the first time to the Amazon and Mississippi river basins [38]. The authors of that study used
GRACE S and a modeled atmospheric moisture budget operational forecast analysis (provided by the
Environmental Protection-National Center for Atmospheric Research (NCEP-NCAR) [48] and by the
European Centre for Medium-Range Forecasts (ECMWF)). The estimated R for the Yangtze river basin
(YRB) closely agrees with in-situ observed R: the peak-to-peak Pearson correlation coefficient (PCC)
was equal to 0.92 [44]. Ferreira et al. (2013) [37] estimated R for the same river basin but based on the
land-based water balance equation (using remotely sensed P from the Tropical Rainfall Measuring
Mission (TRMM) [49], ∆S from GRACE [50], and modeled ET data from the Global Land Data
Assimilation System (GLDAS) [45]). The result of Ferreira et al. (2013) [37] indicated a good agreement
between the estimated R and the in-situ observed R time series (i.e., PCC 0.74 and root-mean-square
error (RMSE) 14.30 mm/month).
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The ET obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) could
conveniently replace the modeled ET, since the Penman–Monteith equation provided a better
representation of croplands and grasslands [51]. These land cover types are densely situated within the
YRB, particularly at the middle and lower reaches of the YRB. Previous accuracy assessment did not
account for the potential existence of seasonal error characteristics and for deficiencies in the modeled
data products (for the estimation of R). This study aims to address such issues; we applied a purely
remotely sensed data-driven method based on the land water balance equation and able to estimate R
in the YRB at a monthly temporal scale. This data-driven method is established using water balance
equations in combination with TRMM P, MODIS ET, and GRACE ∆S data.

In China, food security relies on the water resources of the YRB; hence, this river basin is one of
the most significant study areas [52]. A number of water management projects have been operated
for adjustment of R during severe drought and flood seasons [53,54]. Other human activities, such as
damming, groundwater withdrawal, water consumption, and land use change, can have substantial
impacts on R of the river basin [55,56]. Land-use change accounts for <0.2% of the change in the runoff

trend [57], while damming, groundwater withdrawal, and water consumption account for <2%, <1%,
and <10% of the changes in the annual runoff [58], respectively. However, other research studies have
indicated climate change as the main factor affecting R (accounting for 90% of the change in R in the
YRB) [57,59–61]. Additional studies have indicated that human activities in the YRB might significantly
influence changes in the sediments, but not in R [60,62].

Notably, the R values estimated from the water balance equation were calculated by subtraction
among the remotely sensed P, ET, and ∆S: the systematic effect caused by the YRB environment and by
human activities should have been partly mitigated by this subtraction process. The aforementioned
information partially supports our data-driven R estimation for the YRB, based purely on the
above remotely sensed hydrological variables on the application of the water balance equation.
After calculating the resulting R, we compared our results with those published in Syed et al. (2009) [44]
and Ferreira et al. (2013) [37]; moreover, we performed a seasonal accuracy assessment of the
observed R time series, in order to evaluate the performance of our method during all seasons. Finally,
we discussed the deficiencies of modeled data products and tried to explain the reasons for different
seasonal discrepancies between the R obtained through our method and the observed in-situ data.

This paper is organized as follows: Section 2 presents the geographic environment of the YRB;
Section 3 presents the methodology, data used in this study, and their validation; Section 4 demonstrates
the validity of the estimated R and compares our results with those of previously published studies;
and Section 5 summarizes our conclusions.

2. Geography of the Yangtze River Basin (YRB)

Situated between 25◦–35◦ N and 91◦–122◦ E, within the subtropical zone, the Yangtze River is
the world’s third longest river and the first in China [63]. It flows from the three-rivers headwater
region (northeastern Tibetan Plateau) to the East China Sea, for a total length of 6300 km and with a
total drainage basin area of 1,800,000 km2 [64,65]. The whole YRB (Figure 1) can be divided into three
reaches, based on its stepped topography and on the river channel cross-sections: an upper (from the
Tibetan Plateau to Yichang), a middle (from Yichang to Hukou), and a lower reach (from Hukou to the
river estuary) [66].

The majority of the YRB is subject to the subtropical monsoons, in particular the Indian Summer
Monsoon (ISM) and the East Asian Summer Monsoon (EASM) [67,68]. Generally, the surface air
temperature in the YRB reaches maxima in summer and minima in winter [69]; moreover, P concentrates
over the middle-lower reach of the YRB. The mean annual P rate in correspondence of the upper reach
(i.e., 270–500 mm) is significantly lower than that in correspondence of the middle-lower reach (i.e.,
1600–1900 mm) [70]. Controlled by the monsoonal climate, the rainy season starts from April and ends
in September, peaking in July every year [71].
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Figure 1. Map of the Yangtze River basin (YRB). Selected hydrological stations (red stars), which 
collected precipitation, evaporation, and discharge data time series, are situated along the upper, 
middle, and lower reaches of the Yangtze River. The point locations (black dots) correspond to grid 
values included in the estimated basin-averaged runoff. 

3. Methodology, Data Description and Validation 
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The terrestrial water balance equation, based on the principle of mass conservation, has been 
used to estimate the remotely sensed runoff R for the YRB [41,42]: 𝑹 = 𝑷 − 𝑬𝑻 − ∆𝑺 (1) 
where P is the precipitation (mm/month), ET the evapotranspiration (mm/month), ∆S the terrestrial 
water storage change (mm/month), which can be expressed as: ∆𝑆 = 12 (𝑆ାଵ − 𝑆ିଵ) (2) 

where 𝑆 is water storage anomaly (mm/month) of month i. 
Table 1 summarizes all the remotely sensed data products and the in-situ gauge observations 

used in this study. All the in-situ gauge data time series were obtained from the Changjiang Water 
Resources Commission (Ministry of Water Resources; http://www.cjh.com.cn). Notably, the remotely 
sensed P data from the TRMM, the ET data from the MODIS, and the S data from GRACE have 
different spatial resolutions (Table 1) and need to be unified. Therefore, the TRMM and MODIS data 
were resampled at a 1° × 1° resolution, whereas the GRACE data were interpolated at a 1° × 1° 
resolution. The remotely sensed data were then validated against the in-situ gauge at point locations. 
No in-situ ET gauge stations were available in the YRB [51]; hence, we needed to use the evaporation 
(E) in-situ measurements to infer the ET. Since terrestrial water storage measurements were 
unavailable at a point location, the GLDAS was employed to validate the data in this study. 

Once the steps described above were completed, all the P, ET, and ∆𝑆 values gridded within 
the YRB up to Datong station location were individually summed up and used to calculate the 
monthly R values between 2003 and 2012 (see Equation (1) and Figure 1). To be comparable with the 
unit of the estimated R values, the daily observed discharge (mଷ/𝑠ec) data of Datong station were 
combined to in the form of monthly discharge values and subsequently divided by the approximate 
total drainage area, up to Datong station (i.e., 1.7 × 10kmଶ) to obtain the monthly R per unit area 
(mm/month) (Figure 1).  
  

Figure 1. Map of the Yangtze River basin (YRB). Selected hydrological stations (red stars), which
collected precipitation, evaporation, and discharge data time series, are situated along the upper,
middle, and lower reaches of the Yangtze River. The point locations (black dots) correspond to grid
values included in the estimated basin-averaged runoff.

3. Methodology, Data Description and Validation

3.1. Methodology

The terrestrial water balance equation, based on the principle of mass conservation, has been used
to estimate the remotely sensed runoff R for the YRB [41,42]:

R = P− ET − ∆S (1)

where P is the precipitation (mm/month), ET the evapotranspiration (mm/month), ∆S the terrestrial
water storage change (mm/month), which can be expressed as:

∆S =
1
2
(Si+1 − Si−1) (2)

where Si is water storage anomaly (mm/month) of month i.
Table 1 summarizes all the remotely sensed data products and the in-situ gauge observations used

in this study. All the in-situ gauge data time series were obtained from the Changjiang Water Resources
Commission (Ministry of Water Resources; http://www.cjh.com.cn). Notably, the remotely sensed
P data from the TRMM, the ET data from the MODIS, and the S data from GRACE have different
spatial resolutions (Table 1) and need to be unified. Therefore, the TRMM and MODIS data were
resampled at a 1◦ × 1◦ resolution, whereas the GRACE data were interpolated at a 1◦ × 1◦ resolution.
The remotely sensed data were then validated against the in-situ gauge at point locations. No in-situ
ET gauge stations were available in the YRB [51]; hence, we needed to use the evaporation (E) in-situ
measurements to infer the ET. Since terrestrial water storage measurements were unavailable at a point
location, the GLDAS was employed to validate the data in this study.

Once the steps described above were completed, all the P, ET, and ∆S values gridded within the
YRB up to Datong station location were individually summed up and used to calculate the monthly R
values between 2003 and 2012 (see Equation (1) and Figure 1). To be comparable with the unit of the
estimated R values, the daily observed discharge (m3/sec) data of Datong station were combined to in
the form of monthly discharge values and subsequently divided by the approximate total drainage area,
up to Datong station (i.e., 1.7× 106 km2) to obtain the monthly R per unit area (mm/month) (Figure 1).

http://www.cjh.com.cn
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Table 1. Remotely sensed data products and in-situ gauge observations used in this study.

Hydrological Component Data Source Spatial Resolution Temporal Resolution

Precipitation TRMM 3B43 v7 0.25◦ × 0.25◦ Monthly
Gauges Point Daily

Evapotranspiration MOD16A2 0.5◦ × 0.5◦ Monthly
GLDAS 1◦ × 1◦ Monthly

Evaporation Gauges Point Daily

Terrestrial water storage change GRACE 3◦ × 3◦ Monthly
GLDAS 1◦ × 1◦ Monthly

Runoff Gauges Point Daily

3.2. In-Situ Hydrological Gauge Stations as Reference Data

In proximity of the estuary mouth, the river channel is seasonally affected by a combination of
fluvial (i.e., discharge) and marine (i.e., tide and wave) processes. The Datong station was chosen to
validate the remotely sensed R (Figure 1), since it is sufficiently far from the estuary. For consistency
with the RS data, we used the RWD time series collected at the Datong station between January 2003 and
December 2012. The observed RWD data (m3/s) were converted into monthly R rates (mm/month) per
unit area of the YRB. To validate the remotely sensed P (TRMM) and ET (MODIS) data, we considered
the observed P and the inferred ET using Equation (6) of Zhang et al. (2001) [72] from the observed E
data time series collected at stations along the upper (i.e., Pingshan), middle (i.e., Chenglingji), and
lower reaches (i.e., Datong) of the Yangtze River (Figure 1).

The Datong station time series showed an annual peak and trough in July and February,
respectively (Figure 2). The exceptionally large R that occurred in July 2010 was likely caused by a
moderate El Niño event that started in autumn 2009, as also indicated by the Oceanic Niño Index
(https://ggweather.com/enso/oni.htm).

Sensors 2019, 19, x FOR PEER REVIEW  5 of 21 

 

Table 1. Remotely sensed data products and in-situ gauge observations used in this study. 

Hydrological Component Data Source Spatial Resolution Temporal Resolution 

Precipitation 
TRMM 3B43 v7 𝟎. 𝟐𝟓° × 𝟎. 𝟐𝟓° Monthly 

Gauges Point Daily 

Evapotranspiration 
MOD16A2 𝟎. 𝟓° × 𝟎. 𝟓° Monthly 

GLDAS 𝟏° × 𝟏° Monthly 
Evaporation Gauges Point Daily 

Terrestrial water storage 
change 

GRACE 𝟑° × 𝟑° Monthly 
GLDAS 𝟏° × 𝟏° Monthly 

Runoff Gauges Point Daily 

3.2. In-Situ Hydrological Gauge Stations as Reference Data  

In proximity of the estuary mouth, the river channel is seasonally affected by a combination of 
fluvial (i.e., discharge) and marine (i.e., tide and wave) processes. The Datong station was chosen to 
validate the remotely sensed R (Figure 1), since it is sufficiently far from the estuary. For consistency 
with the RS data, we used the RWD time series collected at the Datong station between January 2003 
and December 2012. The observed RWD data (m3/s) were converted into monthly R rates (mm/month) 
per unit area of the YRB. To validate the remotely sensed P (TRMM) and ET (MODIS) data, we 
considered the observed P and the inferred ET using Equation (6) of Zhang et al. (2001) [72] from the 
observed E data time series collected at stations along the upper (i.e., Pingshan), middle (i.e., 
Chenglingji), and lower reaches (i.e., Datong) of the Yangtze River (Figure 1). 

The Datong station time series showed an annual peak and trough in July and February, 
respectively (Figure 2). The exceptionally large R that occurred in July 2010 was likely caused by a 
moderate El Niño event that started in autumn 2009, as also indicated by the Oceanic Niño Index 
(https://ggweather.com/enso/oni.htm). 

 
Figure 2. Monthly runoff time series, averaged from the daily discharge data collected at the Datong 
station (and divided by the basin area). 

3.3. Remotely Sensed Hydrological Variables and their Validation 

3.3.1. Evaluation Metrics 

To estimate the remotely sensed R for the YRB, several remotely sensed datasets have been 
considered (i.e., P (TRMM), ET (MODIS), and S (GRACE) data). These datasets and the estimated R 
were subjected to an accuracy evaluation, by comparing them to the gauge station observed time 
series. In particular, the remotely sensed data were compared to the gauge station observed time 
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Figure 2. Monthly runoff time series, averaged from the daily discharge data collected at the Datong
station (and divided by the basin area).

3.3. Remotely Sensed Hydrological Variables and Their Validation

3.3.1. Evaluation Metrics

To estimate the remotely sensed R for the YRB, several remotely sensed datasets have been
considered (i.e., P (TRMM), ET (MODIS), and S (GRACE) data). These datasets and the estimated
R were subjected to an accuracy evaluation, by comparing them to the gauge station observed time
series. In particular, the remotely sensed data were compared to the gauge station observed time series
using the PCC and the RMSE, whereas the R values estimated from the water balance model were
compared to the gauge station observed time series using the PCC, RMSE, and the Nash–Sutcliffe

https://ggweather.com/enso/oni.htm
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model efficiency (NSE) coefficient. The PCC is a number that represents the strength of the linear
relationship between two data time series; it can be calculated as follows:

PCC =

∑N
i=1

(
Xi

o −Xo
)(

Xi
m −Xm

)
√∑N

i=1

(
Xi

o −Xo
)2

√∑N
i=1

(
Xi

m −Xm
)2

(3)

The RMSE represents the accuracy of the estimation; It can be calculated as follows:

RMSE =

√∑N
i=1

(
Xi

m −Xi
o

)2

N
(4)

The NSE coefficient proposed by Nash and Sutcliffe (1970) [73] is usually used to assess hydrological
models; it can be calculated as follows:

NSE = 1−

∑N
i=1

(
Xi

m −Xi
o

)2

∑N
i=1

(
Xi

o −Xo
)2 (5)

where Xo and Xo are the gauge observed and the average gauge observed values, respectively; Xm

and Xm represent the remotely sensed R and the average remotely sensed values, respectively; and N
corresponds to the number of observations within the time series. The closer the NSE is to 1, the better
the performance of Xm is. Notably the numerical value of NSE should be equivalent to the coefficient
of determination (R2), a statistical measure used to predict future outcomes and test hypotheses.

3.3.2. Remotely Sensed Precipitation

The Tropical Rainfall Measuring Mission (TRMM) is a satellite mission responsible for the
spatiotemporal measurement of P over a large latitude interval (between 50◦ S and 50◦ N [74]).
The monthly gridded global P data (TRMM3B43 V7) used in this study, having a spatial resolution of
0.25◦ [50], were obtained from the Goddard Earth Sciences Data and Information Services Center (GES
DISC) managed by NASA (https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/summary downloaded
on 14 June 2018). Notably the TRMM 3B43 V7 data products are not purely a satellite-based; in fact,
the Global Precipitation Climatology Centre (GPCC) gauge data were used for bias correction and
calibration [75–77].

Three hydrological stations were selected in the YRB and considered for the comparison between
the satellite P (TRMM) and the observed monthly P data. The result showed that the satellite P (TRMM)
and the observed P data were strongly correlated with each other in the case of all three stations,
their the PCCs were equal to 0.82 (Pingshan station), 0.95 (Chenglingji station), and 0.88 (Datong
station), respectively (Table 2). Moreover, their respective RMSE values indicated similar conditions
along the upper, middle, and lower river reaches, although the highest correlation was identified in
correspondence of the middle reaches. Overall, the TRMM and observed P data series of the YRB were
in good agreement with each other; hence, they were considered reliable for our study (Figure 3).

Table 2. Statistical comparison between the remotely sensed precipitation data and the observed
precipitation data at the three selected stations, located along the upper, middle, and lower reaches of
the Yangtze River basin.

Station PCC RMSE (mm/month)

Pingshan 0.82 50.8
Chenglingji 0.95 32.1

Datong 0.88 52.3

https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_V7/summary
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3.3.3. Remotely Sensed Evapotranspiration

Evapotranspiration (ET) is a water vapor that re-enters the atmosphere. It includes the evaporation
from soil moisture and the transpiration from land vegetation [78]. The MOD16A2 ET data product
was prepared based on the MODIS and Global Meteorological Assimilation Office (GMAO) data
products using the Penman–Monteith equation [79], having the spatial coverage of 80◦ N–60◦ S and
0◦ E–360◦ E. These data products were obtained from the MODIS Global Evaporation Project (i.e.,
MOD16A2) dataset, managed by the Land Processes Distributed Active Archive Center (LP DAAC) of
NASA (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table). These data products
were also available at the Numerical Terradynamic Simulation Group in the University of Montana
(http://www.ntsg.umt.edu/project/modis/).

Some controversy exists regarding the uncertainty of regional or global-scale ET [80,81]. Therefore,
it was necessary to compare the MODIS ET data to the inferred ET using Equation (6) of Zhang et al.
(2001) [72] from the observed E data. The results of this comparison showed that the MODIS ET
were strongly correlated with the inferred ET along the middle and lower river reaches: the PCCs
of 0.87 (Pingshan station), 0.71 (Chenglingji station), and 0.80 (Datong station), respectively (Table 3).

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
http://www.ntsg.umt.edu/project/modis/
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Meanwhile, the respective magnitude of the RMSE values was apparently dependent on the amount of
ET (Figure 4).

Table 3. Statistical comparison between the remotely sensed MODIS evapotranspiration data and the
inferred evapotranspiration from the observed evaporation data at the three selected stations along the
upper, middle, and lower reaches of the Yangtze River basin.

Station PCC RMSE (mm/month)

Pingshan 0.87 26.4
Chenglingji0.71 29.7
Datong 0.80 29.4
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The MODIS ET data were also compared to the ET modeled data (derived from the GLDAS).
Four different land surface models (i.e., the common land model (CLM), the Mosaic, the National centers
for environmental prediction/Oregon State University/Air force/Hydrologic research lab (NOAH),
and the variable infiltration capacity (VIC) model) were extracted. The MODIS ET and the four sets of
GLDAS modeled data were characterized by strong and consistent PCCs; however, the RMSE values
revealed diverse performances (Table 4). These results can be attributed to a consistency in the seasonal
patterns, combined with a considerable variation in the occurrence of maxima during the summer
season (Figure 5). For the entire YRB, the CLM ET data showed the best match with the MODIS
ET data.

Table 4. Statistical comparison between remotely sensed MODIS evapotranspiration and the GLDAS
modeled evapotranspiration data at the three selected stations along the upper, middle, and lower
reaches of the Yangtze River basin.

Station GLDAS PCC RMSE (mm/month)

Pingshan

CLM 0.94 16.5
Mosaic 0.89 25.1
Noah 0.95 19.6
VIC 0.91 23.3

Chenglingji

CLM 0.92 14.5
Mosaic 0.93 39.1
Noah 0.94 29.4
VIC 0.95 34.0

Datong

CLM 0.96 10.4
Mosaic 0.91 30.0
Noah 0.89 22.2
VIC 0.95 25.5

3.3.4. Remotely Sensed Terrestrial Water Storage

GRACE is a satellite mission responsible for measuring Earth’s time-variable gravity changes,
which allow inference of global S variations (in terms of Equivalent Water Height (EWH)). The EWH
were computed by the Center for Space Research (CSR), GeoForschungsZentrum (GFZ), the Institute
of Theoretical geodesy and Satellite Geodesy (ITSG), and the Jet Propulsion Laboratory (JPL) GRACE
Level-2 Release 05 (RL05) GSM monthly gravity fields for the period between January 2003 and
December 2012 in the form of spherical harmonic coefficients (SHCs) [82].

Unified postprocessing procedures were applied to the SHCs before converting them into S data.
The degree-one terms were restored to correct for the geocenter motion [83], while the term C20 in the
form of the SHCs was replaced by the Satellite Laser Ranging (SLR) results [84]. A destriping process
and a Gaussian filtering (radius 350 km) were applied in order to reduce the spatially correlated errors
of the S [85,86]. Afterward, the values of S time series were calculated considering a regular grid using
Equation (14) in [87] and dividing the result by water density. Additionally, the sum of the preceding
and succeeding two-month data were averaged in order to compensate for (i.e., interpolating) the
missing monthly S data.

There is controversy about the uncertainty of the GLDAS-modeled S data, especially when
compared to remotely sensed GRACE S data (e.g., [88]). Hence, the GRACE S data needed to be
validated by comparing them with the GLDAS-modeled S data. Only the GRACE S data obtained from
the CSR are shown in Table 5, since all GRACE data products exhibited similar patterns (independently
from the position of the correspondent stations). We noted a large disparity and a low correlation
between the GRACE and the GLDAS-modeled S data (Table 5), particularly in correspondence of the
river upper reaches. Moreover, the GLDAS-modeled S data series obtained from different sources were
considerably different among each other (Figure 6). In fact, while the modeled CLM S data displayed
small variability, those from Mosaic displayed large fluctuations. The modeled S data from the VIC
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and the NOAH showed modest fluctuation patterns, similar to that of the GRACE data. Furthermore,
leakage errors in the GRACE S data and the uncertainties inherent to the GLDAS modeled S data could
have contributed to their poor correlation (e.g., [89]). Therefore, it is difficult to assess the accuracy of
the GRACE S simply based on the GLDAS modeled S data: the pure remotely sensed R and modeled
(i.e., ET and/or S) datasets need to be further compared with each other.
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Table 5. Statistical comparison between the remotely sensed GRACE (CSR) and the GLDAS-modeled
terrestrial water storage datasets at the three selected stations along the upper, middle, and lower
reaches of the Yangtze River basin.

GLDAS PCC RMSE (mm/month)

Pingshan

CLM 0.03 49.09
Mosaic 0.05 129.50
Noah 0.38 66.40
VIC 0.32 75.66

Chenglingji

CLM 0.43 56.93
Mosaic 0.57 115.04
Noah 0.52 68.12
VIC 0.44 84.11

Datong

CLM 0.29 34.17
Mosaic 0.56 91.10
Noah 0.56 34.20
VIC 0.41 60.31
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4. Discussion

The resulting R time series based on our purely satellite data-driven method (i.e., MODIS ET
and several GRACE S) were compared to remotely sensed and modeled data products (i.e., ITSG
GRACE S and several GLDAS ET, or MODIS ET and several GLDAS S), which were based on the
same TRMM P data (Table 6). Our analysis showed that the MODIS and ITSG, ITSG and CLM,
and MODIS and Mosaic were the best data combinations to describe the remotely sensed ET and S
changes (Figure 7). The combination (i.e., ITSG GRACE S and CLM ET) yields a PCC of 0.73 and an
RMSE of 15.69 mm/month, comparable to those reported by Ferreira et al. (2013) [37] (i.e., 0.74 and
14.30 mm/month, respectively). Our metrics were slightly less accurate than those in [37], probably due
to the additional three-year time span (between 2010 and 2012) considered in the study: during this
period, the occurrence of a moderately strong El Niño event might have created anomalous conditions.
In the case of the MODIS ET and GRACE S data, our data-driven method resulted in a PCC of 0.88
and an RMSE of 11.69 mm/month, indicating a higher accuracy than that obtained in [37]. According
to the results, the MODIS16A2 ET data are more reliable than those of the GLDAS, at least for the
YRB. Probably, this was due to the use of the Penman–Monteith equation during the production of
the MODIS16A2 ET data: this equation favors the detection of cropland and grassland covers [51],
particularly in the YRB.

Table 6. Statistical comparison between the remotely sensed monthly runoff data derived from
the MODIS evapotranspiration and several GRACE terrestrial water storage, several GLDAS
evapotranspiration and ITSG GRACE water storage, and MODIS evapotranspiration and several
GLDAS terrestrial water storage data, and the ground-based observed runoff.

Dataset Combinations PCC RMSE(mm/month) NSE

MODIS + JPL 0.88 11.89 0.631
MODIS + ITSG 0.89 11.69 0.643
MODIS + GFZ 0.88 11.78 0.638
MODIS + CSR 0.88 11.90 0.630

ITSG GRACE + CLM 0.73 15.69 0.357
ITSG GRACE + Mosaic 0.48 29.26 −1.235
ITSG GRACE + Noah 0.67 20.66 −1.146
ITSG GRACE + VIC 0.39 26.29 −0.805

MODIS + CLM 0.70 24.96 −0.627
MODIS + Mosaic 0.76 19.16 0.004
MODIS + Noah 0.76 20.82 −0.132
MODIS + VIC 0.76 21.41 −0.196

Sensors 2019, 19, x FOR PEER REVIEW  12 of 21 

 

Figure 6. GRACE terrestrial water storage and the GLDAS-modeled time series in correspondence of 
(a) Pingshan (upper reaches), (b) Chenglingji (middle reaches), and (c) Datong (lower reaches) 
stations. 

Table 5. Statistical comparison between the remotely sensed GRACE (CSR) and the GLDAS-modeled 
terrestrial water storage datasets at the three selected stations along the upper, middle, and lower 
reaches of the Yangtze River basin. 

 GLDAS PCC RMSE (mm/month) 

Pingshan 

CLM 0.03 49.09 
Mosaic 0.05 129.50 
Noah 0.38 66.40 
VIC 0.32 75.66 

Chenglingji 

CLM 0.43 56.93 
Mosaic 0.57 115.04 
Noah 0.52 68.12 
VIC 0.44 84.11 

Datong 

CLM 0.29 34.17 
Mosaic 0.56 91.10 
Noah 0.56 34.20 
VIC 0.41 60.31 

4. Discussion 

The resulting R time series based on our purely satellite data-driven method (i.e., MODIS ET 
and several GRACE S) were compared to remotely sensed and modeled data products (i.e., ITSG 
GRACE S and several GLDAS ET, or MODIS ET and several GLDAS S), which were based on the 
same TRMM P data (Table 6). Our analysis showed that the MODIS and ITSG, ITSG and CLM, and 
MODIS and Mosaic were the best data combinations to describe the remotely sensed ET and S 
changes (Figure 7). The combination (i.e., ITSG GRACE S and CLM ET) yields a PCC of 0.73 and an 
RMSE of 15.69 mm/month, comparable to those reported by Ferreira et al. (2013) [37] (i.e., 0.74 and 
14.30 mm/month, respectively). Our metrics were slightly less accurate than those in [37], probably 
due to the additional three-year time span (between 2010 and 2012) considered in the study: during 
this period, the occurrence of a moderately strong El Niño event might have created anomalous 
conditions. In the case of the MODIS ET and GRACE S data, our data-driven method resulted in a 
PCC of 0.88 and an RMSE of 11.69 mm/month, indicating a higher accuracy than that obtained in [37]. 
According to the results, the MODIS16A2 ET data are more reliable than those of the GLDAS, at least 
for the YRB. Probably, this was due to the use of the Penman–Monteith equation during the 
production of the MODIS16A2 ET data: this equation favors the detection of cropland and grassland 
covers [51], particularly in the YRB. 

 
Figure 7. Remotely sensed runoff for the Yangtze river basin derived from the MODIS 
evapotranspiration and ITSG GRACE terrestrial water storage, CLM evapotranspiration and ITSG 

Figure 7. Remotely sensed runoff for the Yangtze river basin derived from the MODIS evapotranspiration
and ITSG GRACE terrestrial water storage, CLM evapotranspiration and ITSG GRACE terrestrial water
storage, and MODIS evapotranspiration and Mosaic terrestrial water storage datasets.
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Our results were validated against those result of Syed et al. (2009) [44] by considering the
peak-to-peak correlation between the remotely sensed and the observed R (Table 7). We found that
all the peak-to-peak correlations were larger than 0.92: our pure data-driven method resulted in a
correlation of 0.96, while the methods used in [44] and [37] resulted in correlation coefficients of 0.92
and 0.93, respectively. Overall, the results we derived from TRMM P, MODIS ET and GRACE S data
were substantially more accurate than those presented in the previous publications.

Table 7. Peak-to-peak correlation between the remotely sensed runoff and the ground-based
observed runoff.

Peak to Peak Correlation

MODIS + JPL 0.96
MODIS + ITSG 0.96
MODIS + GFZ 0.96
MODIS + CSR 0.96

ITSG GRACE + CLM 0.95
ITSG GRACE + Mosaic 0.94
ITSG GRACE + Noah 0.95
ITSG GRACE + VIC 0.92

MODIS + CLM 0.96
MODIS + Mosaic 0.95
MODIS + Noah 0.97
MODIS + VIC 0.96

Syed et al. (2009) [44] 0.92
Ferreira et al. (2013) [37] 0.93

The Taylor’s diagram provides a direct way to determine the degree of correspondence between
observed and estimated data [90]: it shows the correlation, the RMSE difference, and the standard
deviation between two types of data. Figure 8 displayed that four different remotely sensed R derived
through the purely data-driven method (triangles) overlapped each other: this indicates that the choice
of different GRACE S in combination with the MODIS ET data has a negligible effect on the estimated
R. However, the results derived from the MODIS ET and GLDAS S, and GLDAS ET and GRACE S
datasets, showed poor consistency, in particular the latter one. These results highlight that the ET is
likely the most significant error source during the estimation of the remotely sensed R. In summary,
the remotely sensed R derived from the purely data-driven method is the closest to the observed R.

The discrepancy between the observed and evaluated runoff was examined in detail by computing
the mean monthly R derived from the three dataset combinations. The results derived from the purely
data-driven method best matched those of the observations: the estimated R values for different
seasons match those of the observations with various degrees of accuracies. Our results indicated
a maximum and a minimum R in July and January, respectively (Figure 9); however, the estimated
minimum R was inconsistent with that observed R, which occurred in February. Apparently, the
estimated R was underestimated in winter and overestimated in summer (Figure 9a), likely due to the
characteristics of the vegetation cover types, which can influence the calculated MODIS ET in different
ways during dry and humid seasons.

In case of the GLDAS ET and ITSG GRACE S combination (Figure 9b), the estimated runoff was
underestimated between January and August: the GLDAS ET data were overestimated (Figure 5),
likely due to the effect of incoming radiations and temperature, as stated in [51]. The S data derived
from the GLDAS land surface model were even less accurate than those described above (Figure 9c):
the resulting estimated R displayed its maximum one month earlier than the observed time series,
causing an underestimation of the R between July and December.
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In general, the correlation coefficients between the estimated and the observed R during spring
and autumn were higher than during summer and winter from the three combinations of remotely
sensed data (Table 8). These results further confirm our observations based on Figure 9: overall, the
rising and falling trends were well captured by our estimated R. The higher correlation coefficients
during the spring and autumn months probably derived from an overestimation of the modeled ET
and, possibly, by the low temporal resolution of the data at the monthly scale.

Table 8. Seasonal statistical assessment of the remotely sensed runoff derived from the comparison
between the MODIS evapotranspiration and ITSG GRACE terrestrial water storage (MODIS + ITSG),
CLM evapotranspiration and ITSG GRACE terrestrial water storage (CLM + ITSG), and MODIS
evapotranspiration and Mosaic terrestrial water storage (MODIS + Mosaic), and the ground-based
observed runoff data registered at the Datong station.

Season PCC RMSE NSE

MODIS + ITSG

Spring 0.76 11.00 0.128
Summer 0.34 13.21 −0.112
Autumn 0.76 11.88 0.384
Winter 0.33 10.50 −6.082

CLM + ITSG

Spring 0.50 19.33 −1.693
Summer 0.46 19.29 −1.37
Autumn 0.54 13.13 0.248
Winter 0.44 8.19 −3.31

MODIS + Mosaic

Spring 0.64 14.61 −0.539
Summer 0.24 19.77 −1.489
Autumn 0.29 23.64 −1.441
Winter 0.06 19.60 −23.654
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Figure 9. Mean monthly runoff in the Yangtze river basin derived from (a) MODIS evapotranspiration
and several GRACE terrestrial water storage; (b) several GLDAS evapotranspiration and ITSG GRACE
terrestrial water storage; and (c) MODIS evapotranspiration and several GLDAS terrestrial water
storage data.

5. Conclusions

Previous studies have calculated the time series of monthly TBD (in terms of R) in the YRB by
applying the water balance equation to a combination of RS and modeled data products. Here, we
applied a data-driven method purely based on RS data. Before the investigation, the remotely sensed
data were first validated against the in-situ gauge measurements or the inferred measurements at
point locations. This validation process indicated that large uncertainties existed in the modeled data
products, as verified when the modeled data products were compared with the observed hydrological
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data collected from the in situ stations or the inferred data, or when the estimated runoff were compared
against the observed runoff.

Our best R (obtained from purely remotely sensed data) and those of Ferreira et al. (2013) [37]
against the observed runoff reveal the PCC of 0.89 and 0.74, and the RMSE of 11.69 mm/month and
14.30 mm/month, respectively: our method showed statistically better results. The peak-to-peak
correlation values were also calculated: in this sense, our method produced slightly better results than
those of Syed et al. (2009) [44] and Ferreira et al. (2013) [37].

Seasonal error characterization was conducted to assess the performance of our method during
specific seasons. We found that the remotely sensed TBD did not accurately capture the maximum
and minimum runoff values in summer and winter, respectively. This poor performance could be
attributed to an overestimation and underestimation of ET, respectively, which depend on the input
variables (e.g., vegetation cover types, solar radiation, and temperature) [51]. The ET values tend to
be overestimated or underestimated when the input variables are instable, particularly in dry and
humid seasons. Notably, the low temporal resolution of the data at a monthly scale could have also
contributed to these effects. This finding has not been reported in previous studies.

Satellite data products with higher temporal resolution are gradually becoming available (e.g.,
daily TRMM precipitation [91], eight-day MODIS evapotranspiration [92], and daily GRACE terrestrial
water storage data products [93]). Future research might contemplate the application of our proposed
method to these new data, while caution has to be taken with the data validation, data postprocessing
steps, and the geographic region.
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