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ABSTRACT We provide a theoretical foundation for further analysis and optimization of the M th-power
(MP) carrier phase estimator forMPSK modulation. Also known as the Viterbi-Viterbi (VV) estimator, it is
commonly used in practice because it leads to low-latency receiver implementations. The MP carrier phase
estimator first raises the received noisy signal samples to the M th-power to remove the unknown phase
modulation, and then extracts the unknown carrier phase of the mid-symbol using a weighted sum of these
modulation-wiped-off received signal samples over a symmetrical observation window. Our starting point is
the single-term, complex exponential expression for a complex sinusoid received in complex, additive, white,
Gaussian noise (AWGN), which leads to a great deal of simplicity in dealing with arbitrary powers of the
noisy received signal sample when compared with the conventional approach of raising the sum of signal
plus noise to higher powers. The single-exponential expression enables us to first optimize the weighting
coefficients of the MP carrier phase estimator with respect to the statistics of the AWGN, in a manner
much simpler than previous approaches. Then, it enables us to apply the linear minimum mean square
error (LMMSE) criterion to optimize the MP estimator with respect to both the statistics of the AWGN
and the carrier phase noise that we model here as a Wiener process. Although the LMMSE MP estimator is
computationally intensive for online implementation, a much less complex version is suggested that can be
efficiently implemented in real time. Extensive simulation results are presented to demonstrate the improved
performance of the LMMSE MP estimator over the conventional MP estimator. By using a sufficiently long
symmetrical observation window, the LMMSE estimator does not suffer from the block length effect, which
leads to much performance gain over the VV/MP estimator especially at high signal-to-noise ratio (SNR) and
high phase noise. A phase unwrapping algorithm is also presented for accurate unwrapping of the estimated
carrier phase before it is used in data detection. The proposed LMMSE carrier phase estimator is suitable
for implementing a coherent receiver at all SNRs.

INDEX TERMS MPSK, Viterbi-Viterbi/M th-power carrier phase estimation, Wiener carrier phase noise,
AWGN, phase unwrapping, LMMSE estimation.

I. INTRODUCTION
With the ever-increasing demand for higher data rates and
higher spectral efficiencies, the use of higher-order digital

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

modulations such as M -ary quadrature-amplitude modula-
tions (MQAM) and M -ary phase shift-keying (MPSK) is
becoming imperative for future generations of data trans-
mission systems. These linear modulations require coher-
ent detection in order to achieve their full performance
potential, and accurate carrier recovery is, thus, imperative.
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The preference for using digital signal processing (DSP) tech-
niques over the analog phase lock loop for carrier recovery
is, by now, no longer a matter of debate. Among the reasons
for this is the fact that many powerful, statistically opti-
mum, DSP techniques are available for potentially solving
the carrier-phase estimation problem if we have accurate sta-
tistical models of the various noise processes involved. While
much has been done on statistical estimation of carrier phase,
this paper presents novel concepts, analytical techniques and
simulation results that will significantly advance the state of
the art in carrier recovery for an MPSK-modulated carrier
that is received in the presence of the usual additive, white,
Gaussian noise (AWGN) and the commonly encountered
Wiener-process carrier phase noise, as we will demonstrate.

Two commonly encountered carrier phase estimators
for MPSK, especially in coherent optical communications,
are the M th-power estimator [1] and the decision-aided
maximum-likelihood (DA-ML) estimator [2]. Both methods
rely on the assumption of quasi-static carrier phase process,
i.e., a carrier phase process that is very slowly time varying
such that it can be modeled as a constant over the averag-
ing interval. Since the carrier phase is usually time-varying
in practice, albeit slowly, this assumption may incur severe
performance impairment due to the block length effect [3].
TheDA-ML estimator is statistically optimum in the presence
of AWGN and a quasi-static carrier phase process and is
also computationally simpler than the M th-power method.
Despite these advantages, its application is less common in
practice than that of the latter because of the latency issue
associated with the need for making symbol decisions before
performing the decision-aided carrier phase estimation. Since
the envisioned future ultra-high speed communications sys-
tems require very low latency, the latency issue can cause a
serious problem in practical receiver implementations. To the
best of the authors’ knowledge, more researchers in practice
make use of the M th-power estimator. Because of its prac-
tical value, our work here therefore focuses on improving
the structure of the M th-power estimator and enhancing its
performance.

The M th-power estimator is a non-decision-aided estima-
tor because it raises the complex exponential part of the
complex received signal sample to theM th-power to remove
the modulation due to the data phase. Reference [1] also
suggested a nonlinear transformation of the magnitude of
the complex received sample for improving the signal-to-
noise ratio (SNR) of the final estimated carrier phase, and
it is shown in [1] and [6] that the square-law provides the
optimum transformation that maximizes the SNR. By com-
bining and averaging the transformed complex samples over
a symmetrical time interval, the phase of the resultant phasor
gives the estimated carrier phase of the symbol in the middle
of the interval. Note that [1] assumes that the carrier phase is
quasi-static over the averaging interval, and our work in [2]
uses this assumption also.

The starting point of our refinement to the M th-power
estimator is the realization in [7] that one can view the effect

of the complex AWGN that perturbs the observation of a
complex signal phasor as introducing an additive observa-
tion phase noise (AOPN) on the latter, where the statistics
of the AOPN and those of the AWGN are related. This
enables one to express the noisy complex received signal
sample as a single complex exponential, instead of the sum
of two terms (signal plus noise), as we have demonstrated
in [7]. One can then treat the AOPN and the carrier phase
noise in the received signal sample in the same manner
when raising the complex exponential part of the complex
received signal sample to the M th-power to remove the data
modulation. Since our approach involves only one complex
exponential, it leads to tremendous analytical simplicity,
when compared with the conventional approach of raising
the sum of two terms (signal plus noise) to the M th-power
that leads to a complicated expression involving many signal-
times-noise terms. The single-complex-exponential expres-
sion for the M th-power of the received signal sample pro-
vides much insight into how one can recover the unknown
carrier phase for a single symbol interval from signal samples
observed over a symmetrical window centered at that interval
concerned.

Starting with the single-exponential signal model, we pro-
vide here an explicit performance investigation into theM th-
power carrier phase estimator proposed by Viterbi and Viterbi
in [1], which shows that this method is optimal only under
the condition of constant carrier phase. The simplicity of
the single-exponential expression also allows us to take into
account explicitly the random variations in the carrier phase
process that we model here as a Wiener process. This is
a departure from most previous works such as [1], [2] that
require the assumption that the carrier phase is quasi-static
over the observation window. The use of a Wiener-process
phase noise model is common in the communication the-
ory literature, especially in optical communications [4], [8].
Using the Wiener-process model, we apply the linear min-
imum mean square error (LMMSE) criterion to design a
newM th-power carrier phase estimator.With this refinement,
the proposed method achieves much stronger tolerance to the
phase fluctuation, which greatly improves the applicability
of the conventional M th-power method in practice with time
varying carrier phase. Most importantly, since the phase fluc-
tuation is taken into account, the proposed estimator is shown
to achieve strong tolerance to the block length effect, which
enables an efficient implementation in practice. Through
numerical simulations, we show that, instead of having to
numerically search for the optimal averaging window size,
one can easily approach the optimal performance by using our
proposed estimator with a relatively long window. To further
facilitate the implementation, a simplified version of the opti-
mized estimator with much less computational complexity is
introduced. Despite the assumption of reasonably high SNR,
the simplified method is shown to approach closely to the
exact version within a wide SNR range of practical interest.

We note here that the effect of the AWGN on the trans-
mitted signal phasor is equivalent to the rotation of the latter
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by an angle that we call the additive observation phase noise
(AOPN). This observation enables one to express the two
terms (signal and noise) in the received signal model as a
single exponential. We should thus emphasize the key role
played by the AOPN that leads to the single-exponential
received signal model. As shown in [7], the AOPN sequence
is a sequence of independent, Tikhonov distributed random
variables, each with a mean of zero. Their variance is a non-
linear function of three parameters, namely, the transmitted
signal power, the spectral density of the AWGN and the
magnitude of the noisy received signal sample. The nonlinear
variance expression involves, more precisely, the modified
Bessel function of the first kind of order zero, and its non-
linear nature makes the application of the Tikhonov AOPN
model to the analysis and optimization of the M th-power
carrier phase estimator very complicated. To circumvent
this problem, we use the fact that at reasonably high SNR,
the Tikhonov distribution is accurately approximated by a
Gaussian distribution [7], [9] with a simple linear expression
for its variance. In this Gaussian approximation, the AOPN
has a mean of zero and a variance that is a linear function
of the three parameters mentioned above. The linearity of
the variance expression simplifies the analytical work with
theM th-power estimator, and thus the approximate Gaussian
AOPN model is adopted in our derivations here in order to
arrive at explicit and practically useful results. The principle
of the analytical approach is the same whether the Tikhonov
model or the Gaussian approximation is used.

The AOPN model, as shown in [7], is applicable irrespec-
tive of the power of the transmitted sinusoidal signal, and
therefore is applicable toMQAM signals in general. The only
reason why we restrict attention here toMPSK signals is that
the M th-power estimator is originally proposed in [1] only
for MPSK modulations and we are focusing on this estima-
tor. Some ad hoc techniques have been proposed [10]–[14]
to extend the M th-power estimator to the general case of
MQAM or amplitude-phase shift keying (APSK). Instead of
dealing with these ad hoc extensions here, we will, mov-
ing forward, investigate into the application of our AOPN
model to the optimum design of carrier phase estimators
for MQAM/APSK signals in general. The results will be
reported in future reports. We should caution the reader that
we are not extending our results of [7] here. Rather, our
goal is to demonstrate the usefulness of our ideas in [7] to
the analysis and optimization of carrier phase estimators in
general.

The structure of the remainder of the paper is as follows.
Section II introduces the single-term exponential model of
the received signal. Preview of theM th-power phase estima-
tor and analytical interpretation is provided in Section III.
The LMMSE M th-power phase estimator is derived and
analyzed in Section IV. In Section V, we introduce several
post-processing phase unwrapping methods which are cru-
cial for phase estimation. Numerical simulations and anal-
ysis are provided in Section VI. Conclusions are drawn in
Section VII.

FIGURE 1. Geometric representation of the received signal r (k).

II. SYSTEM MODEL
We assume perfect timing synchronization and frequency
offset compensation, and the absence of other channel dis-
persive affects that lead to inter-symbol interference. Hence,
the received is only perturbed by AWGN and carrier phase
noise such as laser phase noise in an optical communication
system [8], [15], [16]. In this case, a canonical model of the
received symbol over the kth symbol interval is given by [8],
[15], [16]

r(k) = m(k)ejθ (k) + n(k). (1)

Here, m(k) denotes the kth transmitted symbol. For MPSK,
m(k) takes on values from the signal set {Si =

√
Esejφ(i) =

√
Esej

2π i
M }

M−1
i=0 with equal probability, where Es denotes the

average energy per symbol, φ(i) denotes the phase modula-
tion and M is the number of signal points. Term {n(k)}k is a
sequence of independent and identically distributed (i.i.d.),
complex Gaussian random variables, each with mean zero
and variance N0, where N0 is the double-sided spectral den-
sity of the AWGN.

Term θ (k) denotes the carrier phase, which is commonly
modeled as a Wiener process in coherent optical communi-
cations and is given by [8]

θ (k) = θ (k − 1)+ ν(k). (2)

Term {ν(k)}k is a sequence of independent, identically dis-
tributed (i.i.d.) Gaussian random variables with mean zero
and variance [16]

σ 2
p = 2π1νTs. (3)

Ts and1ν denote the symbol duration and the total 3-dB laser
linewidth of the transmitter and local oscillator lasers.

From our work in [7], as shown in Fig. 1, the in-phase-and-
quadrature-phase form of the received signal model in (1) can
be rewritten in a single-complex-exponential form given by

r(k) = |r(k)|ej
6 r(k)

= |r(k)|ej[φ(k)+θ (k)+ε(k)]. (4)

Here, term ε(k) denotes the AOPN due to the AWGN. With
the knowledge of received signal {r(k)}k , {ε(k)}k has been
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shown to be a sequence of independent, Tikhonov random
variables, with the probability density function (PDF) given
as [7]

p
(
ε(k)

∣∣|r(k)|) = exp
[
|r(k)|

√
Es

N0/2
cos ε(k)

]
2π I0

(
|r(k)|

√
Es

N0/2

) , (5)

where I0(·) denotes the modified Bessel function of the first
kind of order zero. Since the PDF given in (5) is highly
nonlinear, direct application of the Tikhonov AOPN model
is very complicated. To simplify the theoretical work, we use
the fact that assuming high SNR, the Tikhonov distribution
can be accurately approximated with a Gaussian distribution
with mean of zero and variance σ 2

ε given as

σ 2
ε (k) =

N0

2|r(k)|
√
Es
. (6)

Additionally, with high SNR values, the received signal mag-
nitude |r(k)| approaches closely to

√
Es for most of the

time. Hence, the AOPN variance given in (6) can be further
simplified as a constant, given as

σ 2
ε =

N0

2Es
=

1
2γ
, (7)

where γ = Es/N0 represents the SNR per symbol.
Alternatively, since the signal magnitude

√
Es may not be

available in some cases in practice, we can also approximate
it, especially for large γ , by the magnitude of r(k) and obtain

σ 2
ε (k) =

N0

2|r(k)|2
. (8)

We note from the geometric representation of the received
signal r(k) in Fig. 1 that the single-complex-exponential
signal model in (4) applies for any value of the signal power
√
Es. Likewise, we note from [7] that the Tikhonov AOPN

model applies also for any value of the signal power
√
Es.

Thus, the signal model (4) together with the Tikhonov AOPN
model applies to MQAM signals in general. As we are only
concerned with the estimator of [1], we will not be dealing
with MQAM signals in general.

Note also that the signal model (4) together with the gen-
eral Tikhonov AOPN model can be used in our subsequent
work in this paper to deal with the analysis of the M th-
power carrier phase estimator. However, as can be observed
from [7], the variance of the Tikhonov AOPNmodel involves
a modified Bessel function of the first kind of order zero,
whose arguments are the parameters on the right hand side
of (6). This variance expression is highly nonlinear, and
obviously would not lead to a tractable analysis. By assum-
ing reasonably high SNR, the Tikhonov distribution can be
approximated by a Gaussian distribution in which the vari-
ance is given by one of the simple expressions presented
above. This simplification of the variance expression renders
the analysis below tractable, and gives us explicit results.

III. PREVIEW OF THE MTH-POWER CARRIER PHASE
ESTIMATOR
TheM th-power carrier phase estimator is first proposed in [1]
with the consideration of MPSK only and without carrier
phase noise. For each symbol, a symmetrical estimation win-
dow of size 2L+ 1, including L earlier symbols, L later sym-
bols and the current symbol, is used for the carrier recovery.
With the exponential signal model given in (4), we first intro-
duce the conventional M th-power carrier phase estimator.

After raising to the M th-power and taking the normaliza-
tion, the phasemodulation of the received symbol is removed,
which gives

yM (k) =
[
r(k)
|r(k)|

]M
=

[
ej[φ(k)+θ (k)+ε(k)]

]M
= ej[M [θ (k)+ε(k)]].

(9)

This is because, forMPSK,Mφ(k) = 2π i is a multiple of 2π ,
and is thus the same as a zero phase angle. Based on the
observations within the symmetrical window, {yM (l)}k+Ll=k−L ,
the phase estimate θ̂v(k) using M th-power estimator is given
by [1]

θ̂v(k) =
1
M
6

[
1

2L + 1

k+L∑
l=k−L

F(|r(l)|)yM (l)

]
. (10)

F(|r(l)|) is a nonlinear function of |r(l)|, which can be chosen
to optimize the estimation performance. Previously, Viterbi
and Viterbi provided a group of candidates for the nonlinear
function, F(|r(l)|) = |r(l)|N , where N ≤ M is an arbitrary
even integer. Among them, F(|r(l)|) = |r(l)|2 was suggested
as the optimal choice for QPSK without frequency error [1].
The optimal nonlinearity with respect to SNR was investi-
gated in [6] which further confirmed Viterbi and Viterbi’s
suggestion. In optical communication systems, for simplicity,
researchers usually make use of the direct M th-power of the
received symbol, i.e., they take F(|r(l)|) = |r(l)|M [17].
For simplicity, in the rest of our paper, the suggested M th-
power estimator with the nonlinearity of F(|r(l)|) = |r(l)|2

is referred as the Viterbi-Viterbi (VV) estimator, while that
using F(|r(l)|) = |r(l)|M is referred as the conventionalM th-
power estimator.

Here, we make a further contribution by showing that
F(|r(l)|) = |r(l)|2 is actually optimum for MPSK without
phase noise and frequency error, in the sense that it leads to
the minimum achievable estimation error variance given by
the Cramér-Rao lower bound (CRLB) at relatively high SNR.

Based on the single-term exponential signal model given
in (4), we will show, for the first time, that F(|r(l)|) = |r(l)|2

is the optimal choice for systems with constant carrier phase,
i.e., 1ν = 0. Substituting (9) into (10) and considering
the suggested nonlinearity, the VV phase estimate can be
rewritten as

θ̂v(k) =
1
M
6

[
1

2L + 1

k+L∑
l=k−L

|r(l)|2ejM [θ (l)+ε(l)]

]
. (11)
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Denoting the estimated phasor by using the VV method as

Ẑ (k) =
1

2L + 1

k+L∑
l=k−L

|r(l)|2ejM [θ (l)+ε(l)], (12)

assuming the constant carrier phase, i.e. θ (k) = {θ (l)}k+Ll=k−L ,
we have

Ẑ (k) = |Ẑ (k)|ejM θ̂v(k) = ejMθ (k)
1

2L+1

k+L∑
l=k−L

|r(l)|2ejMε(l).

(13)

Denoting the VV phase estimation error as θe(k) = θ (k) −
θ̂v(k), (13) can be rewritten as

|Ẑ (k)|e−jMθe(k) =
1

2L + 1

k+L∑
l=k−L

|r(l)|2ejMε(l). (14)

Assuming relatively small AOPN and estimation error,
through applying the approximation of ex ≈ 1 + x, (14) can
be rewritten as

|Ẑ (k)|[1− jMθe(k)] =
1

2L + 1

k+L∑
l=k−L

|r(l)|2

+
jM

2L + 1

k+L∑
l=k−L

|r(l)|2ε(l). (15)

Equating the real and imaginary parts of (15), we have

|Ẑ (k)| =
1

2L + 1

k+L∑
l=k−L

|r(l)|2 (16a)

|Ẑ (k)|θe(k) = −
1

2L + 1

k+L∑
l=k−L

|r(l)|2ε(l) (16b)

Substituting (16b) into (16b), we can simplify θe(k) as

θe(k) = −

∑k+L
l=k−L |r(l)|

2ε(l)∑k+L
l=k−L |r(l)|

2
. (17)

Squaring both sides of (17) and taking the expectation,
the MSE of the VV phase estimate can be reduced to

E[θ2e (k)] =
E
[∑k+L

l=k−L |r(l)|
2ε(l)

]2
[∑k+L

l=k−L |r(l)|
2
]2 . (18)

We note that in the development of theM th-power estima-
tor starting from (9), the received signal samples {r(l), l =
k − L, . . . , k + L} are already available and are therefore
known. Thus, in (18), the expectation is, more precisely,
the conditional expectation given knowledge of the magni-
tudes {|r(l)|, l = k − L, · · · , k + L}, and we need only take
the conditional expectation over the set of AOPN samples
ε(l) which remain unknown. As the AOPN samples are due
to the AWGN, they are mutually independent with mean of
zero. Their conditional variances given the received signal
magnitudes are given in eq. (6). With this result, the MSE

of the phase estimation given in (18) can be easily simplified
as

E[θ2e (k)] =

[∑k+L
l=k−L(|r(l)|

2)2E[ε2(l)]
]

[∑k+L
l=k−L |r(l)|

2
]2 . (19)

Assuming static AOPN variance at relatively high SNR,
as shown in (8), we have

E[θ2e (k)] =
N0

2

[∑k+L
l=k−L(|r(l)|

2)2/|r(l)|2
]

[∑k+L
l=k−L |r(l)|

2
]2

=
N0

2

[∑k+L
l=k−L |r(l)|

2
]

[∑k+L
l=k−L |r(l)|

2
]2 (20)

For MPSK modulation with constant amplitude, we have
|r(l)| ≈

√
Es at high SNR. In this case, the MSE of phase

estimation, E[θ2e (k)], can be further simplified as

E[θ2e (k)] =
N0

2

[∑k+L
l=k−L Es

]
[∑k+L

l=k−L Es
]2 = N0

2(2L + 1)Es
. (21)

From [18, eq. (30)], we have that the CRLB on the variance
of any carrier phase estimate is given by

E[θ2e ] ≥ CRLB(θ ) =
1
2Lc

N0

Es
, (22)

where Lc is the length of estimation window. Combining (21)
and (22), we can conclude that F(|r(l)|) = |r(l)|2 is the opti-
mum nonlinearity for the M th-power carrier phase estimator
particularly at high SNR.

IV. LINEAR MMSE MTH-POWER CARRIER PHASE
ESTIMATOR
A. DEVELOPMENT OF LMMSE MTH-POWER ESTIMATOR
Previously, the optimal nonlinearity F(|r(l)|) was discussed
with AWGN only. Here, with the consideration of both
AWGN and linear phase noise, the optimal F(|r(l)|) is
derived explicitly by using the linear minimum mean square
error (LMMSE) technique.

Similar to the VV phase estimator given in (10), the linear
model of the phase estimation is considered. Denoting the
phasor at kth time interval after M th-power operation as
VM (k) = ejMθ (k), the estimated phasor by using LMMSE
estimator is given by

V̂M (k) =
k+L∑
l=k−L

F(|r(l)|)yM (l) = wHyM(k), (23)

where yM(k) = [yM (k − L), · · ·, yM (k + L)]T denotes
the observation vector for the kth time interval and
w = [F(|r(k − L)|), · · ·,F(|r(k + L)|)]H represents the
complex weight coefficients. Here, superscript H denotes
the Hermitian transpose and both yM(k) and w are (2L +
1)-dimensional vectors. Denoting the estimation error as

78174 VOLUME 7, 2019



Y. Li et al.: A Refinement to the Viterbi-Viterbi Carrier Phase Estimator and an Extension to the Case

e(k) = VM (k) − V̂M (k), the MSE of the estimated phasor,
E[|e(k)|2], can be written as

E[|e(k)|2]

= E[e(k)e∗(k)]

= E
[(
VM (k)− wHyM(k)

) (
V ∗M (k)− yMH (k)w

)]
= E[|VM (k)|2]− pHw− wHp+ wHRw. (24)

Here, p = E[yM(k)V ∗M (k)] is the (2L + 1) × 1
cross-correlation vector with its lth element given as

pl = E[yM (k − L + l − 1)V ∗M (k)]. (25)

R = E[yM(k)yMH (k)] is the (2L + 1) × (2L + 1)
auto-correlation matrix with its (x, y)th element given as

R(x, y) = E[yM (k − L + x − 1)y∗M (k − L + y− 1)]. (26)

Through minimizing the MSE given in (24), the optimal
weight coefficient wo can be obtained as

wo = R−1p, (27)

where the lth element of p is given as

pl = e
−

1
2

[
M2

(
|L−l+1|σ 2p+σ

2
ε (k−L+l−1)

)]
(28)

and, the (x, y)th element of R can be calculated as

R(x, y) = e
−

1
2M

2
[
(|x−y|)σ 2p+σ

2
ε (k−L+x−1)+σ

2
ε (k−L+y−1)

]
.

(29)

The detailed derivation is provided in Appendix A. Note
that, since the AOPN variance σ 2

ε (k) depends on the signal
amplitude |r(k)|, both the matrixR and the vector p are time-
varying. In the next section, to simplify the computation of
the matrix inverse R−1, a static approximation of the matrix
R and vector p is introduced.

B. SIMPLIFIED IMPLEMENTATION
From (27), the proposed LMMSE estimator requires the
inverse of the auto-correlation matrix R at each time interval
k , which would incur high computational complexity in prac-
tical applications. Here, we introduce a simplified implemen-
tation of the LMMSE M th-power, which is computationally
more efficient.

As shown in (28) and (29), both p and R are functions of
the AOPN variance σ 2

ε (k), which is shown to be time-varying
due to the fluctuation of the received signal amplitude |r(k)|.
Through applying the approximation of the static AOPN
variance given in (7), the lth term of the vector p given in (28)
can be simplified as

pl = e
−

1
2

[
M2

(
|L−l+1|σ 2p+σ

2
ε

)]
. (30)

Similarly, the (x, y) term of the auto-covariance matrix R
given in (29) can be reduced to

R(x, y) = e
−

1
2M

2
[
(|x−y|)σ 2p+2σ

2
ε

]
. (31)

Substituting (30) and (31) into (27), the optimal weight vector
can be approximated as a constant, which needs to be com-
puted only once during the entire carrier phase estimation
process. Obviously, the assumption of constant σ 2

ε would
degrade the estimation accuracy, particularly at low SNR.
To verify its feasibility, the performance impairment due to
the simplified implementation is evaluated through numerical
simulations in Section VI.

C. PERFORMANCE ANALYSIS
In both the VV and conventional M th-power estimator,
the carrier phase θ (k) is assumed approximately constant
within the estimation window. In this case, the window length
(2L + 1) would strongly affect the estimation performance.
In general, a large window size L would lead to effective mit-
igation of the AOPN during the phase estimation. However,
it also conflicts with the assumption of the slowly varying car-
rier phase within the estimation window. Known as the block
length effect, it requires extensive simulations and experi-
ments to determine the optimal window size while applying
the conventional M th-power and the VV phase estimator in
practice. In contrast, with the proposed LMMSE estimator,
we show here analytically that the MSE of phase estimation
suffers from no block length effect at relatively high SNR.

With the optimal weight vector wo given in (27), the min-
imum MSE by using the LMMSE estimator can be rewritten
as

E[|e(k)|2]min
= E[|VM (k)|2]− pHwo − wH

o p+ wH
o Rwo

= 1− pTR−1p− pT [R−1]Tp+ pT [R−1]TRR−1p

(32)

Based on the approximation given in (31), obviously, R is a
symmetric matrix. Hence, we have [R−1]T = R−1. In this
case, E[|e(k)|2]min given in (32) can be further reduced to

E[|e(k)|2]min = 1− pTR−1p. (33)

With relatively high SNR γ and non-zero carrier phase noise,
i.e., σ 2

p > 0, we have shown in Appendix B that the
E[|e(k)|2]min given in (33) can be approximated as

E[|e(k)|2]min = eM
2σ 2ε − 1+

(
eM

2σ 2ε − 1
)2 e−M2σ 2p + 1

e−M
2σ 2p − 1

,

(34)

which is independent of the estimationwindow length L. That
is to say, with relatively high SNR, the proposed LMMSE
estimator suffers from no block length effect. This obser-
vation will be further verified by the numerical simulation
results. Note that in arriving at (34), we made the high SNR
assumption, eM

2σ 2ε ≈ 1. We did this only for the purpose of
deriving (34) and demonstrating that this MSE is independent
of the observation window length L. For a higher modulation
order M , this assumption holds only for a smaller σ 2

ε or a
larger SNR γ . Thus, the independence from the block length
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effect occurs at a higher SNR γ for an MPSK signal set
with more signal points. This observation is borne out by
our simulation results. Note also that this assumption is not
necessary for the derivation of the LMMSE estimator in the
previous two subsections.

With constant carrier phase, i.e., σ 2
p = 0, we will show

in the next subsection that the proposed LMMSE estimator
can be considered as the generalization of the VV estimator,
which was shown to approach the CRLB at high SNR in
Section III.

D. INTUITIVE INTERPRETATION
In the LMMSE carrier phase estimation, the measured fluctu-
ation of the received signal magnitude within the estimation
window provides an insight into the AOPNfluctuation, which
can be applied to mitigate the estimation error due to the
AOPN. If only the current observation is applied, i.e., 2L +
1 = 1, the resultant phasor by using theM th-power estimator
can be rewritten as

V̂M (k) = F(|r(l)|)yM (k). (35)

Since the nonlinear coefficient F(|r(l)|) is commonly con-
sidered as a real number, the estimated phase after argument
extraction is given by

θ̂ (k) =
1
M
6

[
V̂M (k)

]
=

1
M
6

[
ejM [θ (k)+ε(k)]

]
. (36)

From (36), we can see that with L = 0, the AOPN term can
not be averaged out during the estimation.

Considering a specific case, where the immediate past and
current observation is used to estimate the current phase θ (k),
the LMMSE M th-power phasor estimate can be written as

V̂M (k) =
k∑

l=k−1

wHyM(k). (37)

Assuming a constant carrier phase, i.e., 1ν = 0, the optimal
weight coefficient can be easily obtained as

w =
1

2|r(k)|2 + 2|r(k − 1)|2

[
|r(k − 1)|2

|r(k)|2

]
. (38)

The detailed derivation is given in Appendix C. Substitut-
ing (38) into (37), we have

V̂M (k) =
1

2|r(k)|2+2|r(k − 1)|2

k∑
l=k−1

|r(l)|2yM (l) (39)

which agrees with the suggestion of F(|r(l)|) = |r(l)|2 given
in [1], [6]. In other words, we can consider the VV estimator
with the suggested nonlinearity, F(|r(l)|) = |r(l)|2, as a
special case of the LMMSE estimator when only AWGN is
present. The proposed optimal M th-power estimator, in con-
trast, takes both the laser phase noise and the AWGN into
consideration.

V. POST-PROCESSING PHASE UNWRAPPING
The phase estimate θ̂ (k) obtained from the carrier phase esti-
mator is applied to de-rotate the received signal and remove
the unknown carrier phase. Referring to (4), the receiver
forms the de-rotated signal

r ′(k) = r(k) exp[−jθ̂ (k)]

= |r(k)| exp[j(φ(k)+ (θ (k)− θ̂ (k))+ ε(k))]. (40)

The argument 6 r ′(k) = φ(k)+ (θ (k)− θ̂ (k))+ε(k) is used to
determine the information phase φ(k) by choosing the value
in the set {i2π/M , i = 0, 1, . . . ,M − 1} that is closet to
6 r ′(k). Because of the M th-power operation involved in the
phase estimation, it is well known [1] that there is a 2π/M
ambiguity in the phase estimate θ̂ (k), i.e., ambiguity as to
which quadrant θ̂ (k) should lie in for the case of QPSKwhere
M = 4, for instance. We thus have to consider the resolution
of this ambiguity in relation to the issue of unwrapping the
phase estimate from theM th-power estimator. Phase unwrap-
ping is essential because in raising the received sample r(k) to
theM th power, its argument 6 r(k) is multipliedM times, and
is thuswrappedM times around the circle.While applying the
M th-power carrier phase estimators, the phase estimate at kth
time interval θ̂ (k) is obtained from the principal argument of
the estimated phasor. For instance, with LMMSE estimator,
the principal argument of V̂M (k), denoted as

6 V̂M (k) = arg[V̂M (k)], (41)

is considered as the wrapped estimate of Mθ (k). Because
phase angles are measured modulo-2π , i.e., an angle α is the
same as (α ± 2mπ ) for any integer m, it is clear that dividing
6 V̂M (k) by M to obtain the unwrapped estimation of θ (k)
will result in M possible values within the principal interval
[−π,+π ), with each value being separated from its nearest
neighbors by an angle of 2π/M . After argument extraction,
the post-processing phase ambiguity resolution is commonly
ignored in the literature. This is because, with constant carrier
phase, the difference between the wrapped estimate 6 V̂M (k)
and the actual phase Mθ (k) is relatively constant in time,
based on our observations during the simulation. In this case,
through applying differential data encoding and decoding,
the unwrapped phase estimate can be used directly in data
decoding without ambiguity resolution [1]. However, when
taking the phase noise into consideration, the ambiguity reso-
lution after the phase unwrapping of 6 V̂M (k) is indispensable.

Here, we focus first on evaluating the performance
improvement of the LMMSE estimator compared with the
VV and the conventional M th-power estimators. Since the
potential performance impairment due to the ambiguity res-
olution errors might disturb the performance comparison,
we first consider genie-aided phase unwrapping, where the
actual phase at each time k , θ (k), is given by a genie. Assum-
ing the phase estimation is relatively accurate, the actual
phase estimate θ̂ (k) is chosen such that M θ̂ (k) lies in the
2π -interval centered at Mθ (k), i.e., Mθ (k) − π ≤ M θ̂ (k) ≤
Mθ (k) + π . This is done by adding multiples of ±2π to
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TABLE 1. Genie-aided phase unwrapping.

TABLE 2. Differential phase unwrapping.

the wrapped estimate 6 V̂M (k), when the absolute difference
between Mθ (k) and 6 V̂M (k) is greater than π as shown
in Table 1. Again, this is because angles are measured
modulo-2π . The ambiguity-resolved phase estimate of the
kth symbol is now obtained through the unwrapping oper-
ation as

θ̂ (k) =
1
M
6 V̂M (k). (42)

In practice, since the actual phase is unknown, the
genie-aided phase unwrapping is unavailable. Considering
the practical implementation, the LMMSE estimator with the
differential phase unwrapping proposed in [7] is introduced
and evaluated in this paper. With the differential method,
assuming a slowly varying carrier phase, the phase unwrap-
ping of current symbol is conducted based on the immediate
past estimate. As illustrated in Table 2, similarly, the principal
argument of V̂M (k) is taken as the wrapped estimate. Denot-
ing the phase estimate of the (k − 1)th symbol after phase
unwrapping as θ̂ (k − 1), the absolute difference between
M θ̂ (k − 1) and M θ̂ (k) is expected to be smaller than π
due to the slowly varying carrier phase. Hence, the actual
phase estimate at time k , θ̂ (k), is chosen such that M θ̂ (k)
is limited to within the 2π -range centered at M θ̂ (k − 1).
After phase ambiguity resolution through adding multiples
of ±2π to 6 V̂M (k), the actual phase estimate at each time
k , θ̂ (k), is obtained as given in (42). However, while using
this differential method, an occasional phase unwrapping
failure due to an error in ambiguity resolution is inevitable
particularly at low SNR. To address this problem, during the
simulation, the phase unwrapping is restabilized periodically
based on the inserted pilots. Detailed explanation is provided
later in this paper.

VI. NUMERICAL PERFORMANCE RESULTS
Monte Carlo simulations are performed to investigate the
phase estimation performance of the proposed LMMSE
M th-power estimator. For comparison, the suggested

FIGURE 2. IMSE performance investigation of various phase estimators
with constant carrier phase as a function of window size L (GSPS: Giga
samples per second).

VV estimator and the conventional M th-power estimator are
simulated. During the simulation, the inverse mean square
error (IMSE) of the carrier phase estimate, defined as

IMSE = −10 log10

[∑q
k=1[θ (k)− θ̂ (k)]

2

q

]
, (43)

is used as the performance metric, where q denotes the sam-
ple size for each calculation of IMSE and where all angles
are measured in radians. To investigate the optimal achiev-
able IMSE performance of the proposed LMMSE estimator,
the genie-aide phase unwrapping introduced in Table 1 is first
considered during the simulation.

A. BLOCK LENGTH EFFECT WITHOUT PHASE NOISE
For both the VV and the proposed LMMSE estimator,
the selection of window size L would affect the estimation
performance. Here, the block length effect is numerically
investigated in QPSK modulated systems with constant car-
rier phase i.e., no phase noise. In this case, the VV estimator
is shown to achieve approximately the same MSE perfor-
mance compared with our LMMSE estimator. This obser-
vation further confirms our interpretation in Section IV that
the VV estimator can be considered as a special case of the
LMMSE estimator when only AWGN is present.

As shown in Fig. 2, with the increase of the window size L,
a continuous performance improvement can be observed for
all tested estimators. This is because, without laser phase
noise, the AOPN becomes the only noise source during the
estimation, which can be efficiently reduced through apply-
ing a sufficiently long estimation window. Both the VV and
the LMMSE estimator outperform the conventional M th-
power in terms of the MSE performance. At high SNR, since
the magnitude of the received symbol r(l) is approximately
equal to

√
Es most of the time, the performance enhance-

ment through applying the optimal nonlinearity becomes less
observable.

B. BLOCK LENGTH EFFECT WITH PHASE NOISE
With laser phase noise, the performance degradation due
to the block length effect is further investigated. Since the
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FIGURE 3. IMSE performance investigation of various estimators with
different values of (a) SNR and, (b) laser linewidth.

nonlinear weight vector is optimized with the considera-
tion of the Wiener phase noise, the proposed LMMSE esti-
mator is shown to achieve strong tolerance to the block
length effect particularly at high SNR and high phase
noise.

From the simulation, the estimation window length L
needs to be optimized for every value of SNR and laser
linewidth while applying the VV and the conventional M th-
power phase estimators. As shown in Fig. 3 (a), due to the
presence of phase noise, instead of continuous performance
improvement, we can now observe an optimal window size L
for both the VV and the conventional M th-power estimator
which leads to the minimum MSE for phase estimation.
In addition, from Fig. 3 (a) and Fig. 3 (b), the optimal L varies
for different SNR and laser linewidth values. For instance,
as SNR increases from 10 to 15 dB, the observed optimal L
decreases from 40 to around 20. This is because, at low SNR,
the AOPN becomes the dominant noise source, where a long
estimation window is preferred to effectively average out the
estimation error. On the other hand, with large laser linewidth,
the laser phase noise dominates. In this case, a small L is
preferred to ensure that the carrier phase is approximately
block-wise constant.

While applying the LMMSE phase estimator, similarly,
with the increase of the window size L, a faster conver-
gence to the optimal MSE can be observed at higher SNR
and lower laser linewidth as shown in Fig. 3. However,
since the phase fluctuation within the estimation window is

FIGURE 4. IMSE performance investigation of LMMSE estimator as a
function of the window size L with different laser linewidth values.

taken into consideration in LMMSE estimation, instead of
performance degradation, the measured MSE remains the
same after reaching the optimal point. In this case, instead
of time-consumingly searching for the optimal estimation
window length, the optimal MSE performance can be easily
achieved by using the LMMSE estimator with a sufficiently
long estimation window.

Additionally, as we demonstrated in Section IV, with suf-
ficiently high SNR, the proposed LMMSE phase estimator
suffers from no block length effect. For instance, as shown
in Fig. 4, with SNR γ = 35 dB, the measured IMSE remains
constant with arbitrary values of L at a laser linewidth of up to
about 10 MHz. This is because, with sufficiently high SNR,
accurate phase estimation can be achieved, even if only the
current observation is considered.

C. COMPARISON OF LMMSE WITH SIMPLIFIED LMMSE
While implementing the LMMSE estimator, the matrix
inverse of the covariance matrix R as shown in (27) is
required for each estimate, which would lead to extensive
computational complexity. To facilitate its implementation,
a simplified LMMSE estimator, which requires only one
matrix inverse operation, was proposed in Section IV based
on the assumption of relatively high SNR. To verify its fea-
sibility, the performance of the simplified LMMSE method
is presented and compared with that of the exact version
in Fig. 5.

As shown in Fig. 5, the IMSE of phase estimation is
measured as a function of SNR γ and laser linewidth 1ν
with fixed window size of L = 20. As shown, with the
simplified LMMSE estimator, a performance degradation of
around 1 dB can be observed compared with that using the
actual LMMSE estimator at SNR of less than around 6 dB
and laser linewidth of up to around 10 MHz. With a larger
SNR, close convergence to the actual LMMSE estimation can
be achieved. Considering the SNR range of practical inter-
est, we can conclude that, although the simplified LMMSE
estimator is derived based on the assumption of high SNR,
it is a close approximation to the actual LMMSE estimator.
Hence, in Subsection D, the simplified LMMSE estimator is
considered instead of the actual LMMSE estimator.
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FIGURE 5. Comparison of the simplified LMMSE with the actual LMMSE
estimator.

D. COMPARISON OF LMMSE WITH OPTIMIZED
VV ESTIMATORS
The optimal MSE performance of the simplified LMMSE
estimator, which is obtained through applying a sufficiently
long estimation window, is evaluated for different SNR, laser
linewidth values and modulation formats. The VV and the
conventional M th-power estimators with optimized window
length for each value of SNR and laser linewidth, which is
obtained through numerical search, are simulated for com-
parison.

Numerical results show that the simplified LMMSE
estimator outperforms both the VV and the conventional
M th-power estimators in terms of the minimum achievable
MSE performance particularly in systems with strong phase
noise and large SNR. At constant carrier phase, the VV
method achieves approximately the same performance as
the simplified LMMSE method for both QPSK and 8PSK
modulated systems. This observation verifies our previous
conclusion that the VV estimator is a special case of the
proposed LMMSE method under the condition of constant
carrier phase. With laser phase noise, the simplified LMMSE
estimator is shown to outperform both theVV and the conven-
tionalM th-powermethodwith the performance improvement
increasing with the laser linewidth, particularly at high SNR.
For example, compared with the VV method, approximately
3 dB performance enhancement can be obtained by using
the LMMSE method within a wide range of SNR at the
laser linewidth of 10 MHz. As shown in Fig. 6, compared
with the phase estimation of QPSK, significant performance
degradation can be observed in 8PSK modulated system at
low SNR. This is because, with largeM , the phase fluctuation
due to the AOPN is significantly enlarged by the M th power
operation which strongly affects the phase estimation.

E. PHASE UNWRAPPING PERFORMANCE
As mentioned above, genie-aided phase unwrapping is
unavailable in practice since the prior knowledge of the actual
phase is required. To verify the feasibility of the proposed
simplified LMMSE estimator in practice, its MSE perfor-
mance with differential phase unwrapping is numerically
evaluated.

FIGURE 6. IMSE performance investigation as a function of SNR γ and
laser linewidth 1ν for (a) QPSK, and (b) 8PSK modulated systems, with
the optimized window length Lopt obtained by numerical search.

While using the differential method, since the phase esti-
mate of the immediate past symbol instead of the actual
carrier phase of the current symbol is used for the phase
unwrapping of the current symbol, occasional phase unwrap-
ping failure is inevitable particularly at low SNR. To over-
come this problem, during the simulation, a single pilot is
inserted after every D data symbols, as shown in Fig. 7 (a),
to restabilize the phase unwrapping process. Suppose the kth
transmitted symbol m(k) as a pilot, i.e., m(k) is known at the
receiver side. In this case, the received noisy carrier phase
of the kth symbol, denoted as ζ (k) = θ (k) + ε(k), can be
easily obtained from the signal model given in (4). Due to the
potential phase unwrapping error, the phase estimate at time
k , θ̂ (k), might be unreliable. To cut off the accumulation of the
phase unwrapping error, at (k + 1)th time interval, the phase
unwrapping is conducted based on the noisy carrier phase of
the kth symbol ζ (k), instead of the phase estimate θ̂ (k).

Due to the presence of AOPN term ε(k) inside the noisy
carrier phase ζ (k), the single-pilot insertion becomes less
effective particularly at low SNR. For further improvement,
instead of single-pilot insertion, a pilot window with the size
of P is inserted at each refreshing interval as shown in Fig. 7
(b). In this case, the AOPN inside the noisy carrier phase
can be effectively eliminated through applying the window
average. For example, suppose that the ith symbol is the
first data symbol after current refreshing interval. With the
pilot window, the phase unwrapping at ith time interval is
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FIGURE 7. Frame structure of the pilot insertion.

conducted based on the noisy phase ξ , which is given as

ξ =
1
P

i−1∑
l=i−P

ζ (l). (44)

From Fig. 8, taking the single pilot case as an exam-
ple, performance impairment due to the use of differential
phase unwrapping compared with the genie-aided case can
be observed particularly in systems with low SNR and large
laser linewidth. However, with the increase of SNR, gradual
convergence to the genie-aided case can be observed. This
is because, with low SNR and large laser linewidth, the esti-
mated carrier phase would strongly fluctuate due to the large
AOPN and phase noise after M th-power operation, which
conflicts with the assumption of slowly varying carrier phase.
At high SNR, since the phase estimation becomes more
reliable, differential phase unwrapping starts to converge to
the genie-aided case. Additionally, with larger estimation
window length, a closer convergence can be observed. This
is because, the estimation error due to the AOPN can be
effectively averaged out with a long estimation window.

Additionally, the performance improvement due to the
use of a pilot window compared to using the single-pilot
insertion is verified as shown in Fig. 8 (b). With a long pilot
window of P = 10, the AOPN inside the noisy phase can
be effectively averaged out, thereby leading to better phase
unwrapping performance particularly at low SNR. However,
the presence of laser linewidth would require limiting the
window length to ensure that the noisy phase ξ after window
averaging remains correlatedwith the carrier phase of the data
symbols. Therefore, we would expect an optimal pilot size P
for each value of SNR and laser linewidth. The detailed inves-
tigation into the optimal pilot window size will be reported
later.

The frequency of the pilot insertion, i.e., the chosen value
of D, would affect the phase unwrapping performance as
well. Considering the single pilot insertion as an example,
as shown in Fig. 8 (c), closer convergence to the genie-aided
phase unwrapping can be achieved with a smaller D. This
is because, with more frequent pilot insertion, the potential
phase unwrapping error can be corrected more frequently,
thereby generating better performance.

Similar to the LMMSE estimator, the VV method requires
as well the post-processing phase unwrapping process, which

FIGURE 8. IMSE performance investigation of the simplified LMMSE
estimator using various phase unwrapping methods with different values
of (a) estimation window size L, (b) laser linewidth 1ν, and (c) message
symbols of each frame D (PU: phase unwrapping).

is, however, commonly ignored in the literature. Here,
performance degradation due to the potential phase unwrap-
ping error when applying the VV phase estimator is fur-
ther investigated and compared with the proposed LMMSE
method. From Fig. 9, similar performance impairment due
to the use of differential phase unwrapping method can
be observed in the VV estimator. Additionally, with both
genie-aided and differential phase unwrapping, our proposed
LMMSE estimator outperforms the VV method within the
entire range of SNR tested, i.e., γ ∈ [0, 10] dB. This observa-
tion verifies our above conclusion that despite the high-SNR
assumption considered during the development, the propose
LMMSEmethod remains feasible at low SNR. The simplified
LMMSE estimator is, however, less effective compared with
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FIGURE 9. Performance comparison between different phase estimators
when applying differential phase unwrapping.

the VV method at SNR of less than 4 dB in the case of both
genie-aided and differential phase unwrapping. With larger
SNR, since the phase fluctuation is taken into consideration,
the simplified LMMSE method is shown to outperform the
VV method and gradually converges to the actual LMMSE
method, as we expected. Hence, considering the SNR range
of practical interest, we would suggest that the simplified
LMMSE method with differential phase unwrapping is a
promising candidate in practice.

VII. CONCLUSIONS
The use of the M th-power nonlinearity for non-decision-
aided carrier phase estimation of MPSK signals is popular
in practice, because of the low latency involved. The use of
the single complex exponential expression for the complex,
noisy received signal sample has proven to be effective in
the design and analysis of suchM th-power carrier phase esti-
mators. Using this approach, we have derived the LMMSE
M th-power estimator that is optimized with respect to both
the channel AOPN and the carrier phase noise, and studied its
performance using simulations. Our work is of significance
in extending the conventional M th-power phase estimator to
include the consideration of phase fluctuation. Additionally,
the single-exponential signal model provides a foundation for
further research on carrier phase estimation.

We should point out that the design of a complete coher-
ent receiver should also consider the issue of timing and
frequency synchronization. However, as we are refining and
extending on the work of [1], we adopt the assumption in [1]
that symbol timing and carrier frequency can be tracked
accurately between packets and thus these latter parameters
needs only to be estimated once in the initial packet, while
phase estimation on each successive packet is a requirement
due to oscillator phase noise. To avoid making this paper too
complicated, we will consider timing and frequency synchro-
nization in a future report. Another relevant issue is that of
amplitude estimation for automatic gain control. However,
since the M th-power carrier phase estimator is applicable
only for MPSK modulations and the detection of the latter
symbols requires only accurate carrier phase information and
does not require amplitude information, we will not deal

with the amplitude estimation problem here. Accurate ampli-
tude estimation would be essential for detecting APSK, and
therefore will become relevant in designing a carrier phase
estimator for the latter case. Finally, we note that the vari-
ance of the AWGN and the carrier phase noise are assumed
known in the design of the LMMSE estimator. In practice,
if these variances are unknown, an adaptive version of this
estimator would be necessary that can adapt its weights in
response to real-time measurements from the received signal
samples. In [19], we have developed such an adaptive ver-
sion of our DA-ML estimator of [2]. The adaptive version
of the LMMSE estimator here is currently a topic of our
investigation.

APPENDIX A
DERIVATION OF THE OPTIMAL WEIGHT VECTOR
The optimal weight coefficient wo can be obtained through
minimizing the MSE given in (24). Note that the MSE given
in (24) is a real-valued scalar function of the complex vector
w and w∗. Based on the theorem given in [20, Theorem 2],
for a real-valued function of the complex vectors b and b∗,
f (b,b∗), the vector pointing in the direction of the maximum
rate of change of f (b,b∗) is ∂f (b,b∗)/∂b∗, which is the
partial derivative of f (b,b∗) with respective of b∗. Hence,
the optimal w can be obtained as

wo=argminE[|e(k)|2]=arg
[
∂E[|e(k)2|]

∂w∗
= 0

]
. (A.1)

Substituting (A.1) into (24), we can easily find that

wo = R−1p. (A.2)

The explicit expression of p and R is given as follow.
From (25), the lth element of p can be expressed as

pl = E[yM (k − L + l − 1)V ∗M (k)]

= E
[
ejM [θ (k−L+l−1)+ε(k−L+l−1)]e−jMθ (k)

]
. (A.3)

Considering the Wiener process model of the carrier phase
θ (k), we have

pl = E
[
ejM [θ (k)−

∑k
i=k−L+l ν(i)+ε(k−L+l−1)]e−jMθ (k)

]
= E

[
ejM [−

∑k
i=k−L+l ν(i)+ε(k−L+l−1)]

]
= E[ejα(l)],

(A.4)

where α(l) = M [−
∑k

i=k−L+l ν(i)+ ε(k−L+ l− 1)]. Since
the AOPN term ε(l) is shown to be approximately Gaussian
distributed, we can conclude that α(l) is also Gaussian dis-
tributed with zero mean and variance of

var[α(l)] = σ 2
α (l) = M2(|L−l+1|σ 2

p +σ
2
ε (k−L+l−1)).

(A.5)

Considering the moment-generating function of a Gaussian
random variable, α(l), (A.4) can be rewritten as [21]

pl = E[ejα(l)] = e1jE[α(l)]+
1
2 (1j)

2σ 2α (l)

= e
−

1
2

[
M2

(
|L−l+1|σ 2p+σ

2
ε (k−L+l−1)

)]
(A.6)
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The (x, y)th element of R can be calculated in a similar way.
If x = y, obviously, R(x, x) = 1. If x 6= y, we have

R(x, y) = E[yM (k − L + x − 1)y∗M (k − L + y− 1)]

= E[ejM [θ (k−L+x−1)+ε(k−L+x−1)]

× e−jM [θ (k−L+y−1)+ε(k−L+y−1)]]

= E[ejMθ (k)ejM [−
∑k

i=k−L+x ν(i)+ε(k−L+x−1)]

× e−jMθ (k)e−jM [−
∑k

q=k−L+y ν(q)+ε(k−L+y−1)]]

= E[ejMβ(x,y)], (A.7)

where β(x, y) = M [
∑k

q=k−L+y ν(q)−
∑k

i=k−L+x ν(i)+ε(k−
L+ x− 1)− ε(k−L+ y− 1)]. Similarly, β(x, y) is Gaussian
distributed with zero mean and variance

σ 2
β (x, y) = M2[(|x − y|)σ 2

p

+σ 2
ε (k − L + x − 1)+ σ 2

ε (k − L + y− 1)
]
.

(A.8)

Hence, based on the moment-generating function of β(x, y),
R(x, y) can be reduced to

R(x, y) = e
−

1
2M

2
[
(|x−y|)σ 2p+σ

2
ε (k−L+x−1)+σ

2
ε (k−L+y−1)

]
(A.9)

Substituting (A.6) and (A.9) into (A.2), we can easily calcu-
late the optimal weight wo for each time k . Obviously, wo
given in (A.2) is a function of the signal amplitudes within
the estimation window, {|r(l)|}l . Therefore, the components
of wo given in (A.2) are the optimal nonlinear functions
that minimize the MSE of the M th-power carrier phase
estimation.

APPENDIX B
DERIVATION OF EQUATION (34)
As shown in (33), the minimum MSE by using the LMMSE
estimator is given as

E[|e(k)|2]min = 1− pTR−1p. (B.1)

Denoting the ith column of the simplified covariance matrix
R given in (31) as r(i), from (30), we have

p = a× r(L + 1)+ (1/a− a)× b (B.2)

where a = e
1
2M

2σ 2ε and b denotes the (2L + 1)-dimensional
vector [0, · · · , 0, 1, 0, · · · , 0]T with a ‘‘1’’ in the middle.
Substituting (B.2) into (B.1), we have

E[|e(k)|2]min = 1− [ar(L + 1)+ (1/a− a)b]T R−1

× [ar(L + 1)+ (1/a− a)b]
= a2 − 1− (1/a− a)2g(L + 1,L + 1),

(B.3)

where g(L + 1,L + 1) denotes the (L + 1,L + 1)th element
of G = R−1. Denoting e−

1
2M

2σ 2p by c, the simplified matrix

R given in (31) can be rewritten as

R =


1 c/a2 c2/a2 · · · c2L/a2

c/a2 1 c/a2 · · · c2L−1/a2

· · · · · · · · · · · · · · ·

c2L/a2 c2L−1/a2 c2L−2/a2 · · · 1

 .
(B.4)

Assuming relatively high SNR, we have a2 = eM
2σ 2ε ≈ 1.

In this case, the matrix R given in (B.4) can be approximated
as

R ≈
1
a2


1 c c2 · · · c2L

c 1 c · · · c2L−1

· · · · · · · · · · · · · · ·

c2L c2L−1 c2L−2 · · · 1

 . (B.5)

Assuming non-zero carrier phase noise, i.e., σ 2
p > 0,

the inverse of the matrix R given in (B.5) can be eas-
ily calculated as (B.6), as shown at the top of the next
page, for L ≥ 1. Hence, the (L + 1,L + 1)th element
of R−1 is

g(L + 1,L + 1) =
−a2(c2 + 1)
c2 − 1

. (B.7)

Substituting (B.7) into (B.3), theminimumMSEof the phasor
estimation by using the LMMSE estimator can be obtained
as

E[|e(k)|2]min = eM
2σ 2ε − 1+

(
eM

2σ 2ε − 1
)2 e−M2σ 2p + 1

e−M
2σ 2p − 1

.

(B.8)

APPENDIX C
DERIVATION OF EQUATION (38)
With the immediate past and the current received signal,
i.e., yM(k) = [yM (k − 1), yM (k)]T , the optimal weight
coefficient for the LMMSE phase estimator is given as

w = R−1p, (C.1)

where the cross-correction vector p can be written as

p =
[
E[ejM [θ (k−1)+ε(k−1)]e−jMθ (k)]
E[ejM [θ (k)+ε(k)]e−jMθ (k)]

]

=

e−M2
2 [σ 2p+σ

2
ε (k−1)]

e−
M2
2 σ

2
ε (k)

 (C.2)

Similarly, the auto-correlation matrix R can be calculated
as

R =
[

1 E[ejM [ν(k)+ε(k−1)+ε(k)]]
E[ejM [ν(k)+ε(k−1)+ε(k)]] 1

]

=

 1 e−
M2
2 [σ 2p+σ

2
ε (k−1)+σ

2
ε (k)]

e−
M2
2 [σ 2p+σ

2
ε (k−1)+σ

2
ε (k)] 1


(C.3)
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R−1 = a2



−1
c2 − 1

c
c2 − 1

0 0 · · · 0

c
c2 − 1

−(c2 + 1)
c2 − 1

c
c2 − 1

0 · · · 0

0
c

c2 − 1
−(c2 + 1)
c2 − 1

c
c2 − 1

· · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0
c

c2 − 1
−1

c2 − 1


(B.6)

Considering the matrix inverse of R given in (C.3), we have

R−1 =
1

1− dgf

[
1 −dgf
−dgf 1

]
(C.4)

where

d = e−
M2
2 σ

2
p , g = e−

M2
2 σ

2
ε (k−1), f = e−

M2
2 σ

2
ε (k). (C.5)

Substituting (C.4) and (C.2) into (C.1), we can easily calcu-
late the weight vector w as

w =
1

1− dgf

[
1 −dgf
−dgf 1

]
×

[
dg
df

]
=

1
1− dgf

[
dg− d2gf 2

df − d2g2f

]
(C.6)

Through applying the approximation: ejx ≈ 1+jx, the weight
vector given in (C.6) can be reduced to

w = h
[
σ 2
p |r(k)|

2
|r(k − 1)|2 + N0|r(k − 1)|2

σ 2
p |r(k)|

2
|r(k − 1)|2 + N0|r(k)|2

]
, (C.7)

where

h =
1

σ 2
p |r(k)|2|r(k − 1)|2 + N0

2 |r(k − 1)|2 + N0
2 |r(k)|

2
.

(C.8)

Assuming constant phase, i.e., σ 2
p = 0, w can be further

simplified as

w =
1

2|r(k)|2 + 2|r(k − 1)|2

[
|r(k − 1)|2

|r(k)|2

]
. (C.9)

Substituting (C.9) into (37), the estimated phasor based on
the immediate past and current observation is given as

V̂M (k) =
1

2|r(k)|2 + 2|r(k − 1)|2

k∑
l=k−1

|r(l)|2yM (l).

(C.10)
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