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A B S T R A C T

The accumulation of potentially toxic elements (PTEs) in aquatic ecosystems has become a global concern, as
PTEs may exert a wide range of toxicological impacts on aquatic organisms. Submerged plants and the micro-
organisms attached to their surfaces, however, have displayed great potential as a means of coping with such
pollution. Therefore, it is crucial to understand the transport pathways of PTEs across sediment and organisms as
well as their accumulation mechanisms in the presence of submerged plants and their biofilms. The majority of
previous studies have demonstrated that submerged plants and their biofilms are indicators of PTE pollution in
the aquatic environment, yet relatively little is known about PTE accumulation in epiphytic biofilms. In this
review, we describe the transport pathways of PTEs in the aquatic environment in order to offer remarkable
insights into bioaccumulation mechanisms in submerged plants and their biofilms. Based on the literature cited
in this review, the roles of epiphytic biofilms in bioaccumulation and as an indicator of ecosystem health are
discussed.

1. Introduction

Large quantities of potentially toxic elements (PTEs) have been re-
leased into aquatic ecosystems with the rapid development of industry
and agriculture. Most of the PTEs are potentially lethal and persistent,
which can accumulate in the food chain and even exert adverse effects
on aquatic organisms (Lu et al., 2015; Luo et al., 2018; Palansooriya,
2019). Currently, PTE pollution in aquatic ecosystems has become a
global concern that warrants legislative attention (Islam et al., 2015;
Abraham et al., 2017). As such, this problem has stimulated studies that
investigate the diverse mechanisms regulating the transport, transfor-
mation, and fate of PTEs in water bodies (Dey and Paul, 2018; Meena
et al., 2018).

PTEs in rivers and lakes come from domestic, industrial, and agri-
cultural sources as well as atmospheric deposition (Elkady et al., 2015;

Kuriata-Potasznik et al., 2016; Yang, 2018). The aquatic environments
ultimately serve as either a direct or indirect sink of various PTEs,
which may be labile and vary between the particulate, dissolved, and
biological phases (Tang et al., 2015; Zhang et al., 2017a). For example,
PTEs can be released from the sediment to the water column when the
sediment is disturbed by bioturbation or resuspension. Likewise, PTE
levels may vary considerably depending on the conditions of an aquatic
ecosystem, which can greatly complicate remediation efforts (Roberts,
2012; Du Laing et al., 2009a; Du Laing et al., 2009b).

There is a diverse range of PTEs in aquatic environments including
cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb),
nickel (Ni), zinc (Zn), and arsenic (As) (Sánchez-López et al., 2015; Lu
et al., 2016; Rinklebe et al., 2016; Song et al., 2017). Although certain
PTEs, such as Cu and Zn, are essential for the normal growth and de-
velopment of many organisms, they can become toxic at excess levels.
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Some PTEs, such as Hg, are even toxic at low concentrations that can
inhibit the growth of aquatic organisms (Clemens and Ma, 2016; Azzam
et al., 2016). It has been reported that Cd is highly bioavailable in
aquatic environments, and it readily transfers between sediment and
the water column (Nan et al., 2016; Alvarez et al., 2011). Upon ab-
sorption by a plant, Pb decreases seed germination and plant growth
rates (Wang et al., 2016; Malar et al., 2014; Ahmad et al., 2012). Some
PTEs, such as Cr, As, and manganese (Mn), may exist in multiple oxi-
dation states, and express different chemical, toxicological, and epide-
miological properties depending on environmental conditions. Al-
though Cr(III) is essential to organisms, its oxidized form, Cr(VI), is
highly toxic (Rajapaksha et al., 2018; Shanker et al., 2005).

Compared to physical and chemical remediation methodologies,
bioremediation including phytoremediation and microbial remediation,
is considered to be a more eco-friendly solution due to its cost-effec-
tiveness, environmental sustainability, and limited impact on func-
tioning, albeit contaminated, ecosystems (Ahmad et al., 2014;
Rajapaksha et al., 2016: El-Naggar, 2018; Palansooriya, 2019). Sub-
merged plants including Elodea canadensis, Vallisneria natans (Lour.)
Hara, and Myriophyllum spicatum L. have significant tolerance to PTEs.
Moreover, some of them, particularly Lemna minor and Ceratophyllum
demersum L., have demonstrated the ability to significantly accumulate
PTEs from polluted water (Chen et al., 2015; Török et al., 2015). The
surfaces of submerged plants are usually coated with active biofilms,
which consist of a complex combination of microorganisms, exudate
polymers, absorbed nutrients and metabolites, and particulate materials
(D'Acunto et al., 2016). These epiphytic biofilms mature within one
week if there are sufficient nutrients (Hiraki et al., 2009). Biofilms have
been found to exert effective control on PTE pollution in aquatic sys-
tems (Rene et al., 2016). Since they are polyanionic, biofilms can fa-
cilitate the biosorption of PTEs (D'Acunto et al., 2016; Bradney, 2019).
In addition, some bacteria species can modify PTE sorption by in-
creasing the surface area of the plants or root length, or promoting
biofilm formation, which can potentially increase the bioavailability of
PTEs (Antoniadis et al., 2017; Palansooriya, 2019).

Despite the increase in research on the accumulation of PTEs, re-
latively little is known about the mechanisms through which PTEs ac-
cumulate in epiphytic biofilms, which is an important system to con-
sider in terms of site remediation. In this review, we offer some insight
into the mechanisms controlling the fate and bioavailability of PTEs in
aquatic environments and their bioaccumulation in submerged plants
and biofilms. Finally, we provide a comprehensive descriptive model of
the combined phytoremediation and microbial remediation for PTE
pollution in aquatic systems.

2. Transport of PTEs from sediment to water

In aquatic environments, PTEs are commonly released into the
water column from sediment pore water and the underlying sediments
when the latter is agitated by bioturbation, or through water movement
and diffusion (Kalnejais et al., 2010; Roberts, 2012; Wang et al., 2016)
(Fig. 1). PTEs associated with resuspended particulates are slowly re-
leased into the surrounding water through desorption (Kalnejais et al.,
2010). The degree of PTE release during resuspension is strongly in-
fluenced by the chemical speciation of PTEs, the concentration gradient
of PTEs in the surrounding water, and the physicochemical properties
of the sediment including particle size distribution (PSD), sulfide con-
tent, organic matter content, and the presence of iron (Fe) and Mn
oxides (Du Laing et al., 2009b; Campana et al., 2013). Labile PTEs in
the water column may be readily reabsorbed by finer suspended solids
depending on their chemical speciation (Pourabadehei and Mulligan,
2016). Clay colloids are considered to be effective adsorbents for a wide
range of PTEs. Organic matter, especially humic and fulvic acids, col-
loids, and synthetic organic substances also serve as reactive sorbents
with the capacity to bind large amounts of PTEs (Carolin et al., 2017;
Uluturhan et al., 2011). A recent study showed that clay minerals can

retain up to 1.0360 g Pb, 1.0029 g Hg, 0.5621 g Cd, 0.3269 g Zn,
0.3178 g Cu, and 0.1733 g Cr(III) for each 1 cmolc/kg soil (Antoniadis
et al., 2017).

Various PTEs can also be released into the water column due to
changes in the background solution composition, such as the pH and
the dissolved oxygen (DO) content at the water/sediment interface (El-
Naggar et al., 2018b). Increases in DO content can increase the redox
potential (Eh), under which conditions sulfides are oxidized and ther-
modynamically unstable PTE-sulfides dissolve; thus, the mobility of the
associated PTEs in the sediment increases (De Jonge et al., 2012; Awad
et al., 2018). PTEs in the pore water of the surface sediment are re-
leased into the water column where they undergo oxygen enrichment
(Tang et al., 2016; Beiyuan et al., 2017). However, some PTEs (e.g., Ni,
As) adsorb or bond with FeeMn oxides that result from higher Eh
conditions. In addition, in another example, some PTEs, e.g., Pb, readily
precipitate depending on the identity and relative concentrations of
inorganic ligands including carbonates and phosphates (Antić-
Mladenović et al., 2017; Shaheen et al., 2016; Vikrant, 2018).

3. Bioaccumulation mechanisms of PTEs by submerged plants and
biofilms

Submerged plants and epiphytic biofilms have considerable poten-
tial to accumulate PTEs from the surrounding environment. The leaves
and roots provide physical support for biofilms, which facilitate both
facultative anaerobic and anaerobic microorganisms to absorb nutrients
(Valipour et al., 2015). In addition to the nutrients required by living
organisms, plants and biofilms also accumulate non-essential trace
elements, e.g., Cd, Cr, and As (Ali et al., 2013). The epiphytic biofilms
adsorb/absorb PTEs and transport them to the leaves. The interactions
between rhizosphere-associated biofilms and plants enhance the overall
PTE removal efficiency directly by increasing the trace element content
in plants and indirectly by promoting the rhizome length and rhizome
biomass (Carolin et al., 2017; Srivastava et al., 2015; Rajkumar et al.,
2012). The physicochemical changes (e.g., the decomposition of nu-
trients, the increase in Eh) caused by the rhizosphere microbiome can
alter PTE partitioning in the sediment to solubilize them and render
them bioavailable (Mitch, 2002; Gupta et al., 2014). The accumulation
of PTEs generally consists of fast, reversible PTE-binding (adsorption)
followed by slow, irreversible ion-sequestration (absorption)
(Keskinkan et al., 2003).

3.1. Submerged plants

Submerged plants have very thin cuticles through which PTEs in the
surrounding water can readily pass (Prasad, 2007). Borisova et al.
(2016) found that transfer from the water column across the cell
membrane of leaves occurs in ascending order of
Ni2+ < Cu2+ < Zn2+ < Fe3+ < Mn2+, as the concentration of Ni
in plants was usually much higher than that in the water in the study
area. It also relates to the physiological roles of these elements in the
metabolism of a plant. The absorption of PTEs in plants begins with
entry into plants via plasma membrane transporters (Fig. 2). For ex-
ample, various ZRT/IRT-like protein (ZIP) family transporters partici-
pate in Zn, Cd, and Ni uptake (Mizuno et al., 2005). In hyper-
accumulators, the expression levels of ZIP transporters are not
regulated by PTE availability. This property explains the extraordinary
PTE uptake capability of hyperaccumulators (Assunção et al., 2001).
PTEs and essential nutrients are chemically similar. For example, ar-
senate and selenite are chemically analogous to phosphate and sul-
phate, respectively. Therefore, the former can be readily absorbed
(Rizwan et al., 2018). Studies have shown that As enters root cells via
phosphate transporters, whereas sulfate transporters exhibit a high af-
finity for selenium (Se) (Meharg and Hartley-Whitaker, 2002; Shibagaki
et al., 2002). Non-hyperaccumulators may sequester PTEs in vacuoles
to prevent their translocation to the shoot following adsorption by cells
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(Rascio and Navari-Izzo, 2011; Rizwan, 2017). In contrast, hyper-
accumulators have lower PTE sequestration rates in their roots and
more efficient root-to-shoot PTE translocation than non-hyper-
accumulators (Fig. 2).

To survive in metalliferous environments, aquatic plants have
evolved various protective mechanisms against PTE cytotoxicity in-
cluding access control, rapid translocation, efficient accumulation, and
detoxification. Aqueous PTEs bind to cell walls, otherwise they are
chelated by root exudates (e.g., macromolecular organic matter) (Salt
et al., 2000; Ali et al., 2013). They are hindered from entering root cells
in both of these cases. Hyperaccumulating plant species actively absorb
PTEs from ambient environments. PTE concentrations in hyper-
accumulators can be five orders of magnitude higher than those in the
water column around them (Albers and Camardese, 1993; Usman et al.,
2012). The bioconcentration factor (BCF) is used to indicate the capa-
city of species to accumulate elements from soil or water (Ladislas et al.,
2012). However, the BCF may vary considerably among different PTE
species within each aquatic plant genus. The study by Borisova et al.
(2016) showed that the average BCF values of Cu2+, Ni2+, Zn2+,
Mn2+, and Fe3+ in the leaves of Ceratophyllum demersum L. were 4901,
4592, 20,400, 95,804, and 9605, respectively.

Detoxification and sequestration determine the extent to which
shoots can accumulate PTEs without phytotoxicity. Several proteins
participate in PTE efflux processes, and play key roles in PTE home-
ostasis and tolerance including heavy metal-transporting ATPases
(HMAs), natural resistance-associated macrophage proteins (Nramps),
cation diffusion facilitator (CDF) family proteins, and multidrug and
toxin efflux proteins (Clemens and Ma, 2016). The main detoxification
mechanism includes PTE complexation and sequestration into inactive
compartments, such as the epidermis, the vacuole, and the cuticle
(Fig. 2). This process relies heavily on transporters like CDF to exclude
PTEs from the cytoplasm. In addition to these transporters, recent
studies found vesicular trafficking was also involved in metal deposi-
tion in the vacuole. PTE-enriched vesicles have been identified in
plants, and may play a role in vacuolar sequestration (Dräxl et al.,
2013). Moreover, the increased vacuolar volume by vesicle fusion may
induce an electrochemical driving force to facilitate PTE transport
(Sharma et al., 2016; Fan et al., 2011). PTE-binding ligands chelate
PTEs and prevent free element cations from entering the cytoplasm. As
PTEs can also induce oxidative stress, antioxidant enzymes are over-
expressed in plants to maintain redox homeostasis (Verma and Dubey,
2003). When the PTE concentrations in plants are higher than the toxic
threshold values, the plants may die and degrade over time. Then, the

PTEs will settle in the sediment or be released into the water column.

3.2. Biofilms

Various bacteria in aquatic environments can directly interact with
certain elements and/or change their physicochemical properties
(Table 1). Even the cell-walls of bacteria may retain PTEs through
phosphoryl ligands, carboxyl groups, and other binding sites (Beveridge
and Murray, 1980; Boyanov et al., 2003). Worms et al. (2006) described
the physicochemical processes involved in PTE uptake by aquatic mi-
croorganisms. These elements first diffuse to the surface of the or-
ganism, then react with sites on their biological membranes (adsorp-
tion/desorption), where PTEs can be transported biologically
(internalization). The processes of adsorption and uptake are quite
complicated, and easily affected by various factors, such as electron
acceptors, concentrations of PTEs, and Eh (Ayangbenro and Babalola,
2017). Bacteria exist primarily in association with biofilms, which
consist mainly of closely associated microbial cells and extracellular
polymeric substances (EPSs) (D'Acunto et al., 2016; Nocelli et al.,
2016). While they are embedded in biofilms, sessile microbes have
several advantages over their planktonic counterparts, including en-
hanced antimicrobial resistance, protection from predation, and in-
tensive microbial interaction (Flemming et al., 2016).

Root exudates provide nutrients to sustain bacterial growth and the
rhizosphere is a central point of biofilm formation Zhang et al., 2017b
(). In general, rhizosphere biofilms are initiated by bacterial chemotaxis
towards root exudates (Zhang et al., 2015). Bacterial migration rates
towards the roots are highly correlated with the bacterial species and
the type of secreted attractants. Once attached to the root surface, these
bacteria gradually form microcolonies and develop a mature biofilm
architecture. A recent study found that the formation of a rhizosphere
microbial community is not a random process. Rather, it is specific to
the functional and taxonomic traits of the bacteria (Yan et al., 2017).
The members of rhizosphere biofilm communities have stronger inter-
actions with PTEs than those observed in the bulk environment
(Danhorn and Fuqua, 2007).

Potentially toxic elements can accumulate in biofilms via biosorp-
tion, bioprecipitation, intracellular accumulation, and redox im-
mobilization (Edwards and Kjellerup, 2013). The polysaccharides,
proteins, and DNA in the biofilm matrices serve as sinks for PTE bio-
sorption. Various functional groups in biofilm matrices including car-
boxyls, hydroxyls, and phosphates contribute to their overall poly-
anionic charge and interact with positively charged PTE ions (Philippis

Fig. 1. Transport and transformation of PTEs in an aquatic environment under hydrostatic and hydrodynamic conditions.
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et al., 2011). Biofilms also create oxygen-limiting microenvironments
for the bioreduction of redox sensitive PTEs. Selenium (Se), Cr, tech-
netium (Tc), and U may be reduced to form less soluble species that are
immobilized in biofilm matrices (Ahmed et al., 2012; Ng et al., 2013;
Ding et al., 2014; Zheng et al., 2014). In a continuous-flow biofilm
reactor, 56% of Cr(VI) was found to be immobilized in Shewanella
biofilm after 56-h exposure (Ding et al., 2014). Oxidation can also occur
inside biofilms and generate PTE oxides. For example, the nitrate-re-
ducing Acidovorax sp. can readily oxidize Fe (II) to form insoluble
magnetite in 2 days (Pantke et al., 2012).

Rhizosphere-associated biofilms can also promote PTE accumula-
tion in plants. Rhizosphere biofilms secrete micronutrients and meta-
bolites, e.g., antibiotics and phytohormones, that promote plant growth
(Ramey et al., 2004; Muehe et al., 2015). For example, some Bacillus
subtilis strains are capable of producing a broad spectrum of antibiotics
that suppress root infections (Bais et al., 2004). Enhanced plant growth
accelerates PTE accumulation in them. Biofilms also mobilize PTEs in
the ambient environment. Siderophores and citrates secreted by bac-
teria can solubilize unavailable PTEs and facilitate their uptake (Gadd,
2000; Mishra et al., 2017). In natural environments, the contents of

Fig. 2. Schematic diagram showing differential PTE accumulation mechanisms in hyperaccumulating (a) and non-hyperaccumulating (b) plants. (i) PTE uptake and
translocation in normal plants. (ii) PTE translocation and detoxification in hyperaccumulators. A, PTE; Nramp, natural resistance-associated macrophage protein;
CDF, cation diffusion facilitator family proteins; ZIP, zinc‑iron permease family proteins; MATE, multidrug and toxin efflux proteins, multidrug and toxin efflux
family proteins (Singh et al., 2016).
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solubilized elements are determined by the competition of various or-
ganic chelators (Boiteau et al., 2018).

3.3. Factors affecting PTE accumulation efficiency

PTE uptake is significantly affected by chemical speciation and
mobility in aqueous systems with the pH and Eh of a system playing a
major role in determining PTE bioavailability Ahmad, 2017. Organic
matter in the environment can also play an important role in controlling
bioavailability through chelation reactions that increase PTE solubility
(Du Laing et al., 2009a). The uptake rates of PTEs, such as Cr, Cu, and
Mn, are negatively correlated with pH, but positively correlated with
organic matter content (Zeng et al., 2011; Frohne et al., 2014; Frohne
et al., 2015). The relative uptake efficiency of individual elements is
also influenced by the presence of other PTEs in the system. Membrane
transporters have preferential selectivity for various elements. For ex-
ample, the Cd transfer rate by ZIP transporters is affected by the pre-
sence of Zn ions (Zhao et al., 2002). The plant growth status also affects
PTE accumulation efficiency (Yu et al., 2015). When plant growth is
impeded, its overall PTE removal rate is also limited. Therefore, plant
growth promotion is a common strategy to enhance phytoremediation
performance (Rajkumar et al., 2012; Ullah et al., 2015).

4. PTE pollution bioindicators

The PTE concentration in exposed organisms, which is accumulated
from aquatic environments, not only defines PTE pollution levels, but
also represents a moving time-averaged value for the relative biological
availability of PTEs within a system area. Both submerged plants and
their biofilms are suitable bioindicators of PTE pollution (Ladislas et al.,
2012). Certain physiological responses (e.g., metallothionein produc-
tion) or cell ultrastructure injury in organisms can also be used to assess
PTE exposure and toxicity of the environment (Geng et al., 2015;
Adrees et al., 2015).

4.1. Submerged plants as indicators of PTE pollution

Aquatic plants absorb PTEs and nutrients directly from both the
sediment and the overlying water column. They can generally tolerate
internal PTE concentrations that are several times greater than those
found in the surrounding water (Materazzi et al., 2012; Shahid et al.,
2017). The roots and the aboveground tissues of submerged plants are
suitable for sampling and quantifying PTE content as an indicator of
exposure history (Kurilenko and Osmolovskaya, 2007). Submerged
plants are more reliable indicators of pollution than either emergent or

floating plants, because their tissues remain submerged in the water
column and underlying sediment at a fixed location (Rezania et al.,
2016). Therefore, submerged plants are widely used as indicators in
PTE toxicological monitoring programs for aquatic ecosystems with
promising results. For example, Rai et al. (1996) found that con-
centrations of PTE in submerged plant tissues increased with PTE ex-
posure in aquatic environments. Then, some submerged plants were
used as bioindicators of river pollution, because there was a positive
relationship between the PTE concentration in plants and that in the
sediment and water (Harguinteguy et al., 2014; Harguinteguy et al.,
2016). Fawzy et al. (2012) suggested that several species should be
investigated together in order to identify the best bioindicator in their
study with Ceratophyllum demersum L., Echinochloa pyramidalis (Lam.)
Hitchc. & Chase., Eichhornia crassipes (Mart.) Solms-Laub, Myriophyllum
spicatum L., Phragmites australis (Cav.) Trin. ex Steud, and Typha dom-
ingensis (Pers.) Poir. ex Steud.

However, according to Gao et al. (2016), correlations between se-
dimentary and aquatic plant tissue PTE levels are difficult to establish.
Xing et al. (2013) and Wang et al. (2014) found no significant corre-
lations between submerged plants and their surrounding environments
in the middle and lower reaches of the Yangtze River and Dianchi Lake
in China. Plant growth rates may offset the accumulative effects and
lessen the relationships between the PTE concentration in plant tissues
and that in the sediment and water column due to the interactions
occurring among various PTEs in plants and other confounding factors
(Zhou et al., 2008). Furthermore, PTE accumulation may reduce plant
growth rates and hinder further accumulation (Chibuike and Obiora,
2014). PTE biosorption is another factor that affects this relationship; it
is fast and equilibrates within 20min (Keskinkan et al., 2003). Nan
et al. (2016) suggested that, when using aquatic organisms to assess
PTE pollution, adsorbed elements should be removed to avoid the en-
vironmental influence, e.g., the hydrodynamic conditions, which could
increase the content of adsorbed elements in aquatic organisms. In
addition, there were strong interactions between accumulation and
environmental variables, such as temperature, nutrients, pH, and oxi-
dation state (Cattaneo et al., 1995; Rezania et al., 2016). All of these
interactions should be considered in the planning and implementation
of using plants as PTE pollution bioindicators.

4.2. Biofilms as indicators of PTE pollution

Microorganisms in biofilm are sensitive to the physiochemical
conditions of their ambient environment. Bacterial composition,
structure, and function may rapidly shift to resist or adapt to environ-
mental contamination levels due to their short life cycles and genetic

Table 1
Species and functions of various bacterial genera that interact with PTEs in aquatic environments.

Species Reported function of the bacteria References

Micrococcus; Aspergillus Effective for the removal of Cr (VI) and Ni (II) (Congeevaram et al., 2007)
Bacillus; Arthrobacter Effective for the removal of Cr (Wang and Xiao, 1995; Dey and Paul,

2018)
Bacillus firmus Effective for removal of Pb, Cu, and Zn (Salehizadeh and Shojaosadati, 2003)
Bacillus cereus Effective for removal of Pb and Cu ions (Pan et al., 2007)
Escherichia coli Effective for removal of Cr (VI), Cd (II), Fe (III), and Ni (II) (Quintelas et al., 2009)
Pseudomonas aeruginosa Effective for removal of Pb and Ni (Gabr et al., 2008)
Geobacter Reduce uranium (U) from a soluble state (U6+) to an insoluble state (U4+) (Lovley et al., 1991)
Klebsiella pneumoniae M426 Reduce Hg (II) to Hg (0) and Hg precipitation as insoluble Hg due to volatile

thiol (H2S)
(Sone et al., 2013)

Pseudomonas tolaasii RP23; Pseudomonas fluorescens RS9 Siderophore-producing bacteria (SPB) potentially support PTE uptake and
reduce stress symptoms in plants

(Dell’ Amico et al., 2005; Rajkumar
et al., 2010)

Desulfobacterium autotrophicum Sulfate-reducing bacteria (SRB) promote anaerobic biodegradation of
complex substrates, such as petroleum hydrocarbons in sediments

(Cabral et al., 2016)

Thiobacillus Sulfur-oxidizing bacteria (SOB) oxidize elemental sulfur to plant-available
sulfate; decompose organic matter, and oxidize sulfide

(Vidyalakshmi et al., 2009).

Gallionella, Sideroxydans; Ferrovum myxofaciens;
Albidiferax ferrireducens; Geobacter

Iron-oxidizing bacteria (FeOB) oxidize iron and retain metal in a high-metal
environment

(Fabisch et al., 2016)
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variation (Yin et al., 2015; Barnhart et al., 2016; Moche et al., 2015).
Therefore, biofilms have been successfully used as rapid indicators of
environmental stress, such as PTE exposure (Table 2). For example,
Mages et al. (2004) found that the concentrations of PTE in biofilm
increased when the water was polluted. Duong et al. (2008) and Bonet
et al. (2014) believe that the concentrations of PTE in biofilm are easier
to detect than those in water, which also provide an early and sensitive
indicator of metal pollution.

Despite the complexity of aquatic ecosystems, PTE concentrations in
biofilms can indicate PTE pollution in the water column or the under-
lying sediment. In addition, biofilms are believed to accurately reflect
the effects of PTEs on freshwater communities, as biofilms can im-
mobilize the dissolved PTEs from water or sediment, and incorporate
them into the food chain (Bhaskar and Bhosle, 2006). When PTEs ac-
cumulate in biofilm, chemical, physical, and physiological changes may
occur to protect the resident cells (Harrison et al., 2007; Kang and
Kirienko, 2018). However, some studies have not observed any corre-
lation between the concentration of PTEs and the resistance of the
bacterial community (Dean-Ross and Mills, 1989; Tian et al., 2015),
which was attributed to the high pH of the river water that limited PTE
toxicity. Furthermore, the redox status, dissolved organic carbon levels,
the presence of other toxins, and a variety of other factors can affect the
bioaccumulation of PTEs and the community composition of biofilms.

5. Conclusions

Submerged plants and epiphytic biofilms play an important role in
aquatic systems because they help to mitigate PTE pollution. However,
the extent of PTE transfer between biofilms and submerged plants re-
mains unclear. In addition, the relationships between PTEs and dif-
ferent submerged plant species can vary considerably, so it is difficult
for plants to be eligible PTE indicators. Therefore, further research is
required to better understand the complex relationships between PTEs,
epiphytic biofilms, and submerged plants in the aquatic environment,
and their impact on PTE accumulation. Such studies should be com-
prehensive and accurate, and mass transfer, charge balance, and ki-
netics, as well as element cation binding reactions, should be con-
sidered. We also believe that epiphytic biofilms can serve as potential
PTE indicators in aquatic environments. Therefore, the impact of PTEs
on the diversity and structure of epiphytic biofilm communities in
aquatic environments merits further investigation.

In summary, we offered a concise analysis of PTE transport pro-
cesses from sediment to the water column, and then to biofilms and
submerged plants. We summarized PTE bioaccumulation mechanisms
in submerged plants and biofilms and discussed potential PTE in-
dicators. To promote PTE bioremediation and application of bioindi-
cators, future studies should be focused on the mechanistic elucidation
of PTE accumulation and transport from biofilms to submerged plants
in aquatic ecosystems.
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