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Abstract
The paper focuses on modeling of unsteady flows in a hydraulic system built of a pressure tank, a plastic pipeline and a 
quick-closing valve. The influence of unsteady friction as well as the experimentally obtained creep function (necessary 
for modeling retarded strains) on simulation results was investigated. In addition, the effectiveness of the dimensionless 
parameter P known from the literature was analyzed, especially in the context of rejecting an unsteady term decision. 
Detailed investigations on the variability of terms describing unsteady friction have shown that one should still look for 
a dimensionless parameter with the help of which it will be possible to decide on the friction model before making the 
calculations. The quantitative analysis carried out showed that the use of unsteady hydraulic resistance in simulated runs 
brought simulated results closer to experimental results.
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1 Introduction

Plastics are starting to play an increasingly important role in 
hydraulic systems each year. As of today, most of the hydrau-
lic elements can be made of them [24]. Plastic pipes almost 
completely replaced metal pipes (steel, brass, etc.) in water 
supply systems. This was mainly due to their low price. They 
are produced from at least five different polymers: PP—poly-
propylene, PE—polyethylene, PVC—polyvinyl chloride, PB—
polybutylene, ABS—acrylonitrile butadiene styrene. Each of 
the above-mentioned materials is characterized by differ-
ent mechanical properties (Poisson’s ratio, Young’s modu-
lus of elasticity, creep function, etc.), whose values strongly 
depend on the temperature. In these pipelines, as well as in 
metal, transient states may occur during the flow of liquids. 
From previous work carried out by the authors of this study 
[28–31], it turned out that the phenomena accompanying 
unsteady flows in metal pipelines such as: cavitation [1, 7, 
14, 21, 35], unsteady friction [5, 13, 25–27] or the interac-
tion of the walls of the pipe with the flow (fluid structure 

interaction) [9, 11, 16] also plays an important role in plastic 
pipes. The phenomenon that is most responsible for flow 
damping is the viscoelasticity of the material of the pipe [2, 
10, 28–31]. Attempts to simulate the flow using a model for 
elastic pipes result in an unacceptable discrepancy between 
simulation and experimental results. Thermal phenomena 
[17, 18] are usually neglected during the modeling of the 
examined transient flow (water hammer) in this paper (e.g., 
result of sudden blockage of flow). As proved in [2, 10], the 
application of the calibration enables satisfactory model 
compliance to be obtained using the quasi-steady model of 
hydraulic resistance. The need to calibrate the creep function 
is mainly due to the lack of accurate experimental studies 
on their course in time (frequency) and temperature. In this 
paper, a modified unsteady flow model will be used, which 
properly takes into account frequency dependent hydraulic 
resistance. Unsteady flows in two experimental systems in 
HDPE pipelines were analyzed. Viscoelastic damping was 
modeled using the experimental creep function known from 
the literature [4]. According to paper [8], one can specify a 
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certain dimensionless parameter P, which is dependent 
on internal diameter, pressure wave speed, friction factor, 
velocity and length of the pipe. Some authors [6, 15, 33] 
use this parameter to determine the use of friction model. 
In this work, a transient flow model will be used, dedicated 
to plastic pipes, discussed in detail in [28, 30]. Analysis of 
the results obtained will demonstrate the need of using 
unsteady hydraulic resistance.

2  Water hammer in viscoelastic pipes

This section is devoted to introduce the equations describ-
ing water hammer in viscoelastic pipes and presentation of 
numerical solutions.

2.1  Mathematical model

Polymer pipelines do not respond according to Hook law 
when subjected to a certain instantaneous stress. Strain can 
be decomposed into a sum of instantaneous elastic strain �e 
and a retarded strain �r (see e.g., [3])

The retarded strain is a convolution integral of pressure 
and derivative of the creep function J which describes vis-
coelastic behavior of the pipe material

where � =
�D

e
—enhanced pipe wall constraint coefficient 

parameter [−] , D—pipe inside diameter [m], e – pipe wall 
thickness [m], �—pipe wall constraint coefficient [−], J(u)—
polymer creep function 

[
Pa−1

]
.

The creep function in generalized Kelvin–Voigt (Fig. 1) 
model is time dependent, namely

(1)�(t) = �e + �r(t).

(2)�r(t) =
�

2 ∫
t

0

(p(t − u) − p(0))
�J(u)

�u
du,

(3)J(t) = J0 +

k∑

i=1

Ji

(
1 − e

−
t

Ti

)
,

where Ji—creep compliance of the spring of the Kel-
vin–Voigt i-th element defined by Jk = 1∕Ek , Ek—modulus 
of elasticity of the spring of i-th element, Ti—the retarda-
tion time of the dashpot of i-th element.

Equation (2) can be written in the form [30]

and its partial derivative with respect to time t as

where wJ(u) denotes creep weighting function and

In unsteady flow in pipe, the instantaneous wall shear 
stress � may be regarded as the sum of two components 
[32]:

where �—Darcy–Weisbach friction factor [−], w(t) 
– weighting function [−], �—dynamic viscosity 

[
kg

m s

]
 , u—

time, used in convolution integral [s].
The first component in (7),  �q ,  presents the 

quasi–steady wall shear stress and the second, �u , is 
the additional contribution due to unsteadiness. Equa-
tion (7) relates the wall shear stress to the instantane-
ous average velocity and to the weighted past velocity 
changes.

Unsteady flow of liquid in viscoelastic pipe is repre-
sented by two one-dimensional hyperbolic partial differ-
ential equations. The momentum and continuity equa-
tions have the following form [31]

where t—time [s], x—distance along the pipe axis [m], 
v = v(x, t)—average value of velocity in cross-section of 
pipe [m/s], p = p(x, t)—average value of pressure in cross-
section of pipe [Pa], �—shear stress at pipe wall [Pa], �—
density of liquid (constant) [ kg/m3 ], R—inside radius of 
pipe [m], c—pressure wave speed [m/s].
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Fig. 1  Generalized Kelvin Voigt model (viscoelastic solid)
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2.2  Numerical solution

There is no known analytical solution for system of hyper-
bolic partial differential equations (8). Therefore, there is a 
need to perform calculations using numerical methods. In 
this paper, a method of characteristics and finite difference 
method with classic constant rectangular grids is used, to 
avoid interpolation problems (Fig. 2).

At the beginning, the initial conditions of the system will 
be discussed. In a pre-transient state, the mean velocity v0 is 
constant on whole length of pipe x = L . The reservoir pres-
sure (at x = 0 ) is constant and decreases linearly in the direc-
tion of the flow. At t = 0 , the valve closes suddenly ( x = L ) 
causing transient states, and the velocity changes from v0 to 
0 in one time step. After that, the pressure oscillation of fluid 
occurs until the full suppression. The final conditions on the 
entire pipe are v = 0 and p = pA (constant reservoir pressure).

Now one can proceed to the numerical solution. The sys-
tem of differential equations (8) was solved using method 
of characteristics. Thanks to this, the system of partial dif-
ferential equations was transformed into two ordinary dif-
ferential equations

Using the finite difference method on characteristics grid 
(Fig. 2), it was obtained

where Δt—constant time step [s]. The term connected 
with strain rate is calculated as follows [30]

(9)±
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dt
+
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dt
+
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xD

= pDF − GE ,

with constants

Let now denote all the terms calculated for the previous 
time step as

Finally, one gets a numerical solution for pressure and flow 
velocity

The formulas for pressure and velocity at the pipe ends 
will now be derived. For the reservoir ( x = 0 ), the negative 
characteristics C− are used (Fig. 2). Let us assume that the 
pressure is constant ( p = pA ) and therefore, one needs the 
formula for velocity only. Using the second equation from 
(10), one obtains for the left boundary

For the valve ( x = L ), the positive characteristics C+ are 
used. Let us assume that the velocity is constant ( vZ = 0 ) 
so one needs the formula for pressure. Using the first equa-
tion from (10), one obtains

Numerical calculations of time dependent of the wall shear 
stress �u [second component in (7)] can be performed 
using the efficient numerical solution of this integral pre-
sented by Urbanowicz [27]

where
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Fig. 2  Rectangular grid of characteristics
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The constants ni and mi present in the above equations are 
associated with the effective weighting function

and � is the correction factor [25].

3  Simulations

3.1  Experimental setup

To verify carried out numerical simulations, they were 
compared with experimental data. The experiments were 
carried out by D. Covas et al. at Imperial College London 
[3] and Evangelista et al. at the University of Cassino and 
Southern Lazio [6].

The first experimental reservoir-pipeline-valve system 
[3] consists of a 271.7 m HDPE pipe with an internal diam-
eter 50.6 mm and 6.3 mm wall thickness. Form the analysis 
of observed experimental dynamical courses of pressure 
changes, the pressure wave speed in the tested system 
was determined at c = 395 m/s. The water temperature is 
T = 20 ◦C , on its basis, the density � = 998.2 kg/m3 and kin-
ematic viscosity � = 1 × 10−6 m2/s were determined. The 
Poisson’s ratio of the material from which the pipeline is 
made was �P = 0.46 . Other input parameters for numerical 
calculations are summarized in Table 1. Parameters Tk and 
Jk of the Kelvin–Voigt models experimentally determined 
by Covas [4] have values presented in Table 2 (see Case 1, 
3). The pipe wall constraint coefficient is calculated form 
the following formula [3]

and for this test stand have a fixed value � = 1.0647.
The second test stand was built to investigate the tran-

sient states in branched systems of HDPE pipes [6]. The 
system was inspired by irrigation system and is Y-shaped 
with three-way junction. The authors carried out pre-
liminary experiments in single-pipe systems, which were 
used in this paper. The experimental system consists of 
a 203.3 m HDPE pipe with internal diameter 44 mm and 

(17)w
(
t̂
)
=

k∑

i=1

mie
−ni t̂

(18)� =
2e

D

(
1 + �P

)
+

D

D + e

(
1 − �2

P

)

wall thickness 3 mm. The average value of propagation of 
the pressure wave speed was determined at 368 m/s. The 
water temperature is T = 14.95 ◦C , on its basis, the density 
� = 999.1 kg/m3 and kinematic viscosity � = 1.14 × 10−6 
m2/s were determined. The authors of the original refer-
ence did not mention the value of Poisson’s ratio, so it 
was assumed the same value as Covas for HDPE pipes, i.e., 
�P = 0.46 . The pipe wall constraint coefficient � = 0.9372 
was calculated using equation (18). To describe the creep 
function, the results of the Covas experiment were used. 
Parameters Tk have been set as above. However, the Jk 
parameters have been scaled based on the results of the 
Güney experiment [30]. Güney determined the param-
eters of the creep function at different temperatures. The 
scaling factor was assumed to be 0.75 which gave values 
presented in Table 2 (see Case 2, 4).

3.2  Comparison of experimental results 
and numerical simulations

To evaluate the effect of unsteady friction on the modeled 
pressure waves, numerical simulations were carried out 
for four different cases. Two of them concerned laminar 
flow and the other two were turbulent. In addition, the 
dimensionless parameter P defined by Ghidaoui et. al [8]

were examined. The values of this parameter for the ana-
lyzed below the selected flows are shown in Table 1.

As described in paper [8], the physical meaning of the 
parameter P is the ratio of the diffusion time scale to the 
wave time scale in water hammer problems. When P ≫ 1 , 

(19)P =
2Dc

√
�v0L

,

Table 1  Parameters of 
experimental tests

Case L [m] D [mm] e [mm] �P c [m/s] v0 [m/s] Re 0 [−] P0 [−]

1 271.1 50.6 6.3 0.46 395 0.0268 1356 25.27
2 203.3 44.0 3.0 0.46 368 0.0635 2451 15.52
3 271.1 50.6 6.3 0.46 395 0.7459 37743 1.31
4 203.3 44.0 3.0 0.46 368 1.0000 38596 1.06

Table 2  Creep compliance coefficients Jk

Parameter k = 1 k = 2 k = 3 k = 4 k = 5

Case 1, 3

   Jk 
(
10−9Pa−1

)
0.1394 0.0062 0.1148 0.3425 0.0928

   Tk (s) 0.05 0.5 1.5 5 10
Case 2, 4

   Jk 
(
10−9Pa−1

)
0.1046 0.0046 0.0861 0.2569 0.0696

   Tk (s) 0.05 0.5 1.5 5 10
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the quasi-steady friction model is acceptable. When P ≈ 1 , 
it has been indicated that a unsteady friction model should 
be used. When P ≪ 1 , it does not belong to the water ham-
mer problems, so similarly the quasi-steady friction model 
should be acceptable.

In Case 1 and 3, the pipeline was divided into 64 equally 
long sections ( N = 64 [−] , Δx = 4.2453 [m]). According to 
the CFL condition, the constant time step is Δt = 0.0107 
s ( Δt̂ = 1.6791 × 10−5 [−] ). For these time step values, the 
estimated coefficient of three term weighting function 
using a method described in paper [25] are m1 = 4.4699 , 
m2 = 15.7495 , m3 = 56.9421 and n1 = 90.0521 , n2 = 1359 , 
n3 = 18150 for laminar flow and n1 = 1248 , n2 = 2517 , 
n3 = 19308 for turbulent flow. In Case 2 and 4, the pipeline 
was divided into N = 204 equally long sections ( N = 204 
[−] , Δx = 0.9966 ). This division was used because the 

pressure transmitter with which we compare the results is 
about 1 meter in front of the valve. The constant time step 
is Δt = 0.0027 s ( Δt̂ = 6.3785 ⋅ 10−6 [−] ) and using the pro-
cedure explained in [25] the estimated coefficient of three 
term weighting function are m1 = 7.818 , m2 = 25.7227 , 
m3 = 92.4308 and n1 = 198.5231 , n2 = 3523 , n3 = 47696 
for laminar flow and n1 = 1377 , n2 = 4701 , n3 = 48875 for 
turbulent flow.

Figure 3 provides detailed comparisons between meas-
ured and calculated results corresponding to the quasi-
steady and unsteady friction model, which included the 
viscoelastic behavior of the pipe wall material. On their 
basis, the following conclusions can be formulated

1. The pressure peak on the first amplitude is better simu-
lated using unsteady friction model.
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Fig. 3  Pressure variation at the downstream end of the pipe
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2. On the other amplitudes, low pressures (runway 
valleys) are more accurately simulated with use of 
unsteady friction model, while high (amplitude peaks) 
using a quasi-steady friction model in low Reynolds 
number cases (Case 1 and 2).

3. Both models have a slight shifting over time. In 
the case of a quasi-steady friction model, the time 
between successive amplitudes is shortened, while in 
the unsteady friction model it becomes longer.

4. The qualitative analysis in laminar flow (Case 1 and 2) 
shows that the unsteady friction model better fits to 
the experimental data.

5. The qualitative analysis of turbulent flow (Case 3 and 
4) shows the relative compatibility of both models.

6. The other differences observed in the comparative 
runs are the result of the neglecting of less significant 

phenomena accompanying the water hammer, as well 
as the result of experimental research in systems with 
many elbows, which are the result of increased hydrau-
lic resistance. [23].

Figure  4 presents a comparison of dimensionless 
velocity ( ̂v(t) = v(t)∕max |v(t)| ) with a dimensionless 
quasi-steady wall shear stress ( ̂𝜏q(t) = 𝜏q(t)∕max |𝜏q(t)| ) 
and a comparison of dimensionless acceleration 
( ̂v̇(t) = v̇(t)∕max |v̇(t)| ) with dimensionless unsteady wall 
shear stress ( ̂𝜏u(t) = 𝜏u(t)∕max |𝜏u(t)| ) component in the 
middle section of the pipeline. Normalization was done 
in order to better present the studied phenomenon. One 
can observe the phase compatibility of the velocity with a 
quasi-steady wall shear stress component as well as phase 
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Fig. 4  Comparison of wall shear stresses for the middle of the pipe in a dimensionless form in Cases 2 (laminar) and 3 (turbulent) for 
unsteady friction model
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compatibility of the acceleration with a unsteady wall 
shear stress component. Thus, the total wall shear stress 
is a function dependent on velocity and acceleration. The 
above observation is consistent with the form of wall shear 
stress 𝜏 = f (v, v̇) being the sum of two components [12, 
19, 20, 22, 34]: one proportional to the average speed and 
the second proportional to the acceleration. In addition, 
one can observe coverage of dimensionless velocity and 
quasi-steady wall shear stress plots in laminar case. In tur-
bulent flow, this phenomenon does not occur due to the 
changing nature of the flow and the use of various mod-
els of quasi-steady wall shear stress in laminar and turbu-
lent flows. On the basis of Fig. 5, the dominant role of the 
unsteady wall shear stress component on total wall shear 
stress can be observed for low Reynolds numbers (Case 
2). On the other hand, for the large values of the Reynolds 

number (Case 3), the role of the quasi-steady and unsteady 
wall shear stress component is comparable. Similar obser-
vations also take place in Cases 1 and 4. The greater the 
Reynolds number will be, the smaller will be the impact 
of the unsteady friction term �u.

One of the assumptions of this paper was to exam-
ine whether using the P parameter one can make 
decisions about the choice of the use of a hydraulic 
resistance model. Therefore, the dynamics of changes 
of this parameter in different pipe cross-sections was 
also investigated. Selected plots of the parameter P for 
the case of the unsteady friction model are shown in 
Fig. 6. The above plots questioned the reasonableness 
of using the dynamic parameter P described by the 
Eq. (19), because it can be seen that whenever the flow 
velocity dropped and a change in its value occurred (as a 

0 1 2 3 4 5 6 7 8 9 10

time [s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w
al

l s
h

ea
r 

st
re

ss
 [

P
a]

Case 2

0 1 2 3 4 5 6 7 8 9 10

time [s]

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

w
al

l s
h

ea
r 

st
re

ss
 [

P
a]

Case 2

0 1 2 3 4 5 6 7 8 9 10

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

w
al

l s
h

ea
r 

st
re

ss
 [

P
a]

Case 3

0 1 2 3 4 5 6 7 8 9 10

time [s]

-4

-3

-2

-1

0

1

2

w
al

l s
h

ea
r 

st
re

ss
 [

P
a]

Case 3

Fig. 5  Comparison of wall shear stresses in the middle of the pipe in Cases 2 and 3 for simplified quasi-steady (left) and total friction model 
(right) (note the different scales on the plots)
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result of a change in the flow direction), its singularities 
occurred. An increase in the P > 30 value in accordance 
with [6, 15, 33] should be considered a sufficient reason 
to reject and not designate unsteady term of friction. 
However, the attempt to reject the unsteady wall shear 
stress �u from Eq. (7) in a dynamic manner, carried out as 
part of the simulation work, was unsuccessful. Gener-
ally, it is also known that the effect of unsteady friction 
increases with the decreasing Reynolds number, so that 
the behavior of the parameter P would be contradictory 
to the above.

3.3  Quantitative comparative analysis

In the previous section, the results of numerical simu-
lation was presented. Calculated values of the initial 
parameter P (Table 1) suggests that the better results 
should be obtained using the quasi-steady friction 
model in Cases 1 and 2, while one should obtain better 
results using the unsteady friction model in Cases 3 and 
4, but the qualitative analysis conducted does not give a 
definite answer which of the friction models gives better 
results. To this end, L2 norm of errors was introduced (see 
e.g., [2]) and denoted as ‖ ⋅ ‖2 . Considering numerical psim 
and measured experimental pexp values of pressure as a 
vector, the L2 norm is defined here as

where Np denotes the dimension of the vector pexp.

‖psim − pexp‖2 =

����
Np�

i=1

���psim,i − pexp,i
���
2
Δt,

In the all considered cases, a smaller L2 norm of errors 
was obtained in numerical simulations using unsteady 
friction model. At the same time, the computation time 
is higher than in the case of a quasi-steady friction 
model. The details are presented in Table 3.

4  Conclusions

The paper presents further analysis of the influence of a 
quasi-steady and unsteady friction model in viscoelastic 
pipes on simulated pressure runs. The model of water 
hammer in viscoelastic pipes was analyzed. Additional 
term describing the retarded deformation of the pipe 
wall was added to continuity equation. System of partial 
differential equations describing this type of flow was 
numerically solved using the method of characteristics 
and finite difference method. The research considered a 
qualitative and quantitative analysis of new comparisons 
of experimental results [6] with simulated ones. Unfor-
tunately, the qualitative analysis does not give definite 
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Fig. 6  Dynamic change of the parameter P in the middle of the pipe in selected cases (note the different scales on the plots)

Table 3  L2 norm of errors

Case 1 2 3 4

Error
   Quasi-steady 3901 7920 84868 147923
   Unsteady 3507 6508 53863 110001

Computation time
   Quasi-steady [s] 1.95 52 1.70 82
   Unsteady [s] 2.30 100 2.75 125
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answers as to the validity of the hydraulic loss model 
used on the basis of the P parameter.

In the absence of a clear answer, a quantitative analy-
sis was used. The L2 norm of errors was introduced to 
compare the simulated pressure waves and results of 
the experiment. A detailed analysis showed that the 
unsteady friction model minimizes L2 norm of errors.

The research carried out shows that further work is 
needed to determine proper dimensionless coefficient 
used for initial and following estimations of the impor-
tance of selected friction model for numerical simulations.

In addition, the paper proves that experimental creep 
function is suitable for numerical simulations in various 
systems based on HDPE polymer pipes. The flow model 
analyzed in this work allows simulation of transient states 
occurring in plastic pipes. It is especially important in the 
design stage of the fluid systems: hydraulic, water supply, 
transmission, etc., because with it the systems are opti-
mized in the selection of physical parameters for better 
operation and management.
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