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LINEAR-QUADRATIC-GAUSSIAN MIXED MEAN-FIELD GAMES
WITH HETEROGENEOUS INPUT CONSTRAINTS∗
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Abstract. We consider a class of linear-quadratic-Gaussian mean-field games having a major
agent and numerous heterogeneous minor agents in the presence of mean-field interactions. The
individual admissible controls are constrained in closed convex subsets Γk of Rm. The decentralized
strategies of individual agents and the consistency condition system are represented in a unified
manner through a class of mean-field forward-backward stochastic differential equations involving
projection operators on Γk. The well-posedness of the consistency system is established in both the
local and global cases through the contraction mapping and discounting methods, respectively. A
related ε-Nash-equilibrium property is also verified.
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1. Introduction. Mean-field games (MFGs) for stochastic large-population sys-
tems have been well-studied because of their breadth of applications in various fields,
such as economics, engineering, social sciences, and operational research. Large-
population systems are distinguished by having numerous agents (or players). The
individual influence of any single agent on the overall population is negligible, but
the effects of its statistical behaviors cannot be ignored at the population scale.
Mathematically, all agents are weakly coupled in their dynamics or cost function-
als through the state average (in a linear-state case) or the general empirical measure
(in a nonlinear-state case), either of which characterizes the statistical effect generated
by the population from a macroscopic perspective. Because of these features, when
the number of agents is sufficiently high, complicated coupling features arise, and it
is unrealistic for a given agent to obtain all other agents’ information. Consequently,
for an agent to design centralized strategies on the basis of information concerning
all peers in a large-population system is an intractable problem. Alternatively, one
reasonable and practical solution is to transform a high-dimensional and weakly cou-
pled problem to a low-dimensional and decoupled one; thus, the complexity in both
analysis and computation can be reduced. To accomplish this task, one method is

∗Received by the editors October 10, 2017; accepted for publication (in revised form) June 4,
2018; published electronically August 1, 2018.

http://www.siam.org/journals/sicon/56-4/M115142.html
Funding: The first author’s work was partially supported by Lebesgue Center of Mathematics

“Investissements d’avenir” program, ANR-11-LABX-0020-01, by ANR-15-CE05-0024, and by ANR-
16-CE40-0015-01. The second author’s work was supported by RGC grants 500613P, 15300514P, and
15327516P. The third author’s work was supported by the National Natural Sciences Foundations of
China (11601285), The Natural Science Foundation of Shandong Province (ZR2016AQ13), and the
Fundamental Research Funds of Shandong University (2015HW023).
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2836 YING HU, JIANHUI HUANG, AND TIANYANG NIE

to investigate relevant decentralized strategies based only on local information. The
relevant strategies are based only on the individual state of a given agent and some
mass-effect quantities that are computed offline.

In this context, and motivated by the theory of the propagation of chaos, Lasry
and Lions [39, 40, 41] proposed distributed closed-loop strategies, which were for-
mulated as a coupled nonlinear forward-backward system consisting of a Hamilton–
Jacobi–Bellman (HJB) equation and a Fokker–Planck equation. Moreover, the lim-
iting problem enabled the design of approximate Nash-equilibrium strategies. Inde-
pendently, Huang, Malhamé, and Caines [37] developed a similar program called the
Nash certainty equivalence (NCE) principle, which was motivated by the analysis of
large communications networks. In principle, the MFGs procedure consists of the
following four main steps (see [5, 17, 34, 36, 41]): (1) A limiting mass-effect term,
which comes from the asymptotic mass-effect behavior when the agent number N
tends to infinity, is introduced. This limiting term should be treated as an exogenous
and undetermined “frozen” term at this moment. (2) Through the replacement of the
mass-effect term with the frozen limiting term, a related limiting-optimization prob-
lem can be formulated. Thus, the initial, highly coupled problem can be decoupled
and only parameterized by this generic frozen limit. Subsequently, an HJB equation
can be obtained on the basis of the dynamic programming principle (DPP) using
standard control techniques (see [57, 46]), or a Hamiltonian system can be obtained
on the basis of the stochastic maximum principle (SMP); the obtained equations can
characterize the decentralized optimal strategies. (3) A consistency condition is estab-
lished to ensure that the set of decentralized optimal strategies collectively replicates
the mass-effect. (4) The derived decentralized strategies are shown to be ε-Nash equi-
librium, which justifies the aforementioned scheme for finding the approximate Nash
equilibrium.

Recently, Cardaliaguet and Rainer [16] studied the efficiency of MFG Nash equi-
libria. For further analysis and technical details of MFGs, readers are referred to
[1, 5, 15, 17, 26, 34, 54, 55], the comprehensive notes of Cardaliaguet [14], and the
books [18, 19] authored by Carmona and Delarue. We mention that there exists
a substantial body of literature on MFG in the linear-quadratic-Gaussian (LQG)
setting. For example, [35] studied LQG MFGs and its closed-loop strategies using
the standard Riccati equation approach; [36] studied LQG MFGs having nonuniform
agents through state-aggregation using empirical distribution; [8] investigated the
MFG strategies using the SMP method and how the well-posedness of closed-loop
strategies is connected to that of a family of open-loop strategies by using a Hamilto-
nian system; and [2] and [42] studied ergodic and long-time LQG MFGs. For further
research on MFG in various LQG settings, readers are referred to [3, 7, 51] and the
references therein.

Almost all of the aforementioned works examine standard MFGs, which require
that all the agents be statistically identical and that the individual influence on the
overall population of a single agent be negligible as the number of agents tends to
infinity. However, in the real world, some models exist in which a major agent ex-
erts a significant influence on other agents (called minor agents), regardless of how
numerous the minor agents may be. Such interactions appear in numerous socioeco-
nomic problems (e.g., [18, 19, 38]). This type of game involving agents with different
hierarchical levels is usually called a mixed-type game. Compared with MFGs having
only minor agents, a distinctive feature of mixed-type MFGs is that the mean-field
behavior of the minor agents is affected by the major agent; thus, it is a random
process, and the influence of the major agent on the minor agents is not negligible
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LQG MIXED MEAN-FIELD GAMES 2837

in the limiting problem. To deal with such new features, conditional distribution
with respect to the major agent’s information flow is introduced (see [47, 20]), and
additional analytic steps are required to approach the major and minor agents in a
sequential manner. We also remark that there are essential analysis differences be-
tween major-minor games and leader-follower (Stackelberg) games, in particular in
their response functionals and necessary fixed-point arguments, although both types
of games involve some sequential optimization arguments.

For the literature review, we will now briefly describe some relevant works on
MFGs involving a major (dominating) agent and minor agents. To the best of our
knowledge, the first MFG work having a major agent and minor agents was [33], which
studied the mixed game having a major agent and a total finite K class of minor agents
in a LQG and infinite-time horizon framework. Using the state-augmentation tech-
nique, the related decentralized strategies were derived through the algebraic Riccati
equation, and the approximate Nash-equilibrium property was also verified. In a
subsequent study [48], the authors examined mean-field LQG mixed games having
continuum-parameterized minor agents. Nourian and Caines [47] investigated non-
linear, stochastic dynamic systems having major and minor agents and introduced
a coupled stochastic HJB system to MFG strategies because of the random state-
average limit. Buckdhan, Li, and Peng [12] studied nonlinear stochastic differential
games involving a major agent and numerous, collectively acting, minor agents, en-
gaged in two-person zero-sum stochastic differential games of feedback type control
against feedback control, and the limiting behaviors of the saddle-point controls were
also studied. For further research on mixed MFG using more probabilistic methods,
readers are referred to [4, 20] and the references therein.

In this study, we investigate a class of LQG MFGs with a major agent and mi-
nor agents acting in the presence of control constraints. In all of the aforementioned
papers concerning linear-quadratic (LQ) control problems, the control was uncon-
strained (in this sense, it can be called “full control”), and the (feedback) control
can be constructed through either DPP or SMP, both of which are automatically
admissible. However, if we impose constraints on the admissible control, the entire
LQ approach fails to apply (see, e.g., [21, 32]). We emphasize that the LQ control
problems concerning control constraints have broad applications in finance and eco-
nomics. For example, the mean-variance problem in relation to the prohibition of
short-selling can be transferred to LQ control problems having positive control (see,
e.g., [6, 32]). The optimal investment problems, where the agents have relative per-
formance characteristics (i.e., their portfolio constraints have different half-space or
polyhedron forms), can also be addressed through the approach of using LQ control
problems having input constraint (see, e.g., [28, 24]). Remark 2.1 of the current pa-
per provide several other constraint sets Γ ⊂ Rm as well as their applications. For an
investigation of LQ problems having positive controls or a more general study where
the control is constrained in a given convex cone, readers are referred to [9] for a
deterministic case and [21, 32, 43] for a stochastic case.

As far as we know, the present study is the first to examine constrained LQG
MFGs having a major agent and a large number of minor agents. In addition to
the control constraint being a completely new feature, our study also has other novel
features, and these distinguish it from other relevant studies. In [33, 48], the dif-
fusion term directly assumes a constant; hence, the state is driven only by some
additive noise. By contrast, the present study considers the mean-field LQG mixed
games in which the diffusion term depends on the major agent’s and the minor agent’s
states as well as the individual control strategy. This introduces additional difficulties,
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2838 YING HU, JIANHUI HUANG, AND TIANYANG NIE

especially when applying the general SMP, because now the dynamics are driven by
controlled multiplicative noise. In [47, 12], nonlinear stochastic differential games were
studied in which the control domain may be an arbitrary (nonconvex) subset. We,
however, adopt an LQ mean-field framework having individual controls constrained
in a closed convex set; thus, we can explicitly present the optimal strategies through a
projection operator. Moreover, we use SMP to obtain the optimal strategies through
Hamiltonian systems that are fully coupled forward-backward stochastic differential
equations (FBSDEs). This approach differs from [47], in which they used DPP and a
verification theorem to characterize the optimal strategies. Here, we connect the con-
sistency condition to a new type of conditional mean-field forward-backward stochastic
differential equation (MF-FBSDE) involving projection operators. We establish its
well-posedness under suitable conditions using a fixed-point theorem, in both the lo-
cal case and the global case. Unlike in our previous paper [29], we now focus on the
mixed game, which is more realistic and challenging. In this situation, the consistency
condition is a conditional MF-FBSDE that does not satisfy the usual monotonicity
condition of [31]. Moreover, we require an additional subtle analysis to analyze the
major agent’s influence and to establish the approximate Nash equilibrium. Finally,
motivated by [24], we contend that our results can be applied to solving the optimal
investment problems having a major agent and N minor agents.

The remainder of this paper is structured as follows. In section 2, we formulate
the LQG MFGs with a control constraint involving a major agent and minor agents.
Decentralized strategies are derived through an FBSDE having projection operators.
A consistency condition is also established using some fully coupled FBSDEs that
come from the SMP. In section 3, we prove the well-posedness of fully coupled con-
ditional MF-FBSDEs, which characterize the consistency condition in the local time
horizon case. In section 4, we ascertain the well-posedness of the global time case. In
section 5, we verify the ε-Nash equilibrium of the decentralized strategies. Moreover,
we examine the convergence rate of the empirical measure.

The main contributions of this paper can be summarized as follows:
• We introduce and analyze a new class of LQG mixed MFGs using SMP. In

our setting, both the major agent and minor agents are constrained in their
control inputs.

• The diffusion terms of the major and minor agents are dependent on their
states and control variables.

• The consistency condition system or NCE principle is represented through a
new type of conditional mean-field FBSDE having projection operators.

• We establish the existence and uniqueness of such an NCE system in the local
case (i.e., small time horizon) using the contraction mapping method, and in
the global case (i.e., arbitrary time horizon) using the discounting method.

2. LQG mixed games with control constraint. Consider a finite time hori-
zon [0, T ] for fixed T > 0. We assume (Ω,F , {Ft}0≤t≤T ,P) is a complete, filtered
probability space satisfying usual conditions. {Wi(t), 0 ≤ i ≤ N}0≤t≤T is an (N+1)-
dimensional Brownian motion on this space. Let Ft be the natural filtration generated
by {Wi(s), 0 ≤ i ≤ N, 0 ≤ s ≤ t} and augmented by NP (the class of P-null sets of
F). Let FW0

t , FWi
t , F it be respectively the augmentation of σ{W0(s), 0 ≤ s ≤ t},

σ{Wi(s), 0 ≤ s ≤ t}, σ{W0(s),Wi(s), 0 ≤ s ≤ t} by NP. Here, {FW0
t }0≤t≤T stands

for the information of the major agent, while {FWi
t }0≤t≤T represents the individual

information of the ith minor agent.
Throughout the paper, x′ denotes the transpose of a vector or a matrix x, and

Sn denotes the set of symmetric n × n matrices with real elements. For a matrix
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M ∈ Rn×d, we define the norm |M | :=
√
Tr(M ′M). If M ∈ Sn is positive (semi)

definite, we write M > (≥)0. Let H be a given Hilbert space, and the set of H-valued
continuous functions is denoted by C(0, T ;H). If N(·) ∈ C(0, T ;Sn) and N(t) > (≥)0
for every t ∈ [0, T ], we say that N(·) is positive (semi) definite, which is denoted by
N(·) > (≥)0. Moreover, for a given Hilbert space H and a filtration {Gt}0≤t≤T ,
we introduce the following spaces: L2

GT (Ω;H) denotes the space of GT -measurable
random variables {ξ} such that E|ξ|2 < ∞; L2

G(0, T ;H) denotes the space of Gt-
progressively measurable processes {x(s), s ∈ [0, T ]} such that E

∫ T
0
|x(t)|2dt < ∞;

L2
G(Ω;C(0, T ;H)) denotes the space of G-adapted continuous processes {x(s), s ∈

[0, T ]} such that E sup0≤t≤T |x(t)|2 <∞.
Now, we consider an LQG mixed mean-field game involving a major agent A0 and

a heterogeneous large population with N individual minor agents {Ai : 1 ≤ i ≤ N}.
Unlike other works of LQG mixed games, our control domain is constrained in a closed
convex set (more details of constraints will be given later). The states x0 for major
agent A0 and xi for each minor agent Ai are modeled by the following controlled
linear stochastic differential equations (SDEs) with empirical state-average coupling:

dx0(t) = [A0(t)x0(t) +B0(t)u0(t) + F 1
0 (t)x(N)(t) + b0(t)]dt

+ [C0(t)x0(t)+D0(t)u0(t)+F 2
0 (t)x(N)(t)+σ0(t)]dW0(t), x0(0) = x0 ∈ Rn,(2.1)

and

dxi(t) = [Aθi(t)xi(t) +B(t)ui(t) + F1(t)x(N)(t) + b(t)]dt

+ [C(t)xi(t)+Dθi(t)ui(t)+F2(t)x(N)(t)+Hx0(t)+σ(t)]dWi(t), xi(0)=x ∈ Rn,(2.2)

where x(N)(·) = 1
N

∑N
i=1 xi(·) is the state-average of minor agents. Note that F it

is the individual decentralized information, while Ft is the centralized information
driven by all Brownian motion components. We point out that the heterogeneous
noise Wi is specific for individual agent Ai, whereas xi(t) is adapted to Ft instead
of F it due to the coupling state-average x(N). The coefficients of (2.1) and (2.2) are
deterministic matrix-valued functions with appropriate dimensions. The number θi
is a parameter of agent Ai to model a heterogeneous population of minor agents, for
more explanations, see [33]. For the sake of notational brevity, in (2.2), we only set
the coefficients A(·) and D(·) (see also R(·) in (2.4)) to be dependent on θi. A similar
analysis can proceed when all other coefficients depend also on θi. In this paper, we
assume that θi takes values from a finite set Θ := {1, 2, . . . ,K}, which means that
totally K types of minor agents are considered. We call Ai a k-type minor agent if
θi = k ∈ Θ.

In this paper, we are interested in the asymptotic behavior as N tends to infinity.
This is essentially to consider a family of games with an increasing number of minor
agents. To describe the related large-population system, let us first define

Ik = {i | θi = k, 1 ≤ i ≤ N}, Nk = |Ik|,

where Nk is the cardinality of index set Ik, 1 ≤ k ≤ K. Let π
(N)
k = Nk

N for k ∈
{1, . . . ,K}; then π(N) = (π

(N)
1 , . . . , π

(N)
K ) is a probability vector to represent the

empirical distribution of θ1, . . . , θN . The following assumption gives some statistical
properties for θi. For more details, the reader is referred to [33].

A1. There exists a probability mass vector π = (π1, π2, . . . , πK) such that
limN→+∞ π(N) = π and min1≤k≤K πk > 0.
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From A1 we know that when N → +∞, the proportion of k-type agents becomes
stable for each k and that the number of each type agents tends to infinity. Otherwise,
the agents in a given type with bounded size should be excluded from consideration
when analyzing asymptotic behavior as N → +∞. Throughout the paper we make
the convention that N is sufficiently large such that min1≤k≤K Nk ≥ 1.

Now let us specify the admissible control and cost functionals of our LQG mixed
game with input control constraint. We call u0 a centralized admissible control for
the major agent if u0 ∈ Uc,0ad , where Uc,0ad := {u(·) | u(·) ∈ L2

F (0, T ; Γ0)}. Here Γ0 ⊂
Rm is a nonempty closed convex set. For each 1 ≤ i ≤ N , we define centralized
admissible control ui for the minor agent Ai as ui ∈ Uc,iad , where for a nonempty

closed convex set Γθi ⊂ Rm, Uc,iad := {ui(·) | ui(·) ∈ L2
F (0, T ; Γθi)}. Moreover, in

contrast, we call u0 a decentralized admissible control for the major agent if u0 ∈ U0
ad,

where U0
ad := {u(·) | u(·) ∈ L2

FW0
(0, T ; Γ0)}, and for each 1 ≤ i ≤ N , we also

define decentralized admissible control ui for the minor agent Ai as ui ∈ U iad, where

U iad := {ui(·) | ui(·) ∈ L2
Fi(0, T ; Γθi)}. Note that we have U iad ⊂ U

c,i
ad , for 0 ≤ i ≤ N .

Remark 2.1. We give the following typical examples for the closed convex con-
straint set Γ: Γ1 = Rm+ represents that the control can only take positive values.
It connects with the mean-variance portfolio selection problem with a no-shorting
constraint; see [6, 32]. The linear subspace Γ2 = (Rei)⊥ (where (e1, e2, . . . , em) is
the canonical basis of Rm) represents that the control can only take from a hyper-
plane. It is used to deal with the following situation: each manager for portfolio
investment has access to the whole market except some fixed firm who has private
information and thus linear constraint with segment arises. For more examples of
linear constraints and their economic meaning, the reader may refer to [24]. Γ can
also be some closed cone (i.e., Γ is closed and if u ∈ Γ, then αu ∈ Γ, for all α ≥ 0),
e.g., Γ3 = {u ∈ Rm : Υu = 0} or Γ4 = {u ∈ Rm : Υu ≤ 0}, where Υ ∈ Rn×m. For
investigations on stochastic LQ problems with conic control constraint, the reader
may refer to [21, 32].

Let u = (u0, u1, . . . , uN ) be the set of strategies of all N + 1 agents, u−0 =
(u1, u2, . . . , uN ) be the control strategies except A0, and u−i = (u0, u1, . . . , ui−1, ui+1,
. . . , uN ) be the set of strategies except the ith agent Ai. We introduce the cost func-
tional of the major agent as

(2.3)

J0(u0, u−0) =
1

2
E
[ ∫ T

0

〈
Q0(t)

(
x0(t)− ρ0x

(N)(t)
)
, x0(t)− ρ0x

(N)(t)
〉

+
〈
R0(t)u0(t), u0(t)

〉
dt+

〈
G0

(
x0(T )− ρ0x

(N)(T )
)
, x0(T )− ρ0x

(N)(T )
〉]

and the cost functional of the minor agent Ai as

Ji(ui, u−i) =
1

2
E

[∫ T

0

(〈
Q
(
xi−ρx(N)−(1−ρ)x0(t)

)
,

xi−ρx(N)−(1−ρ)x0(t)
〉

+
〈
Rθiui, ui

〉)
dt

+
〈
G
(
xi(T )−ρx(N)(T )−(1−ρ)x0(T )

)
, xi(T )−ρx(N)(T )−(1−ρ)x0(T )

〉]
.(2.4)

We mention that for notational brevity, the time argument is suppressed when nec-
essary, and ρ does not depend on θi; a similar analysis can proceed when ρ depends
on θi.
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We impose the following assumptions:
A2. The coefficients of the states satisfy that, for 1 ≤ i ≤ N ,

A0(·), Aθi(·), C0(·), C(·), F 1
0 (·), F1(·), F 2

0 (·), F2(·), H(·) ∈ L∞(0, T ;Rn×n),

B0(·), B(·), D0(·), Dθi(·)∈L∞(0, T ;Rn×m), b0(·), b(·), σ0(·), σ(·)∈L∞(0, T ;Rn).

A3. The coefficients of cost functionals satisfy that, for 1 ≤ i ≤ N ,

Q0(·), Q(·) ∈ L∞(0, T ;Sn), R0(·), Rθi(·) ∈ L∞(0, T ;Sm), G0, G ∈ Sn,
Q0(·) ≥ 0, Q(·) ≥ 0, R0(·) > 0, Rθi(·) > 0, G0 ≥ 0, G ≥ 0, ρ0, ρ ∈ [0, 1].

Here L∞(0, T ;H) denotes the space of uniformly bounded functions mapping from
[0, T ] to H. It follows that, under assumptions A2 and A3, the system (2.1) and (2.2)
admits a unique solution x0(·), xi(·) ∈ L2

F (Ω;C(0, T ;Rn)) for given admissible control
u0 and ui. Now, let us formulate the LQG mixed games with control constraint.

Problem (CC). Find a strategy profile ū = (ū0, ū1, . . . , ūN ) where ūi(·) ∈ Uc,iad , 0 ≤
i ≤ N , such that

Ji(ūi(·), ū−i(·)) = inf
ui(·)∈Uc,iad

Ji(ui(·), ū−i(·)), 0 ≤ i ≤ N.

We call ū Nash equilibrium for Problem (CC).
For comparison, we also present the definition of ε-Nash equilibrium.

Definition 2.1. A strategy profile ū = (ū0, ū1, . . . , ūN ) where ūi(·) ∈ Uc,iad , 0 ≤
i ≤ N , is called an ε-Nash equilibrium with respect to costs J i, 0 ≤ i ≤ N, if there
exists an ε = ε(N) ≥ 0, limN→+∞ ε(N) = 0, such that for any 0 ≤ i ≤ N , we have

Ji(ūi(·), ū−i(·)) ≤ Ji(ui(·), ū−i(·)) + ε,

when any alternative strategy ui ∈ Uc,iad is applied by Ai.
Remark 2.2. If ε = 0, Definition 2.1 reduces to the usual exact Nash equilibrium.

2.1. Stochastic optimal control problem for the major agent. As ex-
plained in the introduction, the centralized optimization strategies to Problem (CC)
are rather complicated and infeasible to be applied when the number of the agents
tends to infinity. Alternatively, we investigate the decentralized strategies via the
limiting problem with the help of frozen limiting state-average. To this end, we first
figure out the representation of limiting process using heuristic arguments. Based
on it, we can find the decentralized strategies by the consistency condition and then
rigorously verify the derived decentralized strategy profile is an ε-Nash equilibrium.
We formalize the auxiliary limiting mixed game via the approximation of the average

state x(N). Since π
(N)
k ≈ πk for large N and

x(N) =
1

N

K∑
k=1

∑
i∈Ik

xi =

K∑
k=1

π
(N)
k

1

Nk

∑
i∈Ik

xi,

we may approximate x(N) by
∑K
k=1 πkmk, where mk ∈ Rn is used to approximate

1
Nk

∑
i∈Ik xi. Denote m = (m′1,m

′
2, . . .m

′
k)′, which is called the set of aggregate quan-

tities. Replacing x(N) of (2.1) and (2.3) by
∑K
k=1 πkmk, the major agent’s dynamics

is given by
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dz0(t) =

[
A0(t)z0(t) +B0(t)u0(t) + F 1

0 (t)

K∑
k=1

πkmk(t) + b0(t)

]
dt

+

[
C0(t)z0(t) +D0(t)u0(t) + F 2

0 (t)

K∑
k=1

πkmk(t) + σ0(t)

]
dW0(t),

z0(0) = x0 ∈ Rn,(2.5)

and the limiting cost functional is

J0(u0) =
1

2
E

[∫ T

0

〈
Q0(t)

(
z0(t)− ρ0

K∑
k=1

πkmk(t)

)
, z0(t)− ρ0

K∑
k=1

πkmk(t)

〉

+
〈
R0(t)u0(t), u0(t)

〉
dt+

〈
G0

(
z0(T )− ρ0

K∑
k=1

πkmk(T )

)
,

z0(T )− ρ0

K∑
k=1

πkmk(T )

〉]
.(2.6)

For simplicity, let ⊗ be the Kronecker product of two matrix (see [25]) and we denote
F 1,π

0 := π ⊗ F 1
0 , F 2,π

0 := π ⊗ F 2
0 , ρπ0 := π ⊗ ρ0In×n. Then (2.5) and (2.6) respectively

become

(2.7)

dz0(t) = [A0(t)z0(t) +B0(t)u0(t) + F 1,π
0 (t)m(t) + b0(t)]dt

+ [C0(t)z0(t) +D0(t)u0(t) + F 2,π
0 (t)m(t) + σ0(t)]dW0(t), z0(0) = x0 ∈ Rn,

and

J0(u0) =
1

2
E
[ ∫ T

0

〈
Q0(t)

(
z0(t)− ρπ0m(t)

)
, z0(t)− ρπ0m(t)

〉
+
〈
R0(t)u0(t), u0(t)

〉
dt+

〈
G0

(
z0(T )− ρπ0m(T )

)
, z0(T )− ρπ0m(T )

〉]
.

We define the following auxiliary stochastic optimal control problem for the major
agent with infinite population (note that the admissible control belongs to U0

ad rather

than Uc,0ad ):
Problem (LCC-Major). For the major agent A0, find u∗0(·) ∈ U0

ad satisfying

J0(u∗0(·)) = inf
u0(·)∈U0

ad

J0(u0(·)).

Then u∗0(·) is called a decentralized optimal control for the auxiliary Problem (LCC-
Major).

Now, similar to [29], in order to obtain the optimal control, we would like to apply
the SMP to the above limiting LQG problem (LCC-Major) with input constraint. We
introduce the first order adjoint equation

(2.8){
dp0(t) = −

[
A′0(t)p0(t)−Q0(t)(z0(t)− ρπ0m(t)) + C ′0(t)q0(t)

]
dt+ q0(t)dW0(t),

p0(T ) = −G0

(
z0(T )− ρπ0m(T )

)
,
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as well as the Hamiltonian function

H0(t, p, q, x, u) =
〈
p,A0x+B0u+ F 1,π

0 m+ b0
〉

+
〈
q, C0x+D0u+ F 2,π

0 m+ σ0

〉
− 1

2

〈
Q0(x− ρπ0m), x− ρπ0m

〉
− 1

2

〈
R0u, u

〉
.

Since Γ0 is a closed convex set, for optimal control u∗0, related optimal state z∗0 , and
related solution (p∗0, q

∗
0) to (2.8), the SMP reads as the following local form:

(2.9)

〈
∂H0

∂u
(t, p∗0, q

∗
0 , z
∗
0 , u
∗
0), u− u∗0

〉
≤ 0 for all u ∈ Γ0, a.e. t ∈ [0, T ], P-a.s.

Similar to the argument in p. 5 of [29], using the well-known results of convex analysis
(see Theorem 5.2 of [10] or Theorem 4.1 of [29]), (2.9) is equivalent to

(2.10) u∗0(t) = PΓ0
[R−1

0 (t)(B′0(t)p∗0(t) +D′0(t)q∗0)(t)], a.e. t ∈ [0, T ], P-a.s.,

where PΓ0 [·] is the projection mapping from Rm to its closed convex subset Γ0 under

the norm ‖ · ‖R0
(where ‖x‖2R0

= 〈〈x, x〉〉 :=< R
1
2
0 x,R

1
2
0 x >). Finally, by substituting

(2.10) in (2.7) and (2.8), we get the following Hamiltonian system for the major agent:

(2.11)



dz0 =
(
A0z0 +B0PΓ0

[
R−1

0

(
B′0p0 +D′0q0

)]
+ F 1,π

0 m+ b0

)
dt

+
(
C0z0 +D0PΓ0

[
R−1

0

(
B′0p0 +D′0q0

)]
+ F 2,π

0 m+ σ0

)
dW0(t),

dp0 =−
(
A′0p0 −Q0(z0 − ρπ0m) + C ′0q0

)
dt+ q0dW0(t),

z0(0) =x0, p0(T ) = −G0

(
z0(T )− ρπ0m(T )

)
.

Remark 2.3. We mention that since the cost functional for Problem (LCC-Major)
is strictly convex and Γ0 is compact, it admits a unique optimal control. Then u∗0
defined by (2.10) is the optimal control. Moreover, we have J0(u∗0(·)) = infu0(·)∈Uc,0ad
J0(u0(·)), due to the fact that J0(u∗0(·)) ≤ J0(u0(·)) still holds even if the control u0

is merely adapted to a larger filtration (e.g., {Ft}) as long as the Wiener process W0

remains a Brownian motion for this filtration; see Remark 2.3 of [17].

2.2. Stochastic optimal control problem for the minor agent. Denoting
F 1,π := π⊗F1, F 2,π := π⊗F2, ρπ := π⊗ρIn×n, the limiting state of minor agent Ai is{

dzi =
(
Aθizi +Bui + F 1,πm+ b

)
dt+

(
Czi +Dθiui + F 2,πm+Hz0 + σ

)
dWi(t),

zi(0) =x.

The limiting cost functional is given by

Ji(ui) =
1

2
E
[ ∫ T

0

(〈
Q

(
zi − ρ

K∑
k=1

πkmk − (1− ρ)z0

)
,

(2.12)

zi − ρ
K∑
k=1

πkmk − (1− ρ)z0

〉
+
〈
Rθiui, ui

〉)
dt
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+
〈
G

(
zi(T )− ρ

K∑
k=1

πkmk(T )− (1− ρ)z0(T )

)
,

zi(T )− ρ
K∑
k=1

πkmk(T )− (1− ρ)z0(T )
〉]

=
1

2
E
[ ∫ T

0

(〈
Q
(
zi − ρπm− (1− ρ)z0

)
, zi − ρπm− (1− ρ)z0

〉
+
〈
Rθiui, ui

〉)
dt

+
〈
G
(
zi(T )− ρπm(T )− (1− ρ)z0(T )

)
, zi(T )− ρπm(T )− (1− ρ)z0(T )

〉]
,

and the related limiting stochastic optimal control problem for the minor agents is
the following.

Problem (LCC-Minor). For each minor agent Ai, 1 ≤ i ≤ N , find u∗i (·) ∈ U iad
satisfying

Ji(u
∗
i (·)) = inf

ui(·)∈Uiad
Ji(ui(·)).

Then u∗i (·) is called a decentralized optimal control for Problem (LCC-Minor).
Similar to the major agent, we obtain the following Hamiltonian system for minor

agent Ai:

(2.13)

dzi =
(
Aθizi +BPΓθi

[
R−1
θi

(
B′pi +D′θiqi

)]
+ Fπ1 m+ b

)
dt

+
(
Czi +DθiPΓθi

[
R−1
θi

(
B′pi +D′θiqi

)]
+ Fπ2 m+Hz0 + σ

)
dWi(t),

dpi =−
(
A′θipi −Q(zi − ρπm− (1− ρ)z0) + C ′qi

)
dt+ qidWi(t) + qi,0dW0(t),

zi(0) = x, pi(T ) = −G
(
zi(T )− ρπm(T )− (1− ρ)z0(T )

)
.

Here, PΓθi
[·] is the projection mapping from Rm to its closed convex subset Γθi under

the norm ‖·‖Rθi . We mention that the limiting minor agent’s state zi also depends on

the limiting major agent’s state z0; it makes that zi is F i-adapted, and thus qi,0dW0(t)
appears in the adjoint equation.

2.3. Consistency condition system for the mixed game. Let us first focus
on the k-type minor agent. When i ∈ Ik = {i | θi = k}, we denote Aθi = Ak,
Dθi = Dk, Rθi = Rk, and Γθi = Γk. We would like to approximate xi by zi when
N → +∞; thusmk should satisfy the consistency condition (noticing that Assumption
A1 implies that Nk →∞ if N →∞)

mk(·) = lim
N→+∞

1

Nk

∑
i∈Ik

zi(·).

Recall that for i, j ∈ Ik, zi and zj are identically distributed and conditional inde-
pendent (under E(· |FW0

· )). Thus by the conditional strong law of large number, we
have (the convergence is in the sense of almost surely; see, e.g., [45])

(2.14) mk(·) = lim
N→+∞

1

Nk

∑
i∈Ik

zi(·) = E(zi(·)|FW0
· ),

where zi is given by (2.13) with Aθi = Ak, Dθi = Dk, Rθi = Rk,Γθi = Γk. By com-
bining (2.11), (2.13), and (2.14), we get the following consistency condition system
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or Nash certainty equivalence principle of k-type minor agent for 1 ≤ k ≤ K (as
mentioned, for notational brevity, the time argument is suppressed in the following
equations except E(αk(t)|FW0

t ) to emphasize its dependence on conditional expecta-
tion under FW0

t ):

(2.15)

dαk =

(
Akαk+BPΓk

[
R−1
k

(
B′βk+D′kγk

)]
+F1

K∑
i=1

πiE(αi(t)|FW0
t )+b

)
dt

+

(
Cαk +DkPΓk

[
R−1
k

(
B′βk +D′kγk

)]
+F2

K∑
i=1

πiE(αi(t)|FW0
t )+Hα0+σ

)
dWk(t),

dβk =−

(
A′kβk−Q

(
αk−ρ

K∑
i=1

πiE(αi(t)|FW0
t )−(1−ρ)α0

)
+C ′γk

)
dt

+γkdWk(t)+γk,0dW0(t),

αk(0) = x, βk(T ) = −G

(
αk(T )− ρ

K∑
i=1

πiE(αi(T )|FW0

T )− (1− ρ)α0(T )

)
,

where α0 satisfies the following FBSDE which is coupled with all k-type minor agents:

(2.16)

dα0 =

(
A0α0+B0PΓ0

[
R−1

0

(
B′0β0+D′0γ0

)]
+F 1

0

K∑
i=1

πiE(αi(t)|FW0
t )+b0

)
dt

+

(
C0α0 +D0PΓ0

[
R−1

0

(
B′0β0+D′0γ0

)]
+F 2

0

K∑
i=1

πiE(αi(t)|FW0
t )+σ0

)
dW0(t),

dβ0 = −

(
A′0β0 −Q0

(
α0 − ρ0

K∑
i=1

πiE
(
αi(t)|FW0

t

))
+ C ′0γ0

)
dt+ γ0dW0(t),

α0(0) = x0, β0(T ) = −G0

(
α0(T )− ρ0

K∑
i=1

πiE(αi(T )|FW0

T )

)
.

We consider toge of minor agents, i.e., (2.16) and (2.15) for all 1 ≤ k ≤ K; then
there arise 2K + 2 fully coupled equations including K + 1 forward equations and
K + 1 backward equations. Such fully coupled equations are called a consistency
condition system. Once we can solve it, then mk = E(αk(t)|FW0

t ) which depends on
the conditional distribution of αk. This allows us to use arbitrary Brownian motion
Wk in (2.15) which is independent of W0. Finally, let us introduce the following
notation, which will be used in the following sections:

(2.17) Φ(t) :=

K∑
i=1

πimi =

K∑
i=1

πiE(αi(t)|FW0
t ).

The consistency condition system (2.15)–(2.16) is a fully coupled conditional
mean-field FBSDE with projection operator. Its solvability is not a direct consequence
on current existing results, hence the next two sections investigate its well-posedness,
in the local and global cases, respectively. Note that the maximal solvability horizon
in the local case always takes some small time horizon, while the global solvability
can admit an arbitrary time horizon. Before our discussions in sections 3 and 4, we
end this section with the following remarks.
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Remark 2.4. (1) For general classical fully coupled FBSDEs, the standard con-
traction mapping method (see [44]) can be utilized to derive local solvability on a
small time horizon. In addition, one counterexample presented there (p. 11 in [44])
implies that such a small horizon feature cannot be relaxed in general. Pursuing
this line of thought, section 3 is devoted to addressing the local solvability of system
(2.15)–(2.16) in the presence of the new structures (conditional mean-field, projection
operator) of the current work. To approach these new structures, some new analytic
arguments are required.

In comparison with our work, [8] also establishes the well-posedness of a consis-
tency condition system for a class of LQ MFGs on a small time horizon (Theorems 3.2
and 3.3 of the cited work). However, [8] only involves (symmetric) minor agents, no
control constraint is imposed, and the diffusion term of minor agents in [8] is free of a
control variable. Consequently, feedback representation using the Riccati equation is
workable and takes the standard form, which is more tractable in analysis. Moreover,
the solvability of the consistency condition system (i.e., the special FBSDE (1) of [8])
can be transformed to that of the Riccati equation, which is further equivalent to that
of a family of FBSDEs in a local sense according to Radon’s lemma.

In contrast to [8], our current work has the following features in setting and anal-
ysis: the diffusion term of our agents depends on both the major and minor agents’
states as well as individual control strategies. In addition, the input constraint is
imposed and thus full control is no longer available, and neither is feedback repre-
sentation through the Riccati equation permitted. Therefore, as shown later, our
arguments proceed differently from those of [8].

(2) From both theoretical and practical perspectives, it is more appealing to
study the global solution to fully coupled FBSDEs (see [31, 49, 50]). One reason is
from the following fact: the decision horizon is always prespecified without modeling
flexibility, whereas the system parameters, to some extent of freedom degree, might
be appropriately designed. In response, section 4 turns to a discussion of the global
solvability of the system (2.15)–(2.16).

With respect to global solvability, one relevant work is [29], which also studies
the global solvability of MFGs with input constraint. However, their FBSDE (see
(9) of [29]) satisfies the monotonicity assumption addressed in [31]. More specifically,
it is satisfied by one subtle argument leading to Theorem 2.1 in [29] that Ep = 0,
where p is the solution to (9) of [29]. However, in our current work, Eβi = 0, 0 ≤
i ≤ K, cannot be ensured because of the presence of the coupling coefficient ρ in the
terminal condition and the heterogeneities between major and minor agents’ states.
Hence, new analysis is required to handle our mixed mean-field game having a control
constraint.

In addition, as mentioned before, the diffusion term of dynamics here depends
on the states of both major and minor agents as well as individual control strate-
gies. Such a structure is very different from [29], where the dependence is limited
to the individual control strategy only. Consequently, the monotonicity analysis in
[31, 29] cannot be implemented in the current setup. Instead, we need some partic-
ularized monotonicity conditions motivated by [49]. The related arguments are also
different (see Theorem 4.2, assumption (H1), and Remarks 4.1 and 4.3 of the present
paper).

(3) An intriguing remark was proposed in [15], whereby monotonicity conditions
on the mean-field term can be interpreted in some “spatial” sense: the agents in a
large population tend to dislike rather congested areas and to prefer configurations
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in which they are more scattered (for details, see p. 4 and Remark 2.6 of [15]). For
system (2.15)–(2.16) in our current work, a spatial monotonicity condition (different
from [29]) on the mean-field term holds automatically (see Remark 4.1 (H1) − (i′)).
Also, a crucial condition in our work is the relation on the norms of some matrices (see
Theorem 4.2 and Remark 4.3). Such a relation, especially the condition on matrices
FΠ

1 ,FΠ
2 , has the same spatial interpretation as in [15]. Furthermore, such a relation,

especially the condition on the eigenvalue value of matrix A, can also be interpreted
in a “temporal” sense because it is related to some stability property of the system
(2.15)–(2.16) in an asymptotic time scale.

3. Well-posedness of the consistency condition system: The local case.
This section aims to establish the well-posedness of consistency condition system
(2.15)–(2.16) in small time duration. Similar to the classical results on FBSDEs (see,
for example, Chapter 1, section 5, of Ma and Yong [44]), we need to introduce the
following additional assumption:

A4. R−1
0 (·), R−1

θi
(·) ∈ L∞(0, T ;Sm) andM0|D|2 < 1, where |D| := max0≤k≤K |Dk|

and M0 := max{|G0|2(1 + ρ2
0), |G|2(1 + ρ2 + (1− ρ)2)}.

For simplicity, we denote ϕ0(p, q) := PΓ0
[R−1

0 (B′0p+D′0q)] and ϕθi(p, q) := PΓθi
[R−1
θi

(B′p+D′θiq)]. We have the following theorem.

Theorem 3.1. Assume A1–A4; then there exists T0 > 0 such that for any T ∈
(0, T0], the system (2.15)–(2.16) has a unique solution (α0, β0, γ0, αk, βk, γk, γk,0), 1 ≤
k ≤ K, satisfying

(3.1)
α0, β0 ∈ L2

FW0 (Ω;C(0, T ;Rn)), αk, βk ∈ L2
Fk(Ω;C(0, T ;Rn)),

γ0 ∈ L2
FW0 (0, T ;Rn), γk, γk,0 ∈ L2

Fk(0, T ;Rn), 1 ≤ k ≤ K.

Proof. Let T0 ∈ (0, 1] be undetermined and 0 < T ≤ T0. We denote

N [0, T ] := L2
FW0 (Ω;C(0, T ;Rn))× · · · × L2

FK (Ω;C(0, T ;Rn))

× L2
FW0 (0, T ;Rn)× · · · × L2

FK (0, T ;Rn)

× L2
F1(0, T ;Rn)× · · · × L2

FK (0, T ;Rn).

For (Y0, . . . , YK , Z0, . . . , ZK ,Υ1,0, . . . ,ΥK,0) ∈ N [0, T ], we introduce the following
norm:

(3.2)

‖(Y0, . . . , YK , Z0, . . . , ZK ,Υ1,0, . . . ,ΥK,0)‖2N [0,T ]

:= sup
t∈[0,T ]

E
{ K∑
k=0

|Yk(t)|2 +

K∑
k=0

∫ T

0

|Zk(s)|2ds+

K∑
k=1

∫ T

0

|Υk,0(s)|2ds
}
.

Let N [0, T ] be the completion of N [0, T ] in L2
FW0

(0, T ;Rn) × · · · × L2
Fk(0, T ;Rn) ×

L2
FW0

(0, T ;Rn)×· · ·×L2
Fk(0, T ;Rn)×L2

F1(0, T ;Rn)×· · ·×L2
FK (0, T ;Rn) under norm

(3.2). Now for any

(Y j0 , . . . , Y
j
K , Z

j
0 , . . . , Z

j
K ,Υ

j
1,0, . . . ,Υ

j
K,0) ∈ N [0, T ], j = 1, 2,
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we solve respectively the following system including K + 1 SDEs for 1 ≤ k ≤ K:

(3.3)

dαj0 =

(
A0α

j
0 +B0ϕ0(Y j0 , Z

j
0) + F 1

0

K∑
i=1

πiE[αji (t)|F
W0
t ] + b0

)
dt

+

(
C0α

j
0 +D0ϕ0(Y j0 , Z

j
0) + F 2

0

K∑
i=1

πiE[αji (t)|F
W0
t ] + σ0

)
dW0(t)

dαjk =

(
Akα

j
k +Bϕk(Y jk , Z

j
k) + F1

K∑
i=1

πiE[αji (t)|F
W0
t ] + b

)
dt

+

(
Cαjk +Dkϕk(Y jk , Z

j
k) + F2

K∑
i=1

πiE[αji (t)|F
W0
t ] +Hαj0 + σ

)
dWk(t)

αj0(0) = x0, αjk(0) = x.

Then (3.3) admits a unique solution for j = 1, 2,

(αj0, . . . , α
j
K) ∈ L2

FW0 (Ω;C(0, T ;Rn))× · · · × L2
FK (Ω;C(0, T ;Rn)).

Indeed, (3.3) is an n(K+1)-dimensional SDE with the mean-field term
∑K
i=1 πiE[αi(t)|

FW0
t ], and we can prove the well-posedness of such SDEs system by constructing a

fixed point using the classical contraction mapping method; we omit the proof here.
Now let us denote for 0 ≤ k ≤ K,

α̂k := α1
k − α2

k, ϕ̂k := ϕk(Y 1
k , Z

1
k)− ϕk(Y 2

k , Z
2
k),

Ŷk := Y 1
k − Y 2

k , Ẑk := Z1
k − Z2

k , Υ̂k,0 := Υ1
k,0 −Υ2

k,0.

By applying Itô’s formula and by using A2–A3, E|E[α̂i(s)|FW0
s ]|2 ≤ E|α̂i(s)|2, as well

as that ϕk is Lipschitz with Lipschitz constant 1 (see Proposition 4.2 of [29]), then
for a constant Cε independent of T which may vary line by line, we have

(3.4)

E|α̂0(t)|2 ≤ 2E
∫ t

0

(
|A0||α̂0|2 + |B0||α̂0||ϕ̂0|+ |F 1

0 ||α̂0|
K∑
i=1

∣∣E[α̂i(s)|FW0
s ]
∣∣) ds

+ E
∫ t

0

∣∣∣∣∣C0α̂0 +D0ϕ̂0 + F 2
0

K∑
i=1

πiE[α̂i(s)|FW0
s ]

∣∣∣∣∣
2

ds

≤ CεE
∫ t

0

K∑
i=0

|α̂i|2ds+ E
∫ t

0

(|D0|2 + ε)(|Ŷ0|2 + |Ẑ0|2)ds

and

(3.5)

E|α̂k(t)|2 ≤ 2E
∫ t

0

(
|Ak||α̂k|2 + |B||α̂k||ϕ̂k|+ |F1||α̂k|

K∑
i=1

∣∣E[α̂i(s)|FW0
s ]
∣∣) ds

+ E
∫ t

0

∣∣∣∣∣Cα̂k +Dkϕ̂k +

K∑
i=1

F2E[α̂i(s)|FW0
s ] +Hα̂0

∣∣∣∣∣
2

ds

≤ CεE
∫ t

0

K∑
i=0

|α̂i|2ds+ E
∫ t

0

(|Dk|2 + ε)(|Ŷk|2 + |Ẑk|2)ds.
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Adding up (3.4) and (3.5) for 1 ≤ k ≤ K, we have

E
K∑
i=0

|α̂i(t)|2 ≤ CεE
∫ t

0

K∑
i=0

|α̂i(s)|2ds+ E
∫ t

0

K∑
i=0

(|Di|2 + ε)(|Ŷi|2 + |Ẑi|2)ds,

and the Gronwall’s inequality yields

(3.6) E
K∑
i=0

|α̂i(t)|2 ≤ eCεTE
∫ T

0

K∑
i=0

(|Di|2 + ε)(|Ŷi|2 + |Ẑi|2)ds.

Next, we solve the following BSDEs, for j = 1, 2:

(3.7)

dβj0 = −

[
A′0Y

j
0 −Q0

(
αj0 − ρ0

K∑
i=1

πiE[αji (t)|F
W0
t ]

)
+ C ′0Z

j
0

]
dt+ γj0dW0(t),

dβjk = −

[
A′kY

j
k −Q

(
αjk − ρ

K∑
i=1

πiE[αji (t)|F
W0
t ]

)
− (1− ρ)αj0 + C ′Zjk

]
dt

+ γjkdWk(t) + γjk,0dW0(t),

βj0(T ) = −G0

(
αj0(T )− ρ0

K∑
i=1

πiE[αji (T )|FW0

T ]

)
,

βjk(T ) = −G

(
αjk(T )− ρ

K∑
i=1

πiE[αji (T )|FW0

T ]− (1− ρ)αj0(T )

)
.

Since A2–A3 hold and αi, 0 ≤ i ≤ K, have been solved from (3.3), the classical result
of BSDEs yields that (3.7) admits a unique solution

(βj0, . . . , β
j
K , γ

j
0, . . . , γ

j
K , γ

j
1,0, . . . , γ

j
K,0) ∈ N [0, T ] ⊆ N [0, T ].

Thus we have defined a mapping through (3.3) and (3.7),

T : N [0, T ]→ N [0, T ],

(Y j0 , . . . , Y
j
K , Z

j
0 , . . . , Z

j
K ,Υ

j
1,0, . . . ,Υ

j
K,0) 7→ (βj0, . . . , β

j
K , γ

j
0, . . . , γ

j
K , γ

j
1,0, . . . , γ

j
K,0).

Similarly, we denote

β̂k :=β1
k −β2

k, γ̂k := γ1
k − γ2

k, for 0 ≤ k ≤ K, and γ̂k,0 := γ1
k,0− γ2

k,0, for 1 ≤ k ≤ K.

Applying Itô’s formula to |β̂0(t)|2, and noticing E|E[α̂i(s)|FW0
s ]|2 ≤ E|α̂i(s)|2 , we

obtain

E

(
|β̂0(t)|2 +

∫ T

t

|γ̂0|2ds

)

= E|β̂0(T )|2 + 2E
∫ T

t

〈
β̂0, A

′
0Ŷ0 −Q0

(
α̂0 − ρ0

K∑
i=1

πiE[α̂i(s)|FW0
s ]

)
+ C ′0Ẑ0

〉
ds

≤ |G0|2(1 + ρ2
0)E

K∑
i=0

|α̂i(T )|2 + CεE
∫ T

t

|β̂0|2ds

+ E
∫ T

t

K∑
i=0

|α̂i|2ds+ ε

∫ T

t

(|Ŷ0|2+|Ẑ0|2)ds.
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Substituting (3.6) into the above inequality, we have

(3.8)

E

(
|β̂0(t)|2 +

∫ T

t

|γ̂0|2ds

)

≤
(
|G0|2(1 + ρ2

0) + T
)
eCεTE

K∑
i=0

∫ T

0

(|Di|2 + ε)(|Ŷi|2 + |Ẑi|2)ds

+ CεE
∫ T

t

|β̂0|2ds+ ε

∫ T

t

(|Ŷ0|2 + |Ẑ0|2)ds.

Similarly, by applying Itô’s formula to |β̂k(t)|2, 1 ≤ k ≤ K, we have

(3.9)

E
∣∣∣β̂k(t)

∣∣∣2 + E
∫ T

t

|γ̂k|2 ds+ E
∫ T

t

|γ̂k,0|2 ds

=E
∣∣∣β̂k(T )

∣∣∣2 +2E
∫ T

t

〈
β̂k, A

′
kŶk−Q

(
α̂k−ρ

K∑
i=1

πiE
[
α̂i(s)|FW0

s

]
−(1−ρ)α̂0

)
−C ′Ẑk

〉
ds

≤ |G|2(1 + ρ2 + (1− ρ)2)E
K∑
i=0

|α̂i(T )|2 + CεE
∫ T

t

|βk|2 ds

+ E
∫ T

t

K∑
i=0

|αi|2 ds+ εE
∫ T

t

(|Ŷk|2 + |Ẑk|2)ds

≤
(
|G|2(1 + ρ2 + (1− ρ)2)+T

)
eCεTE

K∑
i=0

∫ T

0

(|Di|2+ε)(|Ŷi|2+|Ẑi|2)ds

+ CεE
∫ T

t

|β̂k|2ds+ εE
∫ T

t

(|Ŷk|2 + |Ẑk|2)ds,

where the second inequality comes from (3.6) and the first inequality is due to

E
∣∣∣β̂k(T )

∣∣∣2 ≤ |G|2∣∣∣α̂k(T )− ρ
K∑
i=1

πiE[α̂i(T )|FW0

T ]− (1− ρ)α̂0(T )
∣∣∣2

≤ |G|2(1+ρ2+(1−ρ)2)

E ∣∣∣α̂k(T )−ρπkE[α̂k(T )|FW0

T ]
∣∣∣2 +

K∑
i=0,i6=k

E|α̂i(T )|2


≤ |G|2(1 + ρ2 + (1− ρ)2)E
K∑
i=0

|α̂i(T )|2,

and here we used the fact that

E
∣∣∣α̂k(T )− ρπkE[α̂k(T )|FW0

T ]
∣∣∣2

= E|α̂k(T )|2 + ρ2π2
kE|E[α̂k(T )|FW0

T ]|2 − 2ρπkE
[
α̂k(T )E[α̂k(T )|FW0

T ]
]

= E|α̂k(T )|2 + (ρ2π2
k − 2ρπk)E|E[α̂k(T )|FW0

T ]|2 ≤ E |α̂k(T )|2 .
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Adding up (3.8) and (3.9) for 1 ≤ k ≤ K, we obtain (recall |D|2 := max0≤k≤K |Dk|2
and M0 := max{|G0|2(1 + ρ2

0), |G|2(1 + ρ2 + (1− ρ)2)})

E
K∑
i=0

∣∣β̂i∣∣2 + E
K∑
i=0

∫ T

t

|γ̂i|2 ds+ E
K∑
i=1

∫ T

t

|γ̂i,0|2 ds

≤ (M0+T ) eCεTE
K∑
i=0

∫ T

0

(|Di|2+ε)(|Ŷi|2+|Ẑi|2)ds

+CεE
∫ T

t

K∑
i=0

∣∣∣β̂i∣∣∣2 ds+ εE
∫ T

0

K∑
i=0

(|Ŷi|2+|Ẑi|2)ds

≤CεE
∫ T

t

K∑
i=0

∣∣β̂i∣∣2ds+
[
(M0+T ) eCεT (|D|2 + ε)+ε

]
E

K∑
i=0

∫ T

0

(|Ŷi|2 + |Ẑi|2)ds.

The Gronwall’s inequality yields that

(3.10)

E
K∑
i=0

∣∣β̂i∣∣2 + E
K∑
i=0

∫ T

t

|γ̂i|2 ds+ E
K∑
i=1

∫ T

t

|γ̂i,0|2 ds

≤ eCεT
[
(M0+T ) eCεT (|D|2 + ε) + ε

]
E

K∑
i=0

∫ T

0

(|Ŷi|2 + |Ẑi|2)ds

≤ eCεT (T+1)
[
(M0+T ) eCεT (|D|2+ε)+ε

]
‖(Ŷ0, . . . , ŶK , Ẑ0, . . . , ẐK , Υ̂1,0, . . . ,

Υ̂K,0)‖N [0,T ]

= eCεT (T + 1)
[
M0e

CεT (|D|2 + ε) + ε+ TeCεT (|D|2 + ε)
]

· ‖(Ŷ0, . . . , ŶK , Ẑ0, . . . , ẐK , Υ̂1,0, . . . , Υ̂K,0)‖N [0,T ].

Noticing assumption A4, by first choosing ε > 0 small enough such that M0(|D|2 +
ε) + ε < 1, then choosing T > 0 small enough, we obtain from (3.10) that for some
0 < δ < 1,

‖(β̂0, . . . , β̂K , γ̂0, . . . , γ̂K , γ̂1,0, . . . , γ̂K,0)‖N [0,T ]

≤ δ‖(Ŷ0, . . . , ŶK , Ẑ0, . . . , ẐK , Υ̂1,0, . . . , Υ̂K,0)‖N [0,T ].

This means that the mapping T : N [0, T ]→ N [0, T ] is contractive. By the contraction
mapping theorem, there exists a unique fixed point

(β0, β1, . . . , βK , γ0, γ1, . . . , γK , γ1,0, . . . , γK,0) ∈ N [0, T ].

Moreover, classical BSDE theory allows us to show that

(β0, β1, . . . , βK , γ0, γ1, . . . , γK , γ1,0, . . . , γK,0) ∈ N [0, T ].

Let αk, 0 ≤ k ≤ K, be the corresponding solution of (3.3). Then, one can obtain that
the system (2.15)–(2.16) has a unique solution (α0, β0, γ0, αk, βk, γk, γk,0), 1 ≤ k ≤ K,
such that (3.1) holds.

4. Well-posedness of the consistency condition system: The global
case. This section aims to establish the well-posedness of consistency condition sys-
tem (2.15)–(2.16) for arbitrary T . We first study one general kind of conditional
MF-FBSDE by using the discounting method of Pardoux and Tang [49].

D
ow

nl
oa

de
d 

08
/0

8/
19

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2852 YING HU, JIANHUI HUANG, AND TIANYANG NIE

Let (Ω,F ,P) be a complete, filtered probability space satisfying usual conditions.
{Wi(t), 0 ≤ i ≤ d}0≤t≤T is a d+ 1-dimensional Brownian motion on this space. Let
Ft be the filtration generated by {Wi(s), 0 ≤ i ≤ d, 0 ≤ s ≤ t} and augmented by NP
(the class of P-null sets of F). Let FW0

t be the augmentation of σ{W0(s), 0 ≤ s ≤ t}
by NP. We consider the following general conditional MF-FBSDE:

(4.1)
dX(s) = b(s,X(s),E[X(s)|FW0

s ], Y (s), Z(s)])ds
+σ(s,X(s),E[X(s)|FW0

s ], Y (s), Z(s))dW (s),

−dY (s) = f(s,X(s),E[X(s)|FW0
s ], Y (s), Z(s))ds− Z(s)dW (s), s ∈ [0, T ],

X(0) = x, Y (T ) = g(X(T ),E[X(T )|FW0

T ]),

where the adapted processes X,Y, Z take their values in Rn,Rl, and Rl×(d+1), respec-
tively. The coefficients b, σ, and f are defined on Ω× [0, T ]×Rn×Rn×Rl×Rl×(d+1),
such that b(·, ·, x,m, y, z), σ(·, ·, x,m, y, z), and f(·, ·, x,m, y, z) are {Ft}-progressively
measurable processes for all fixed (x,m, y, z) ∈ Rn × Rn × Rl × Rl×(d+1). The co-
efficient g is defined on Ω × Rn × Rn and g(·, x,m) is FT -measurable for all fixed
(x,m) ∈ Rn × Rn. Moreover, the functions b, σ, f , and g are continuous w.r.t.
(x,m, y, z) ∈ Rn × Rn × Rl × Rl×(d+1) and satisfy the following assumptions:

(H1) There exist λ1, λ2 ∈ R and positive constants k0, ki, i = 1, 2, . . . , 12, such
that for all t, x, x1, x2, m, m1, m2, y, y1, y2, z, z1, z2 a.s.

(i) 〈b(t, x1,m, y, z)− b(t, x2,m, y, z), x1 − x2〉 ≤ λ1|x1 − x2|2,

(ii) |b(t, x,m1, y1, z1)− b(t, x,m2, y2, z2)| ≤ k1|m1 −m2|

+k2|y1 − y2|+ k3|z1 − z2|,

(iii) |b(t, x,m, y, z)| ≤ |b(t, 0,m, y, z)|+ k0(1 + |x|),

(iv) 〈f(t, x,m, y1, z)− f(t, x,m, y2, z), y1 − y2〉 ≤ λ2|y1 − y2|2,

(v) |f(t, x1,m1, y, z1)− f(t, x1,m2, y, z2)| ≤ k4|x1 − x2|

+k5|m1 −m2|+ k6|z1 − z2|,

(vi) |f(t, x,m, y, z)| ≤ |f(t, x,m, 0, z)|+ k0(1 + |y|),

(vii) |σ(t, x1,m1, y1, z1)− σ(t, x2,m2, y2, z2)|2

≤ k2
7|x1 − x2|2 + k2

8|m1 −m2|2 + k2
9|y1 − y2|2 + k2

10|z1 − z2|2,

(viii) |g(x1,m1)− g(x2,m2)|2 ≤ k2
11|x1 − x2|+ k2

12|m1 −m2|.

(H2) It holds that

E
∫ T

0

(
|b(s, 0, 0, 0, 0)|2+|σ(s, 0, 0, 0, 0)|2+|f(s, 0, 0, 0, 0)|2

)
ds+E|g(0, 0)|2<+∞.

Remark 4.1. From the mean-field structure of (4.1), sometimes the following con-
dition holds:

(H1)(i′) There exist λ1, k̂1 ∈ R, such that for all t, y, z, and process X1, X2, a.s.

E〈b(t,X1,E[X1(t)|FW0
t ], y, z)− b(t,X2,E[X2(t)|FW0

t ], y, z), X1 −X2〉

≤ (λ1 + k̂1)E|X1 −X2|2.
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For example, if b(t, x,m, y, z) = λ1x + k̂1m + b1(y, z), then it obviously satisfies the
above assumption. Indeed, our mean-field FBSDE (2.15)–(2.16) satisfies this assump-
tion.

Let H be a Hilbert space. Recall that L2
F (0, T ;H) denotes the space of H-

valued {Fs}-progressively measurable processes {u(s), s ∈ [0, T ]} such that ‖u‖2 :=

E
∫ T

0
|u(s)|2ds <∞. For λ ∈ R, we define an equivalent norm on L2

F (0, T ;H):

‖u‖λ :=

(
E

∫ T

0

e−λs|u(s)|2ds

)1/2

.

Now let us consider MF-FBSDE (4.1); its fully coupled structure brings difficulties
for establishing its well-posedness. Similar to [49], when the coupling is weak enough,
MF-FBSDE (4.1) should be solvable. The proof of the following theorem is given in
the appendix (see also the appendix of [30]).

Theorem 4.1. Suppose that assumptions (H1) and (H2) hold. Then there exists
a δ0 > 0, which depends on ki, λ1, λ2, T , for i = 1, 4, 5, 6, 7, 8, 11, 12 such that when
k2, k3, k9, k10 ∈ [0, δ0), there exists a unique adapted solution (X,Y, Z)∈L2

F (0, T ;Rn)×
L2
F (0, T ;Rl) × L2

F (0, T ;Rl×(d+1)) to MF-FBSDE (4.1). Further, if 2(λ1 + λ2) <
−2k1 − k2

6 − k2
7 − k2

8, there exists a δ1 > 0, which depends on ki, λ1, λ2, for i =
1, 4, 5, 6, 7, 8, 11, 12 and is independent of T , such that when k2, k3, k9, k10 ∈ [0, δ1),
there exists a unique adapted solution (X,Y, Z) to MF-FBSDE (4.1).

Remark 4.2. If in addition (H1)(i′) holds (see Remark 4.1), by repeating the proof

of the above theorem, one can show that if 2(λ1+λ2) < −2k̂1−k2
6−k2

7−k2
8, there exists

a δ1 > 0, which depends on k̂1, ki, λ1, λ2, for i = 4, 5, 6, 7, 8, 11, 12 and is independent
of T , such that when k2, k3, k9, k10 ∈ [0, δ1), there exists a unique adapted solution
(X,Y, Z) to MF-FBSDE (4.1).

Now let us apply Theorem 4.1 to obtain the well-posedness of consistency condi-
tion system (2.15)–(2.16). Recall that

ϕ0(p, q) = PΓ0

[
R−1

0

(
B′0p+D′0q

)]
, ϕk(p, q) = PΓk

[
R−1
k

(
B′p+D′kq

)]
.

If we denote

W = (W0,W1, . . . ,WK)
′
, Π = (0, π1, . . . , πK), α = (α′0, α

′
1, . . . , α

′
K)
′
, β = (β′0,

β′1, . . . , β
′
K)
′
,X = (x′0, x

′, . . . , x′)
′
, E(α(t)|FW0

t ) = (E(α0(t)|FW0
t )′, E(α1(t)|FW0

t )′,

. . . ,E(αK(t)|FW0
t )′)

′
,Φ(β, γ) = (ϕ0(β0, γ0), ϕ1(β1, γ1), . . . , ϕK(βK , γK))

′
, ρΠ

0 := Π

⊗ ρIn×n, ρΠ := Π⊗ ρIn×n, F 1,Π
0 = Π⊗ F 1

0 , F 2,Π
0 := Π⊗ F 2

0 , F 1,Π := Π⊗ F1,

F 2,Π := Π⊗ F2,

γ =


γ0 0 . . . 0
γ1,0 γ1 . . . 0

...
...

. . .
...

γK,0 0 . . . γK

 , B0 =


b0
b
...
b

 , D0=


σ0 0 . . . 0
0 σ . . . 0
...

...
. . .

...
0 0 . . . σ

,

A =


A0 0 . . . 0
0 A1 . . . 0
...

...
. . .

...
0 0 . . . AK

, B =


B0 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B

, R−1 =


R0 0 . . . 0
0 R1 . . . 0
...

...
. . .

...
0 0 . . . RK
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Q =


Q0 0 . . . 0

Q(1− ρ) Q . . . 0
...

...
. . .

...
Q(1− ρ) 0 . . . Q

 ,G =


G0 0 . . . 0

G(1− ρ) G . . . 0
...

...
. . .

...
G(1− ρ) 0 . . . G

 ,

FΠ
1 =


F 1,Π

0

F 1,Π

...
F 1,Π

 ,FΠ
2 =


F 2,Π

0

F 2,Π

...

F 2,Π

 ,

QΠ =


Q0ρ

Π
0

QρΠ

...
QρΠ

 , GΠ =


G0ρ

Π
0

GρΠ

...
GρΠ

 , H =


0
H
...
H

 , H(α) =


0 0 . . . 0
0 Hα0 . . . 0
...

...
. . .

...
0 0 . . . Hα0

 ,

FΠ
2 (E(α(t)|FW0

t )) =


F 2,Π

0 E(α(t)|FW0
t ) 0 . . . 0

0 F 2,ΠE(α(t)|FW0
t ) . . . 0

...
...

. . .
...

0 0 . . . F 2,ΠE(α(t)|FW0
t )

,

C =


C0 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 , C(α) =


C0α0 0 . . . 0

0 Cα . . . 0
...

...
. . .

...
0 0 . . . Cα

 , C(γ) =


C ′0γ0

C ′γ1

...
C ′γK

 ,

D =


D0 0 . . . 0
0 D1 . . . 0
...

...
. . .

...
0 0 . . . DK

 ,

D(β, γ) =


D0ϕ0(β0, γ0) 0 . . . 0

0 D1ϕ1(β1, γ1) . . . 0
...

...
. . .

...
0 0 . . . DKϕK(βK , γK)

 .

Using the above notation, the system (2.15)–(2.16) can be written in compact form as

(4.2)



dα =

(
Aα+ BΦ(β, γ) + FΠ

1 E(α(t)|FW0
t ) + B0

)
dt

+

(
C(α) + D(β, γ) + FΠ

2

(
E(α(t)|FW0

t )
)

+ H(α) + D0

)
dW (t),

dβ =−
(
A′β −Qα+ QΠE(α(t)|FW0

t )) + C(γ)
)
dt+ γdW (t),

α(0) =X, β(T ) = −Gα(T ) + GΠE(α(T )|FW0

T ).
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Now let λ∗ be the largest eigenvalue of the symmetric matrix 1
2 (A + A′). Since the

projection operator is Lipschitz continuous with Lipschitz constant 1, by compar-
ing (4.2) with (4.1), one can check that the coefficients of assumption (H1) can be
chosen as

λ1 = λ2 = λ∗, k0 = ‖A‖, k1 = ‖FΠ
1 ‖, k2 = k3 = ‖R−1‖‖B‖(‖B‖+ ‖D‖),

k4 = ‖Q‖, k5 = ‖QΠ‖, k6 = ‖C‖, k2
7 = 4(‖C‖+ ‖H‖)2, k2

8 = 4‖FΠ
2 ‖2,

k9 = k10 = ‖R−1‖‖D‖(‖B‖+ ‖D‖), k2
11 = 2‖G‖2, k2

12 = 2‖GΠ‖2.

Thus by applying Theorem 4.1, we obtain the following global well-posedness of (4.2).

Theorem 4.2. Suppose that

4λ∗ < −2‖FΠ
1 ‖ − ‖C‖2 − 4(‖C‖+ ‖H‖)2 − 4‖FΠ

2 ‖2;

then there exists a δ1 > 0, which depends on λ∗, ‖FΠ
1 ‖, ‖Q‖, ‖QΠ‖, ‖C‖, ‖H‖, ‖FΠ

2 ‖,
‖G‖, ‖GΠ‖, and is independent of T , such that when ‖R−1‖, ‖B‖, ‖D‖ ∈ [0, δ1), there
exists a unique adapted solution (α, β, γ) to consistency condition system
(2.15)–(2.16).

Remark 4.3. Let λ∗FΠ
1

be the largest eigenvalue of 1
2 (FΠ

1 +(FΠ
1 )′). Noticing Remark

4.1, one can check that (H1)− (i′) holds with k̂1 = λ∗FΠ
1

. Thus, from Remark 4.2, we

have that if

4λ∗ < −2λ∗FΠ
1
− ‖C‖2 − 4(‖C‖+ ‖H‖)2 − 4‖FΠ

2 ‖2,

then there exists a δ1 > 0, which depends on λ∗, λ∗FΠ
1
, ‖Q‖, ‖QΠ‖, ‖C‖, ‖H‖, ‖FΠ

2 ‖,
‖G‖, ‖GΠ‖, and is independent of T , such that when ‖R−1‖, ‖B‖, ‖D‖ ∈ [0, δ1), there
exists a unique adapted solution (α, β, γ) to consistency condition system
(2.15)–(2.16).

5. ε-Nash equilibrium for Problem (CC). In section 2, we characterized
the decentralized strategy profile ū = (ū0, ū1, . . . , ūN ) of Problem (CC) through the
auxiliary Problem (LCC) and the consistency condition system. Now, we turn to
verify the ε-Nash equilibrium of this decentralized strategy profile. Here, we proceed
with our verification based on the assumptions of the local case (section 3). Note that
it can also be verified based on the global case (section 4) without essential difficulties.
For the major agent A0 and the minor agent Ai, the decentralized states x̆0

t and x̆it
are given, respectively, by

(5.1)



dx̆0 =
[
A0x̆0+B0ϕ0(p̄0, q̄0)+F 1

0 x̆
(N)+b0

]
dt

+
[
C0x̆0+D0ϕ0(p̄0, q̄0) + F 2

0 x̆
(N)+σ0

]
dW0(t),

dx̆i =
[
Aθi x̆i+Bϕθi(p̄i, q̄i) + F1x̆

(N) + b
]
dt

+
[
Cx̆i+Dθiϕθi(p̄i, q̄i) + F2x̆

(N)+Hx̆0+σ
]
dWi(t),

x̆0(0) = x0, x̆i(0) = x,
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where x̆(N) = 1
N

∑N
i=1 x̆

i and the processes (p̄0, q̄0, p̄i, q̄i) are solved by
(5.2)

dx̄0 =

(
A0x̄0+B0ϕ0(p̄0, q̄0)+F 1

0

K∑
k=1

πkE(αk(t)|FW0
t )+b0

)
dt

+

(
C0x̄0 +D0ϕ0(p̄0, q̄0)+F 2

0

K∑
k=1

πkE(αk(t)|FW0
t )+σ0

)
dW0(t),

dp̄0 = −
(
A′p̄0 −Q0(x̄0 − ρ0

K∑
i=1

πkE(αk(t)|FW0
t )) + C ′q̄0

)
dt+ q̄0dW0(t),

dx̄i =

(
Aθi x̄i+Bϕθi(p̄i, q̄i)+F1

K∑
k=1

πkE(αk(t)|FW0
t )+b

)
dt

+

(
Cx̄i +Dθiϕθi(p̄i, q̄i)+F2

K∑
k=1

πkE(αk(t)|FW0
t )+Hx̄0+σ

)
dWi(t),

dp̄i =−

(
A′θi p̄i−Q

(
x̄i−ρ

K∑
k=1

πkE(αk(t)|FW0
t )−(1−ρ)x̄0

)
+C ′q̄i

)
dt

+ q̄idWi(t)+q̄1i,0dW0(t),

x̄0(0) = x0, p̄0(T ) = −G0

(
x̄0(T )− ρ0

K∑
k=1

πkE(αk(T )|FW0

T )

)
,

x̄i(0) = x, p̄i(T ) = −G

(
x̄i(T )− ρ

K∑
k=1

πkE(αk(T )|FW0

T )− (1− ρ)x̄0(T )

)
.

Here we recall that ϕ0(p, q) := PΓ0 [R−1
0 (B′0p + D′0q)], ϕθi(p, q) := PΓθi

[R−1
θi

(B′p+
D′θiq)], and αk, 1 ≤ k ≤ K, are given by (2.15) and (2.16). We mention that (5.2)
gives also the dynamics of the limiting state (x̄0, x̄1, . . . , x̄N ) and one can check easily
that (x̄0, p̄0, q̄0) = (α0, β0, γ0). Now, we would like to show that for ū0 = ϕ0(p̄0, q̄0)
and ūi = ϕθi(p̄i, q̄i), 1 ≤ i ≤ N , (ū0, ū1, . . . , ūN ) is an ε-Nash equilibrium of Problem
(CC). Let us first present the following several lemmas.

Lemma 5.1. Under A1–A4, there exists a constant M independent of N , which
may vary line by line in the following, such that

sup
0≤i≤N

E sup
0≤t≤T

∣∣∣x̆i(t)∣∣∣2 ≤M.

Proof. From Theorem 3.1, we know that on a small time interval the system of
fully coupled FBSDE (2.15)–(2.16) has a unique solution (for the global case, see
Theorem 4.2 and Remark 4.3),

(α0, β0, γ0) ∈ L2
FW0 (0, T ;Rn×3) and (αk, βk, γk, γk,0) ∈ L2

Fk(0, T ;Rn×4), 1≤k≤K.
Then, the classical results on FBSDEs yield that (5.2) also has a unique solution,

(x̄0, p̄0, q̄0) ∈ L2
FW0 (0, T ;Rn×3) and (x̄i, p̄i, q̄i, q̄i,0) ∈ L2

Fi(0, T ;Rn×4), 1 ≤ i ≤ N.
(Indeed, FBSDE (5.2) has a unique solution for arbitrary T by using similar arguments
as in Theorem 2.1 of [29] and [31, 50]). Thus, SDEs system (5.1) has also a unique
solution,

(x̆0, x̆1 . . . , x̆N ) ∈ L2
F (0, T ;Rn)× L2

F (0, T ;Rn)× · · · × L2
F (0, T ;Rn).
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Moreover, since {Wi}Ni=1 is an N -dimensional Brownian motion whose components are
independent and identically distributed, we have that for the k-type minor agents,
under the conditional expectation E(·|FW0)), for each 1 ≤ k ≤ K, the processes
(x̄i, p̄i, q̄i), i ∈ Ik, are independent and identically distributed. We also note that
for each 1 ≤ k ≤ K, x̆i, i ∈ Ik, are identically distributed. Noticing that (p̄0, q̄0) ∈
L2
FW0

(0, T ;Rn) × L2
FW0

(0, T ;Rn), and (p̄i, q̄i) ∈ L2
Fi(0, T ;Rn) × L2

Fi(0, T ;Rn), 1 ≤
i ≤ N , then the Lipschitz property of the projection onto the convex set yields
that ϕθ0(p̄0, q̄0) := ϕ0(p̄0, q̄0) = PΓ0

(R−1
0 (BT p̄0 + DT q̄0)) ∈ L2

FW0
(0, T ; Γ0) and

ϕθi(p̄i, q̄i) := PΓθi
(R−1

θi
(BT p̄i + DT q̄i)) ∈ L2

Fi(0, T ; Γθi), 1 ≤ i ≤ N . Moreover,
there exists a constant M independent of N such that for all 0 ≤ i ≤ N , 0 ≤ k ≤ K,

(5.3)

E sup
0≤t≤T

(|αk(t)|2 + |βk(t)|2 + |x̄i(t)|2 + |p̄i(t)|2)

+ E
∫ T

0

(|γk(t)|2 + |q̄i(t)|2 + |ϕθi(p̄i(t), q̄i(t))|2) ≤M.

From (5.1), by using Burkholder–Davis–Gundy (BDG) inequality, it follows that for
any t ∈ [0, T ],

E sup
0≤s≤t

|x̆0(s)|2 ≤M +ME
∫ t

0

[
|x̆0(s)|2+|x̆(N)(s)|2

]
ds

≤M +ME
∫ t

0

[
|x̆0(s)|2 +

1

N

N∑
i=1

|x̆i(s)|2
]
ds,

and by Gronwall’s inequality, we obtain

(5.4) E sup
0≤s≤t

|x̆0(s)|2 ≤M +ME
∫ t

0

1

N

N∑
i=1

|x̆i(s)|2ds.

Similarly, from (5.1) again and using (5.4), we have

(5.5)

E sup
0≤s≤t

|x̆i(s)|2 ≤M +ME
∫ t

0

[
|x̆0(s)|2 + |x̆i(s)|2 +

1

N

N∑
i=1

|x̆i(s)|2
]
ds

≤M +ME
∫ t

0

[
|x̆i(s)|2 +

1

N

N∑
i=1

|x̆i(s)|2
]
ds.

Thus

E sup
0≤s≤t

N∑
i=1

|x̆i(s)|2 ≤ E
N∑
i=1

sup
0≤s≤t

|x̆i(s)|2 ≤MN + 2ME
∫ t

0

[
N∑
i=1

|x̆i(s)|2
]
ds.

By Gronwall’s inequality, it follows that E sup0≤t≤T
∑N
i=1 |x̆i(t)|2 = O(N), 1 ≤

i ≤ N . Then, substituting this estimate to (5.5) and Gronwall’s inequality yields
E sup0≤t≤T |x̆i(t)|2 ≤ M, 1 ≤ i ≤ N. By applying this estimate to (5.4), we get
E sup0≤t≤T |x̆0(t)|2 ≤M.

Lemma 5.2. Under A1–A4, there exists a constant M independent of N such that

E sup
0≤t≤T

∣∣∣x̆(N)(t)− Φ(t)
∣∣∣2 ≤M (

1

N
+ ε2

N

)
, where εN = sup

1≤k≤K
|π(N)
k − πk|.
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Recall that x̆(N) = 1
N

∑K
k=1

∑
i∈Ik x̆i =

∑K
k=1 π

(N)
k

1
Nk

∑
i∈Ik x̆i and Φ(t) =

∑K
k=1 πk

E(αk(t)|FW0
t ).

Proof. For each fixed 1 ≤ k ≤ K, we consider the k-type minor agents. We denote
x̆(k) := 1

Nk

∑
i∈Ik x̆i. Let us add up Nk states of all k-type minor agents and then

divide by Nk; we have
(5.6)

dx̆(k) =

[
Akx̆

(k)+
B

Nk

∑
i∈Ik

ϕk(p̄i, q̄i)+F 1x̆(N)+b0

]
dt

+
1

Nk

∑
i∈Ik

[
Cx̆i+Dkϕk(p̄i, q̄i) + F2x̆

(N)+Hx̆0+σ0

]
dWi(t), x̆(k)(0) = x.

Now we take conditional expectation E(·|FW0
t ) on the first equation of (2.15). Noticing

that αk(s) is Fks -adapted and recalling mk = E(αk(t)|FW0
t ) and E(ϕk(p̄i, q̄i)|FW0

t ) =
E(ϕk(βk, γk)|FW0

t ) for any i ∈ Ik, we have

(5.7) dmk =
(
Akmk+BE(ϕk(p̄i, q̄i)|FW0

t )+F1Φ+b
)
dt, mk(0) = x.

From (5.6) and (5.7), by denoting ∆k(t) := x̆(k)(t)−mk(t), we have

d∆k =

[
Ak∆k+F1(x̆(N)−Φ)+

B

Nk

∑
i∈Ik

ϕk(p̄i, q̄i)−BE(ϕk(p̄i, q̄i)|FW0
t )

]
dt

+
1

Nk

∑
i∈Ik

[
Cx̆i+Dkϕk(p̄i, q̄i) + F2x̆

(N)+Hx̆0+σ0

]
dWi(t), ∆(0) = 0.

The Cauchy–Schwarz inequality and BDG inequality yield that

(5.8)

E sup
0≤s≤t

|∆k(s)|2 ≤ME
∫ t

0

[
|∆k(s)|2 + |x̆(N)(s)− Φ(s)|2

]
ds

+ME
∫ t

0

∣∣∣ 1

Nk

∑
i∈Ik

ϕk(p̄i(s), q̄i(s))− E(ϕk(p̄i(s), q̄i(s))|FW0
s )

∣∣∣2ds
+
M

N2
k

E
∑
i∈Ik

∫ t

0

∣∣∣Cx̆i+Dkϕk(p̄i, q̄i) + F2(x̆(N) − Φ)+F2Φ+Hx̆0+σ0

∣∣∣2ds.
Let us first focus on the second term of the right-hand side of (5.8). Since for each
fixed s ∈ [0, T ], under the conditional expectation E(·|FW0

s )), for each 1 ≤ k ≤ K, the
processes (x̄i(s), p̄i(s), q̄i(s)), i ∈ Ik, are independent and identically distributed, if we
denote µ(s) = E(ϕk(p̄i(s), q̄i(s))|FW0

s )), then µ does not depend on i and moreover
we have

E

∣∣∣∣∣ 1

Nk

∑
i∈Ik

ϕk(p̄i(s), q̄i(s))− µ(s)

∣∣∣∣∣
2

=
1

N2
k

E

(∑
i∈Ik

|ϕk(p̄i(s), q̄i(s))−µ(s)|2

+
∑

i,j∈Ik,j 6=i

〈ϕk(p̄i(s), q̄i(s))−µ(s), ϕk(p̄j(s), q̄j(s))−µ(s)〉

)
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Since (p̄i(s), q̄i(s)), i ∈ Ik, are independent under E(·|FW0
s )), we have

E
∑

i,j∈Ik,j 6=i

〈ϕk(p̄i(s), q̄i(s))−µ(s), ϕk(p̄j(s), q̄j(s))−µ(s)〉

= E

 ∑
i,j∈Ik,j 6=i

E
(
〈ϕk(p̄i(s), q̄i(s))−µ(s), ϕk(p̄j(s), q̄j(s))−µ(s)〉

∣∣∣FW0
s

)
= E

 ∑
i,j∈Ik,j 6=i

〈
E
(
ϕk(p̄i(s), q̄i(s))−µ(s)

∣∣∣FW0
s

)
,

E
(
ϕk(p̄j(s), q̄j(s))−µ(s)

∣∣∣FW0
s

)〉 = 0.

Then, due to (5.3) and the fact that (p̄i, q̄i), 1 ≤ i ≤ N , are identically distributed,
we obtain

E
∫ t

0

∣∣∣ 1

Nk

∑
i∈Ik

ϕk (p̄i(s), q̄i(s))− E
(
ϕk(p̄i(s), q̄i(s))|FW0

s

) ∣∣∣2ds
=

1

N2
k

∫ t

0

E
∑
i∈Ik

|ϕk(p̄i(s), q̄i(s))− µ(s)|2 ds

=
1

Nk

∫ t

0

E |ϕk(p̄i(s), q̄i(s))− µ(s)|2 ds ≤ M

Nk
.

Now we focus on the third term of the right-hand side of (5.8). Recalling Φ(t) =∑K
k=1 πkE(αk(t)|FW0

t ), we have E sup0≤t≤T |Φ(t)|2 ≤ M ; then using (5.3), Lemma
5.1, and that (x̆i(s), p̄i(s), q̄i(s)), i ∈ Ik, are identically distributed, it follows that

M

N2
k

∑
i∈Ik

E
∫ t

0

∣∣∣Cx̆i+Dkϕk(p̄i, q̄i) + F2(x̆(N) − Φ) + F2Φ +Hx̆0 + σ0

∣∣∣2 ds
≤ M

N2
k

∑
i∈Ik

E
∫ t

0

(
|x̆i(s)|2 + |ϕk(p̄i, q̄i)|2 + |x̆(N)(s)

− Φ(s)|2 + |Φ(s)|2 + |x̆0(s)|2 + |σ(s)|2
)
ds

≤ M

Nk
E
∫ t

0

E|x̆(N)(s)− Φ(s)|2ds+
M

Nk
.

Therefore, from the above analysis, we get from (5.8) that

E sup
0≤s≤t

|∆k(s)|2 ≤ME
∫ t

0

[
|∆k(s)|2 + |x̆(N)(s)− Φ(s)|2

]
ds+

M

Nk
,

and Gronwall’s inequality yields that

(5.9) E sup
0≤s≤t

|∆k(s)|2 ≤ME
∫ t

0

|x̆(N)(s)− Φ(s)|2ds+
M

Nk
.
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Since

x̆(N)(s)− Φ(s)

=

K∑
k=1

[
π

(N)
k

1

Nk

∑
i∈Ik

x̆i(s)− πkE(αk(s)|FW0
s )

]

=

K∑
k=1

[
π

(N)
k

(
1

Nk

∑
i∈Ik

x̆i(s)− E(αk(s)|FW0
s )

)
+
(
π

(N)
k − πk

)
E(αk(s)|FW0

s )

]

=

K∑
k=1

π
(N)
k ∆k(s) +

K∑
k=1

(
π

(N)
k − πk

)
E(αk(s)|FW0

s ),

by using (5.3), (5.9) and π
(N)
k = Nk

N ≤ 1 we obtain that for any t ∈ [0, T ],

E sup
0≤s≤t

|x̆(N)(s)− Φ(s)|2 ≤ E
K∑
k=1

sup
0≤s≤t

π
(N)
k |∆k(s)|2 +Mε2

N

≤ME
∫ t

0

|x̆(N)(s)− Φ(s)|2ds+
M

N
+Mε2

N .

Finally, by using Gronwall’s inequality, we complete the proof.

Lemma 5.3. Under the assumptions of A1–A4, we have

sup
0≤i≤N

E sup
0≤t≤T

∣∣∣x̆i(t)− x̄i(t)∣∣∣2 ≤M (
1

N
+ ε2

N

)
.

Proof. On the one hand, from the first equations of both (5.1) and (5.2), we haved(x̆0 − x̄0) =
[
A0(x̆0 − x̄0)+F 1

0 (x̆(N)−Φ)
]
dt+

[
C0(x̆0 − x̄0)+F 2

0 (x̆(N)−Φ)
]
dWi(t),

x̆0(0)− x̄0(0) = 0.

The classical estimate for the SDE yields that

E sup
0≤t≤T

∣∣∣x̆0(t)− x̄0(t)
∣∣∣2 ≤ME

∫ T

0

∣∣∣x̆(N)(s)− Φ(s)
∣∣∣2 ds,

where M is a constant independent of N . Noticing Lemma 5.2, we obtain

(5.10) E sup
0≤t≤T

∣∣∣x̆0(t)− x̄0(t)
∣∣∣2 ≤M (

1

N
+ ε2

N

)
.

On the other hand, from the second equation of (5.1) and the third equation of (5.2),
with the help of the classical estimate for the SDE, we have that for 1 ≤ i ≤ N ,

E sup
0≤t≤T

∣∣∣x̆i(t)− x̄i(t)∣∣∣2 ≤ME
∫ T

0

(∣∣∣x̆(N)(s)− Φ(s)
∣∣∣2 + |x̆0(s)− x̄0(s)|2

)
ds,

and noticing Lemma 5.2 and (5.10), we obtain E sup0≤t≤T |x̆i(t) − x̄i(t)|2 ≤ M( 1
N +

ε2
N ), 0 ≤ i ≤ N.
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Lemma 5.4. Under the assumptions of A1–A4, for all 0 ≤ i ≤ N , we have∣∣∣Ji(ūi, ū−i)− Ji(ūi)∣∣∣ = O

(
1√
N

+ εN

)
.

Proof. Let us first consider the major agent. Recalling (2.3), (2.6), and (2.17),
we have

(5.11)
J0(ū0, ū−0)− J0(ū0)

=
1

2
E
[ ∫ T

0

(〈
Q0

(
x̆0 − ρ0x̆

(N)
)
, x̆0 − ρ0x̆

(N)
〉
−
〈
Q0

(
x̄0 − ρ0Φ

)
, x̄0 − ρ0Φ

〉)
dt

+
〈
G0

(
x̆0(T )− ρ0x̆

(N)(T )
)
, x̆0(T )− ρ0x̆

(N)(T )
〉

−
〈
G0

(
x̄0(T )− ρ0Φ(T )

)
, x̄0(T )− ρ0Φ(T )

〉]
.

From (5.3), we have E sup0≤t≤T |x̄0(t)|2 ≤ M and E sup0≤t≤T |αi(t)|2 ≤ M for any
0 ≤ i ≤ N . Recalling E sup0≤t≤T |Φ(t)|2 ≤M and Lemmas 5.2 and 5.3, as well as

〈Q0(a− b), a− b〉 − 〈Q0(c− d), c− d〉
= 〈Q0(a− b− (c− d)), a− b− (c− d)〉+ 2〈Q0(a− b− (c− d)), c− d〉,

we have∣∣∣E∫ T

0

(〈
Q0

(
x̆0−ρ0x̆

(N)
)
, x̆0−ρ0x̆

(N)
〉
−
〈
Q0

(
x̄0−ρ0Φ

)
, x̄0−ρ0Φ

〉)
dt
∣∣∣

≤M
∫ T

0

E
∣∣x̆0 − ρ0x̆

(N) − (x̄0 − ρ0Φ)
∣∣2dt

+M

∫ T

0

E
∣∣x̆0 − ρ0x̆

(N) − (x̄0 − ρ0Φ)
∣∣∣∣x̄0 − ρ0Φ

∣∣dt
≤M

∫ T

0

E
∣∣x̆0 − x̄0

∣∣2dt+M

∫ T

0

E
∣∣x̆(N) − Φ

∣∣2dt
+M

∫ T

0

(
E
∣∣x̆0 − ρ0x̆

(N) − (x̄0 − ρ0Φ)
∣∣2) 1

2
(
E |x̄0 − ρ0Φ|2

) 1
2

dt

≤M
∫ T

0

E
∣∣x̆0 − x̄0

∣∣2dt+M

∫ T

0

E
∣∣x̆(N) − Φ

∣∣2dt
+M

∫ T

0

(
E
∣∣x̆0 − x̄0

∣∣2 + E
∣∣x̆(N) − Φ

∣∣2) 1
2

dt

= O

(
1√
N

+ εN

)
.

A similar argument allows us to show that∣∣∣E[〈G0

(
x̆0(T )−ρ0x̆

(N)(T )
)
, x̆0(T )−ρ0x̆

(N)(T )
〉

−
〈
G0

(
x̄0(T )−ρ0Φ(T )

)
, x̄0(T )−ρ0Φ(T )

〉]∣∣∣
= O

(
1√
N

+ εN

)
.
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Thus, the proof for the major agent is completed by noticing (5.11). Let us now focus
on the minor agents; for 1 ≤ i ≤ N , recalling (2.4), (2.12), and (2.17), we have

Ji(ūi, ū−i)

=
1

2
E
[ ∫ T

0

(〈
Q
(
x̆i − ρx̆(N) − (1− ρ)x̆0

)
, x̆i − ρx̆(N) − (1− ρ)x̆0

〉
+
〈
Rθi ūi, ūi

〉)
dt

+
〈
G
(
x̆i(T )−ρx̆(N)(T )−(1−ρ)x̆0(T )

)
, x̆i(T )−ρx̆(N)(T )−(1−ρ)x̆0(T )

〉]
and

Ji(ūi) =
1

2
E
[ ∫ T

0

(〈
Q
(
x̄i − ρΦ− (1− ρ)x̄0

)
, x̄i − ρΦ− (1− ρ)x̄0

〉
dt+

〈
Rθi ūi, ūi

〉)
dt

+
〈
G
(
x̄i(T )− ρΦ(T )− (1− ρ)x̄0(T )

)
, x̄i(T )− ρΦ(T )− (1− ρ)x̄0(T )

〉]
.

From (5.3), we have E sup0≤t≤T |x̄i(t)|2 ≤ M . Using such an estimate, E sup0≤t≤T
|Φ(t)|2 ≤ M , and Lemmas 5.2 and 5.3, similar to the major agent, it follows that
|Ji(ūi, ū−i)− Ji(ūi)| = O( 1√

N
+ εN ).

5.1. Major agent’s perturbation. In this subsection, we will prove that the
strategy profile (ū0, ū1, ū2, . . . , ūN ) is an ε-Nash equilibrium of Problem (CC) for the
major agent, i.e., there exists an ε = ε(N) ≥ 0, limN→∞ ε(N) = 0 s.t.

J0(ū0(·), ū−0(·)) ≤ J0(u0(·), ū−0(·)) + ε for any u0 ∈ Uc,0ad .

Let us consider that the major agent A0 uses an alternative strategy u0 and each
minor agent Ai uses the control ūi = ϕθi(p̄i, q̄i), where (p̄i, q̄i) are solved from (5.2).
Then the realized state system with major agent’s perturbation is, for 1 ≤ i ≤ N ,

(5.12)
dy0 =

[
A0y0+B0u0+F 1

0 y
(N)+b0

]
dt+

[
C0y0+D0u0 + F 2

0 y
(N)+σ0

]
dW0(t),

dyi =
[
Aθiyi+Bϕθi(p̄i, q̄i)+F1y

(N)+b0
]
dt

+
[
Cyi+Dθiϕθi(p̄i, q̄i) + F2y

(N)+Hy0+σ0

]
dWi(t),

y0(0) = x0, yi(0) = x,

where y(N) = 1
N

∑N
i=1 yi. The well-posedness of the above SDE system is not hard

to check. To prove (ū0, ū1, . . . , ūN ) is an ε-Nash equilibrium for the major agent,
we need to show that for possible alternative control u0, infu0∈Uc,0ad

J0(u0, ū−0) ≥
J0(ū0, ū−0)− ε. Then we only need to consider the perturbation u0 ∈ Uc,0ad such that
J0(u0, ū−0) ≤ J0(ū0, ū−0). Thus, noticing Q0 ≥ 0 and G0 ≥ 0, from Lemma 5.4, we
have

E
∫ T

0

〈R0u0(t), u0(t)〉dt ≤ J0(u0, ū−0) ≤ J0(ū0, ū−0) ≤ J0(ū0) +O

(
1√
N

+ εN

)
,

which implies that (noting A4), E
∫ T

0
|u0(t)|2dt ≤M, where M is a constant indepen-

dent of N . Then similar to Lemma 5.1, we can show that

(5.13) sup
0≤i≤N

E sup
0≤t≤T

|yi(t)|2 ≤M.D
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Lemma 5.5. Under the assumptions of A1–A4, we have

E sup
0≤t≤T

∣∣y(N)(t)− Φ(t)
∣∣2 = O

(
1

N
+ ε2

N

)
.

Proof. For each fixed 1 ≤ k ≤ K, we consider the k-type minor agents. We denote
y(k) := 1

Nk

∑
i∈Ik yi. As there are Nk minor agents of the k-type, let us add up their

states, and then divided by Nk, it follows that

dy(k) =

[
Aky

(k)+
B

Nk

∑
i∈Ik

ϕk(p̄i, q̄i)+F1y
(N)+b0

]
dt

+
1

Nk

∑
i∈Ik

[
Cyi+Dkϕk(p̄i, q̄i) + F2y

(N)+Hy0+σ0

]
dWi(t), y(k)(0) = x.

Recall (5.7) and if we denote ∆̃k(t) := y(k)(t)−mk(t), it follows that

d∆̃k =

[
Ak∆̃k +

B

Nk

∑
i∈Ik

ϕk(p̄i, q̄i)−BE(ϕk(p̄i, q̄i)|FW0
t ) + F1(y(N) − Φ)

]
dt

+
1

Nk

∑
i∈Ik

[
Cyi+Dkϕk(p̄i, q̄i) + F2y

(N)+Hy0+σ0

]
dWi(t), ∆̃(0) = 0.

Similar to the argument in the proof of Lemma 5.2, using (5.3), (5.13) and (yi(s), p̄i(s),
q̄i(s)), i ∈ Ik, are identically distributed, we can show that

E sup
0≤s≤t

|∆̃k(s)|2 ≤ME
∫ t

0

[
|∆̃k(s)|2 + |y(N)(s)− Φ(s)|2

]
ds+

M

Nk
,

and Gronwall’s inequality yields that

E sup
0≤s≤t

|∆̃k(s)|2 ≤ME
∫ t

0

[
|y(N)(s)− Φ(s)|2

]
ds.

Similar to the proof of Lemma 5.2 again, and using A1, we have for any t ∈ [0, T ],

E sup
0≤s≤t

|y(N)(s)− Φ(s)|2 ≤ E
K∑
k=1

sup
0≤s≤t

π
(N)
k |∆k(s)|2 +Mε2

N

≤ME
∫ t

0

[
|y(N)(s)− Φ(s)|2

]
ds+

M

N
+Mε2

N .

Finally, Gronwall’s inequality allows us to complete the proof.

Now, we introduce the following system of the decentralized limiting state with
the major agent’s perturbation control for 1 ≤ i ≤ N :

(5.14)
dȳ0 =

[
A0ȳ0 +B0u0 + F 1

0 Φ + b0
]
dt+

[
C0ȳ0 +D0u0 + F 2

0 Φ + σ0

]
dW0(t)

dȳi = [Aθi ȳi +Bϕθi(p̄i, q̄i) + F1Φ + b0] dt

+ [Cȳi +Dθiϕθi(p̄i, q̄i) + F2Φ +Hȳ0 + σ0] dWi(t)

ȳ0(0) = x0, ȳi(0) = x.D
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Lemma 5.6. Under the assumptions of A1–A4, we have

sup
0≤i≤N

E sup
0≤t≤T

∣∣yi(t)− ȳi(t)∣∣2 = O

(
1

N
+ ε2

N

)
.

Proof. From the first equations of both (5.12) and (5.14), we obtain{
d(y0− ȳ0) =

[
A(y0 − ȳ0) + F 1

0 (y(N) − Φ)
]
dt+

[
C(y0 − ȳ0) + F 2

0 (y(N) − Φ)
]
dW0(t),

y0(0)− ȳ0(0) = 0.

With the help of classical estimates of SDE and Lemma 5.5, it is easy to obtain

(5.15) E sup
0≤t≤T

∣∣∣y0(t)− ȳ0(t)
∣∣∣2 = O

(
1

N
+ ε2

N

)
.

Now, for any 1 ≤ i ≤ N , from the second equation of both (5.12) and (5.14), we get

d(yi − ȳi) =
[
Aθi(yi − ȳi) + F1(y(N) − Φ)

]
dt

+
[
C(yi − ȳi) + F2(y(N) − Φ) +H(y0 − ȳ0)

]
dWi(t), yi(0)− ȳi(0) = 0.

The classical estimates of SDE, Lemma 5.5, and (5.15) allow us to complete the
proof.

Lemma 5.7. Under A1–A4, for the major agent’s perturbation control u0, we have

∣∣J0(u0, ū−0)− J0(u0)
∣∣ = O

(
1√
N

+ εN

)
.

Proof. Recalling (2.3), (2.6), and (2.17), we have

(5.16)
J0(u0, ū−0)− J0(u0)

=
1

2
E

[∫ T

0

(〈
Q0

(
y0 − ρ0y

(N)
)
, y0 − ρ0y

(N)
〉
−
〈
Q0

(
ȳ0 − ρ0Φ

)
, ȳ0 − ρ0Φ

〉)
dt

+
〈
G0

(
y0(T )−ρ0y

(N)(T )
)
, y0(T )−ρ0y

(N)(T )
〉

−
〈
G0

(
ȳ0(T )−ρ0Φ(T )

)
, ȳ0(T )−ρ0Φ(T )

〉]
.

Similar to Lemma 5.4, by using Lemmas 5.5, 5.6 and E(|ȳ0(t)|2 + |Φ(t)|2) ≤ M , we
have ∣∣∣E∫ T

0

(〈
Q0

(
y0 − ρ0y

(N)
)
, y0 − ρ0y

(N)
〉
−
〈
Q0

(
ȳ0 − ρ0Φ

)
, ȳ0 − ρ0Φ

〉)
dt
∣∣∣

≤M
∫ T

0

E |y0 − ȳ0|2 dt+M

∫ T

0

E
∣∣y(N) − Φ

∣∣2dt
+M

∫ T

0

(
E |y0 − ȳ0|2 + E

∣∣y(N) − Φ
∣∣2) 1

2 dt

= O

(
1√
N

+ εN

)D
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and ∣∣∣E[〈G0

(
y0(T )− ρ0y

(N)(T )
)
, y0(T )− ρ0y

(N)(T )
〉

−
〈
G0

(
ȳ0(T )− ρ0Φ(T )

)
, ȳ0(T )− ρ0Φ(T )

〉]∣∣∣ = O

(
1√
N

+ εN

)
.

The proof is completed by noticing (5.16).

Theorem 5.8. Under the assumptions of A1–A4, the strategy profile (ū0, ū1, . . . ,
ūN ) is an ε-Nash equilibrium of Problem (CC) for the major agent. More precisely,
there exists a constant M > 0 and a sequence of positive numbers {ε(N)}N≥1 such
that for each N ≥ 1,

(i) ε(N) ≤M( 1√
N

+εN ), where εN := sup1≤k≤K |π
(N)
k − πk|;

(ii) for any u0 ∈ Uc,0ad , one has

J0(ū0(·), ū−0(·)) ≤ J0(u0(·), ū−0(·)) + ε(N).

Proof. Combining Lemmas 5.4 and 5.7, we have

J0(ū0, ū−0) ≤ J0(ū0)+O

(
1√
N

+εN

)
≤ J0(u0)+O

(
1√
N

+ εN

)
≤ J0(u0, ū−0)+O

(
1√
N

+εN

)
,

where the second inequality comes from the fact that J0(ū0) = infu0∈U0
ad
J0(u0) (we

mention that even if u0 is adapted to {Ft} other than {FW0
t }, J0(ū0) ≤ J0(u0)

still works as pointed out in Remark 2.3). Consequently, Theorem 5.8 holds with
ε(N) = O( 1√

N
+ εN ).

5.2. Minor agent’s perturbation. Now, let us consider the following case: a
given minor agent Ai uses an alternative strategy ui ∈ Uc,iad , the major agent uses
ū0 = ϕ0(p̄0, q̄0), while other minor agents Aj use the control ūj = ϕθj (p̄j , q̄j), j 6= i,
1 ≤ j ≤ N , where (p̄j , q̄j), 0 ≤ j ≤ N , j 6= i, are solved from (5.2). Then the realized
state system with the minor agent’s perturbation is, for 1 ≤ j ≤ N , j 6= i,

(5.17)

dl0 =
[
A0l0+B0ϕ0(p̄0, q̄0)+F 1

0 l
(N)+b0

]
dt

+
[
C0l0+D0ϕ0(p̄0, q̄0) + F 2

0 l
(N)+σ0

]
dW0(t)

dli =
[
Aθi li+Bui+F1l

(N)+b0

]
dt+

[
Cli+Dθiui + F2l

(N)+Hl0+σ0

]
dWi(t),

dlj =
[
Aθj lj+Bϕθj (p̄j , q̄j)+F1l

(N)+b0

]
dt

+
[
Clj+Dθjϕθj (p̄j , q̄j) + F2l

(N)+Hl0+σ0

]
dWi(t),

l0(0) = x0, li(0) = lj(0) = x,

where l(N) = 1
N

∑N
i=1 l

i. The well-posedness of the above SDE system is easy to
obtain. Similar to the argument of the major agent, to prove the strategy profile
(ū0, ū1, . . . , ūN ) is an ε-Nash equilibrium for the minor agent, noticing Q ≥ 0, G ≥ 0,
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Rθi > 0, and Lemma 5.4, we only need to consider the perturbation ui ∈ Uc,iad satisfying

(5.18) E
∫ T

0

|ui(t)|2dt ≤M,

where M is a constant independent of N . Similar to Lemma 5.1, we can show that

(5.19) sup
0≤i≤N

E sup
0≤t≤T

|li(t)|2 ≤M.

We first present the following lemma.

Lemma 5.9. Under the assumptions of A1–A4, we have

E sup
0≤t≤T

∣∣∣l(N)(t)− Φ(t)
∣∣∣2 = O

(
1

N
+ ε2

N

)
.

Proof. We know that for each fixed i, there exists a unique 1 ≤ k̄ ≤ K such that
i ∈ Ik̄. Let us denote l(k) := 1

Nk

∑
i∈Ik li, 1 ≤ k ≤ K. We first consider the k-type

minor agents, where k 6= k̄. Adding up their states and then dividing by Nk, similar
to the proof of Lemma 5.2, for k 6= k̄ and mk = E(αk(t)|FW0

t ), we have

(5.20) E sup
0≤s≤t

|l(k)(s)−mk(s)|2 ≤ME
∫ t

0

[
|l(N)(s)− Φ(s)|2

]
ds+

M

Nk
.

Now let us focus on the k̄-type minor agents. Recall (5.7) and denote Ξ := l(k̄) −mk̄;
it follows from the Cauchy–Schwarz inequality and BDG inequality that
(5.21)

E sup
0≤s≤t

|Ξ(s)|2 ≤ME
∫ t

0

(
|Ξ(s)|2+

1

N2
k̄

|ui(s)|2+|l(N)(s)− Φ(s)|2
)
ds

+ME
∫ t

0

∣∣∣ 1

Nk̄

∑
j∈Ik̄,j 6=i

ϕk̄(p̄j , q̄j)− E(ϕk̄(p̄i, q̄i)|FW0
t )

∣∣∣2ds
+
M

N2
k̄

E
∑
j∈Ik̄

∫ t

0

∣∣F2(l(N)(s)−Φ(s))+F2Φ(s)+Clj(s)+Hl0(s)+σ(s)
∣∣2ds

+
M

N2
k̄

E
∫ t

0

|ui(s)|2ds+
M

N2
k̄

E
∑

j∈Ik̄,j 6=i

∫ t

0

|ϕk̄(p̄j(s), q̄j(s))|2ds.

On the one hand, since for each fixed s ∈ [0, T ], under the conditional expectation
E(·|FW0

s ), the processes (p̄i(s), q̄i(s)), i ∈ Ik̄, are independent and identically dis-
tributed. If we denote µ(s) = E(ϕk̄(p̄i(s), q̄i(s))|FW0

s )), then µ does not depend on i.
Moreover, using (5.3), similar to the proof of Lemma 5.2, we can obtain∫ t

0

E
∣∣ 1

Nk̄

∑
j∈Ik̄,j 6=i

ϕk̄(p̄j(s), q̄j(s))− µ(s)
∣∣2ds

≤ 2
(Nk̄−1)2

N2
k̄

∫ t

0

E
∣∣ 1

Nk̄−1

∑
j∈Ik̄,j 6=i

ϕk̄(p̄j(s), q̄j(s))−µ(s)
∣∣2ds+

2

N2
k̄

∫ t

0

E|µ(s)|2ds

= 2
Nk̄ − 1

N2
k̄

∫ t

0

E |ϕk̄(p̄j(s), q̄j(s))−µ(s)|2 ds+
2

N2
k̄

∫ t

0

E|µ(s)|2ds ≤ M

Nk̄
.
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On the other hand, due to (5.18) and (5.19), we get

M

N2
k̄

E
∫ t

0

|ui(s)|2ds

+
M

N2
k̄

E
N∑
j=1

∫ t

0

∣∣∣F2(l(N)(s)− Φ(s))+F2Φ(s)+Clj(s)+Hl0(s)+σ(s)
∣∣∣2 ds

≤ M

Nk̄
E
∫ t

0

|l(N)(s)− Φ(s)|2ds+
M

Nk̄
.

Moreover, since (p̄i(s), q̄i(s)), i ∈ Ik̄, are identically distributed under E(·|FW0
s ), we

have M
N2
k̄

E
∑
j∈Ik̄,j 6=i

∫ t
0
|ϕk̄(p̄j(s), q̄j(s))|2ds ≤ M

Nk̄
. Therefore, we get from (5.21) that,

for any t ∈ [0, T ],

E sup
0≤s≤T

|Ξ(s)|2 ≤ME
∫ t

0

|Ξ(s)|2 + |l(N)(s)− Φ(s)|2
]
ds+

M

Nk̄
,

which yields, by using Gronwall’s inequality, that

(5.22) E sup
0≤s≤t

|l(k̄)(s)−mk̄(s)|2 ≤ME
∫ t

0

[
|l(N)(s)− Φ(s)|2

]
ds+

M

Nk̄
.

Consequently, noticing (5.20) and (5.22), we have for each 1 ≤ k ≤ K,

E sup
0≤s≤t

|l(k)(s)−mk(s)|2 ≤ME
∫ t

0

[
|l(N)(s)− Φ(s)|2

]
ds+

M

Nk
.

Then similar to the proof of Lemma 5.2, we can complete the proof.

Now, we introduce the following system of decentralized limiting state with the
perturbation strategy of the minor agent Ai: for 1 ≤ j ≤ N , j 6= i,

dl̄0 =
[
A0 l̄0+B0ϕ0(p̄0, q̄0)+F 1

0 Φ+b0
]
dt+

[
C0 l̄0+D0ϕ0(p̄0, q̄0) + F 2

0 Φ+σ0

]
dW0(t)

dl̄i =
[
Aθi l̄i+Bui+F1Φ+b0

]
dt+

[
Cl̄i+Dθiui + F2Φ+Hl̄0+σ0

]
dWi(t),

dl̄j =
[
Aθj l̄j+Bϕθj (p̄j , q̄j)+F1Φ+b0

]
dt

+
[
Cl̄j+Dθjϕθj (p̄j , q̄j) + F2Φ+Hl̄0+σ0

]
dWi(t),

l̄0(0) =x0, l̄i(0) = l̄j(0) = x.

Lemma 5.10. Under the assumptions of A1–A4, we have

E sup
0≤t≤T

(∣∣l0(t)− l̄0(t)
∣∣2 +

∣∣li(t)− l̄i(t)∣∣2) = O

(
1

N
+ ε2

N

)
.

Lemma 5.11. Under the assumptions of A1–A4, for each 1 ≤ i ≤ N , for the
minor agent Ai’s perturbation control ui, we have∣∣∣Ji(ui, ū−i)− J0(ui)

∣∣∣ = O

(
1√
N

+ εN

)
.

Theorem 5.12. Under the assumptions of A1–A4, the strategy profile (ū0, ū1, . . . ,
ūN ) is an ε-Nash equilibrium of Problem (CC) for the minor agents. More precisely,
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there exists a constant M > 0 and a sequence of positive numbers {ε(N)}N≥1, such
that for each N ≥ 1,

(i) ε(N) ≤M( 1√
N

+εN ), where εN := sup1≤k≤K |π
(N)
k − πk|;

(ii) for any minor agent Ai and any ui ∈ Uc,iad , 1 ≤ i ≤ N , one has

Ji(ūi(·), ū−i(·)) ≤ Ji(ui(·), ū−i(·)) + ε(N).

We mention that, based on Lemma 5.9, similar to the proofs of Lemmas 5.6 and
5.7 and Theorem 5.8, respectively, we can easily prove Lemmas 5.10 and 5.11 and
Theorem 5.12. The proofs are omitted here; one can find them in [30]. By combining
Theorems 5.8 and 5.12, we obtain the following main result of this section.

Theorem 5.13. Under the assumptions of A1–A4, the strategy profile (ū0, ū1, . . . ,
ūN ) is an ε-Nash equilibrium of Problem (CC), where ū0 = ϕ0(p̄0, q̄0), ūi = ϕθi(p̄i, q̄i),
1 ≤ i ≤ N , for

ϕ0(p, q) := PΓ0

[
R−1

0

(
B′0p+D′0q

)]
, ϕθi(p, q) := PΓθi

[
R−1
θi

(
B′p+D′θiq

)]
.

More precisely, there exists a constant M > 0 and a sequence of positive numbers
{ε(N)}N≥1 such that for each N ≥ 1,

(i) ε(N) ≤M( 1√
N

+εN ), where εN := sup1≤k≤K |π
(N)
k − πk|;

(ii) for any agent Ai and any ui ∈ Uc,iad , 0 ≤ i ≤ N , one has

Ji(ūi(·), ū−i(·)) ≤ Ji(ui(·), ū−i(·)) + ε(N).

5.3. Convergence of the empirical measure. In this subsection, we discuss
the convergence rate of the empirical measure using the method of [15, 17] under the
assumption that high order estimates of αk hold, 1 ≤ k ≤ K. More precisely, we
suppose that

A5. E
∫ T

0
|αk(t)|n+5dt < ∞, 1 ≤ k ≤ K, where αk, 1 ≤ k ≤ K are given by

(2.15)–(2.16).

Remark 5.1. The system (2.15)–(2.16) is a fully coupled FBSDE, and A5 holds
true on a small time interval; see, e.g., [27]. For high order estimates of general
FBSDEs on an arbitrary interval, readers are referred to [11, 23] et al. We mention
that we cannot use the method of [23] to obtain the high order estimates for system
(2.15)–(2.16). This is mainly because the diffusion term of the forward equation
depends on γk. One may combine the methods of [11, 49] (applying the Itô formula
to e−λt|α(t)|p and e−λt|β(t)|p) to prove the high order estimates for system (2.15)–
(2.16). Nevertheless, here we just suppose that A5 holds to focus on our convergence
rate of the empirical measure.

Let us first recall the following notation (see [15, 17]). Let E be a separable
Banach space and h ≥ 1 be an integer. Ph(E) stands for the space of probability
measures of order h, i.e.,

Ph(E) =

{
ϑ is a probability measure s.t. Mh,E(ϑ) :=

(∫
E

‖x‖hEdϑ(x)

)1/h

< +∞

}
.

For any integer h ≥ 1, ϑ, ϑ′ ∈ Ph(E), the Monge–Kantorovich distance Wh(ϑ, ϑ′) is
defined by
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Wh(ϑ, ϑ′)

:= inf

{[∫
E×E

‖x− y‖hEχ(dx, dy)

]1/h

;χ ∈ Ph(E × E) with marginals ϑ and ϑ′

}
.

Let ϑ be a probability measure on Rn and X1, X2, . . . be an independent and identi-
cally distributed random variable sequence with common probability law ϑ. Denote
ϑN := 1

N

∑N
i=1 δXi , where δX is the Dirac measure. Then (see Theorem 10.2.1 in [52])

we have the following.

Lemma 5.14. Given ϑ ∈ Pn+5(Rn), there exists a constant M depending only on
n and Md+5,Rn(ϑ) such that E[W2

2 (ϑN , ϑ)] ≤MN−2/(n+4).

Moreover, if X1, X2, . . . is an infinite exchangeable sequence with directing mea-
sure ϑ, we still denote ϑN := 1

N

∑N
i=1 δXi and let ν be the marginal distribution of

Xn. Then (see Theorem 10.2.6 in [52]) we have the following.

Lemma 5.15. Suppose M
′

d+5,Rn(ϑ) :=
∫
|x|n+5ν(dx) < +∞; there exists a con-

stant M depending only on n and M
′

d+5,Rn(ϑ) such that E[W2
2 (ϑN , ϑ)] ≤MN−2/(n+4).

Now let us focus on our system (2.15)–(2.16). For each 1 ≤ k ≤ K, we denote
ϑk(t) := L(αk(t)|FW0

t ), where L(αk(t)|FW0
t ) represents the conditional law of αk(t)

w.r.t. FW0
t (recall that we can always find a regular version of the conditional law

L(αk(t)|FW0
t )). By recalling (5.2) and (5.1), we introduce, for each 1 ≤ k ≤ K and

t ∈ [0, T ],

ϑ̄Nk (t) :=
1

Nk

∑
i∈Ik

δx̄i(t), ϑ̆Nk (t) :=
1

Nk

∑
i∈Ik

δx̌i(t).

Then we have (recall εN := sup1≤k≤K |π
(N)
k − πk|) the following.

Theorem 5.16. Under the assumptions of A1–A5, we have, for each 1 ≤ k ≤ K,

(5.23) sup
0≤t≤T

E
[
W2

2 (ϑ̄Nk (t), ϑk(t))
]
≤MN

−2/(n+4)
k

and

(5.24) sup
0≤t≤T

E
[
W2

2 (ϑ̆Nk (t), ϑk(t))
]
≤M(N

−2/(n+4)
k + ε2

N ).

Proof. Since under the conditional expectation E(·|FW0)), for each 1 ≤ k ≤ K,
the processes x̄i, i ∈ Ik, are independent and identically distributed with the com-
mon conditional law ϑk(t) = L(αk(t)|FW0

t ). Then Lemma 5.15 yields that sup0≤t≤T

E[W2
2 (ϑ̄Nk (t), ϑk(t))] ≤MN

−2/(n+4)
k , which is (5.23).

Moreover, for each t ∈ [0, T ], it follows that

W2
2 (ϑ̆Nk (t), ϑk(t)) ≤ 2

Nk

∑
i∈Ik

|x̌i(t)− x̄i(t)|2 + 2W2
2 (ϑ̄Nk (t), ϑk(t)).

Now we take expectation on both sides of the above inequality, and by using Lemma
5.3 and (5.23) we obtain that there exists a constant M independent of t which may
vary line by line, such that

E
[
W2

2 (ϑ̆Nk (t), ϑk(t))
]
≤ME|x̌i(t)− x̄i(t)|2 +MN

−2/(n+4)
k

≤M(N−1 + ε2
N ) +MN

−2/(n+4)
k ≤M(N

−2/(n+4)
k + ε2

N ),

which yields (5.24) (noticing that M is independent of t).
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Finally, let us recall li defined by (5.17). Here we assume that i ∈ Ik for some
1 ≤ k ≤ K. We only need to consider the perturbation ui ∈ Uc,iad satisfying (5.18)
(see the argument in section 5.2); thus (5.19) holds. Now, we focus on estimating
sup0≤t≤T E[W2

2 (υNk (t), ϑk(t))], where υNk (t) := 1
Nk

∑
j∈Ik δlj(t). We first give the fol-

lowing lemma.

Lemma 5.17. Under the assumptions of A1–A4, we have

sup
j∈Ik,j 6=i

E sup
0≤t≤T

(∣∣l0(t)− x̄0(t)
∣∣2 +

∣∣lj(t)− x̄j(t)∣∣2) = O

(
1

N
+ ε2

N

)
.

Proof. From the first equation of (5.2) and (5.17), we obtain d(l0 − x̄0) =
[
A0(l0 − x̄0)+F 1

0 (l(N)−Φ)
]
dt+

[
C0(l0 − x̄0)+F 2

0 (l(N)−Φ)
]
dWi(t),

l0(0)− x̄0(0) = 0.

The classical estimate for the SDE and Lemma 5.9 yield that

(5.25) E sup
0≤t≤T

∣∣∣l0(t)− x̄0(t)
∣∣∣2 ≤ME

∫ T

0

∣∣∣l(N)(s)− Φ(s)
∣∣∣2 ds ≤M (

1

N
+ ε2

N

)
.

On the other hand, from the third equation of (5.17) and (5.2), with the help of
classical estimate for the SDE, we have that for j ∈ Ik and j 6= i,

E sup
0≤t≤T

∣∣∣lj(t)− x̄j(t)∣∣∣2 ≤ME
∫ T

0

(∣∣∣l(N)(s)− Φ(s)
∣∣∣2 + |l0(s)− x̄0(s)|2

)
ds,

and by noticing Lemma 5.9 and (5.25), we complete the proof.

Theorem 5.18. Under the assumptions of A1–A5, we have

sup
0≤t≤T

E
[
W2

2 (υNk (t), ϑk(t))
]
≤M(N

−2/(n+4)
k + ε2

N ).

Proof. By the triangle inequality, we have

(5.26)

E
[
W2

2 (υNk (t), ϑk(t))
]
≤M

{
E

[
W2

2

(
1

Nk

∑
j∈Ik

δlj(t),
1

Nk − 1

∑
j∈Ik,j 6=i

δlj(t)

)

+W2
2

(
1

Nk − 1

∑
j∈Ik,j 6=i

δlj(t),
1

Nk − 1

∑
j∈Ik,j 6=i

δx̄j(t)

)

+W2
2

(
1

Nk − 1

∑
j∈Ik,j 6=i

δx̄j(t), ϑk(t)

)]}
.

We note that

E

W2
2

 1

Nk

∑
j∈Ik

δlj(t),
1

Nk − 1

∑
j∈Ik,j 6=i

δlj(t)

 ≤ 1

N2
k (Nk − 1)

∑
j∈Ik,j 6=i

|li(t)− lj(t)|2,

and by noticing (5.19), we have

sup
0≤t≤T

E

W2
2

 1

Nk

∑
j∈Ik

δlj(t),
1

Nk − 1

∑
j∈Ik,j 6=i

δlj(t)

 ≤MN−2
k .
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For the second term in the right-hand side of (5.26), by using Lemma 5.17, we have

sup0≤t≤T E
[
W2

2 ( 1
Nk−1

∑
j∈Ik,j 6=i δlj(t),

1
Nk−1

∑
j∈Ik,j 6=i δx̄j(t))

]
≤ 1

Nk−1 sup0≤t≤T E
∑
j∈Ik,j 6=i |lj(t)− x̄j(t)|

2 ≤M( 1
N + ε2

N ) ≤M( 1
Nk

+ ε2
N ).

Moreover, Lemma 5.15 yields that

sup
0≤t≤T

E

W2
2

 1

Nk − 1

∑
j∈Ik,j 6=i

δx̄j(t), ϑk(t)

 ≤M(Nk−1)−2/(n+4) = O(N
−2/(n+4)
k ).

Plugging the above estimates into (5.26), we complete the proof.

Remark 5.2. If we suppose some mild assumptions (as in Theorem 10.2.7 of [52])

on αk, we should obtain a uniform convergence rate but with order N
−2/(n+8)
k . The

readers are referred to Lemma 6.8 in [15] for some similar results.

Appendix A. We give this appendix to prove Theorem 4.1. The fully coupled
structure of MF-FBSDE (4.1) raises difficulties for establishing its well-posedness.
Motivated by Pardoux and Tang [49, Theorem 3.1], we can establish the well-posedness
of MF-FBSDE (4.1) for arbitrary time duration when it is weakly coupled.

Let us first note that for a given (Y (·), Z(·))∈L2
F (0, T ;Rl)×L2

F (0, T ;Rl×(d+1)),
the forward equation in the MF-FBSDE (4.1) has a unique solution X(·) ∈
L2
F (0, T ;Rn); thus we introduce a map M1 : L2

F (0, T ;Rl) × L2
F (0, T ;Rl×(d+1)) →

L2
F (0, T ;Rn), through

(A.1)

X(t) = x+

∫ t

0

b(s,X(s),E[X(s)|FW0
s ], Y (s), Z(s)])ds

+

∫ t

0

σ(s,X(s),E[X(s)|FW0
s ], Y (s), Z(s))dW (s).

We mention that the well-posedness of (A.1) can be established by using the contrac-
tion mapping method under the assumptions (H1) and (H2), although it has the term
E[Xs|FW0

s ]. We omit the proof here. Moreover, with the help of the BDG inequality,
it follows that E supt∈[0,T ] |X(t)|2 <∞.

Lemma A.1. Let Xi be the solution of (A.1) corresponding to (Yi(·), Zi(·)) ∈
L2
F (0, T ;Rl)× L2

F (0, T ;Rl×(d+1)), i = 1, 2. Then for all λ ∈ R, K1, K2 > 0, we have

(A.2)

e−λtE|X1(t)−X2(t)|2 + λ1

∫ t

0

e−λsE|X1(s)−X2(s)|2ds

≤ (k2K1 + k2
9)

∫ t

0

e−λsE|Y1(s)−Y2(s)|2ds+ (k3K2 + k2
10)

∫ t

0

e−λsE|Z1(s)−Z2(s)|2ds,

where λ1 := λ− 2λ1 − k2K
−1
1 − k3K

−1
2 − 2k1 − k2

7 − k2
8. Moreover,

(A.3)

e−λtE|X1(t)−X2(t)|2 ≤ (k2K1 + k2
9)

∫ t

0

e−λ1(t−s)e−λsE|Y1(s)−Y2(s)|2ds

+ (k3K2 + k2
10)

∫ t

0

e−λ1(t−s)e−λsE|Z1(s)− Z2(s)|2ds.
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Proof. We denoteX :=X1−X2, Y :=Y1−Y2, Z := Z1−Z2, b := b(X1,E[X1|FW0 ],
Y1, Z1)−b(X2,E[X2|FW0 ], Y2, Z2), σ := σ(X1,E[X1|FW0 ], Y1, Z1)−σ(X2,E[X2|FW0 ],
Y2, Z2). Applying Itô’s formula to e−λt|X1(t) − X2(t)|2 and taking expectation, we
obtain

(A.4)

e−λtE|X(t)|2 = −λ
∫ t

0

e−λsE|X(s)|2ds+2E
∫ t

0

e−λs〈X(s), b(s)〉ds+E
∫ t

0

e−λs|σ(s)|2ds.

Notice that

2〈X(s), b(s)〉 = 2〈X(s), b(s,X1(s),E[X1(s)|FW0
s ], Y1(s), Z1(s))

− b(X2(s),E[X1(s)|FW0
s ], Y1(s), Z1(s))〉

+ 2〈X(s), b(s,X2(s),E[X1(s)|FW0
s ], Y1(s), Z1(s))

− b(X2(s),E[X2(s)|FW0
s ], Y2(s), Z2(s))〉

≤ 2λ1|X(s)|2 + 2|X(s)|(k1|E[X(s)|FW0
s ]|+ k2|Y (s)|+ k3|Z(s)|)

≤ (2λ1 + k2K
−1
1 + k3K

−1
2 )|X(s)|2 + 2k1|X(s)|E[|X(s)||FW0

s ]|
+ k2K1|Y (s)|2 + k3K2|Z(s)|2

and

|σ(s)|2 ≤ k2
7|X(s)|2 + k2

8|E[X(s)|FW0
s ]|2 + k2

9|Y (s)|2 + k2
10|Z(s)|2

≤ k2
7|X(s)|2 + k2

8E[|X(s)|2|FW0
s ] + k2

9|Y (s)|2 + k2
10|Z(s)|2.

Then, from (A.4), E[E[|X(s)|2|FW0
s ]] = E|X(s)|2 and

E
[
|X(s)|E[|X(s)||FW0

s ]
]

= E
[
E
[
|X(s)|E[|X(s)||FW0

s ]
∣∣FW0
s

]]
= E

[
(E[|X(s)||FW0

s ])2
]
≤ E

[
E[|X(s)|2|FW0

s ]
]

= E|X(s)|2,

we can obtain (A.2).

Now, we apply Itô’s formula to e−λ1(t−s)e−λs|X1(s) − X2(s)|2 for s ∈ [0, t] and
taking expectation, it follows that

(A.5)

e−λtE|X(t)|2

= −(λ−λ1)

∫ t

0

e−λ1(t−s)e−λsE|X(s)|2ds+ 2E
∫ t

0

e−λ1(t−s)e−λs〈X(s), b(s)〉ds

+ E
∫ t

0

e−λ1(t−s)e−λs|σ(s)|2ds.

From the above estimates and (A.5), one can prove (A.3).

Remark A.1. By integrating both sides of (A.3) on [0, T ] and using 1−e−λ1(T−s)

λ1
≤

1−e−λ1T

λ1
for all s ∈ [0, T ], we have

(A.6) ‖X1−X2‖2λ ≤
1−e−λ1T

λ1

[
(k2K1 + k2

9)‖Y1−Y2‖2λ + (k3K2 + k2
10)‖Z1−Z2‖2λ

]
.
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Let t = T in (A.3) and notice that e−λ1(T−s) ≤ 1 ∨ e−λ1T for all s ∈ [0, T ]; thus

e−λTE|X1(T )−X2(T )|2 ≤
[
1 ∨ e−λ1T

] [
(k2K1 + k2

9)‖Y1 − Y2‖2λ(A.7)

+(k3K2 + k2
10)‖Z1 − Z2‖2λ

]
.

In particular, if λ1 > 0, we have

(A.8) e−λTE|X1(T )−X2(T )|2 ≤ (k2K1 + k2
9)‖Y1 − Y2‖2λ + (k3K2 + k2

10)‖Z1 −Z2‖2λ.

Similarly, for a given X(·) ∈ L2
F (0, T ;Rn), the backward equation in the MF-

FBSDE (4.1) has a unique solution (Y (·), Z(·)) ∈ L2
F (0, T ;Rl) × L2

F (0, T ;Rl×(d+1)),
thus we can introduce another map M2 : L2

F (0, T ;Rn) → L2
F (0, T ;Rl) × L2

F (0, T ;
Rl×(d+1)), through

Y (t) = g(X(T ),E[X(T )|FW0

T ])(A.9)

+

∫ T

t

f(s,X(s),E[X(s)|FW0
s ], Y (s), Z(s))ds−

∫ T

t

Z(s)dW (s).

The well-posedness of (A.9) under assumptions (H1), (H2) is referred to in Darling
and Pardoux [22, Theorem 3.4] and Buckdahn and Nie [13, Lemma 2.2]. Moreover,
we have E supt∈[0,T ] |Y (t)|2 <∞.

Lemma A.2. Let (Yi(·), Zi(·)) be the solution of (A.9) corresponding to Xi ∈
L2
F (0, T ;Rn), i = 1, 2. Then for all λ ∈ R, K3, K4 > 0, we have

(A.10)

e−λtE|Y1(t)− Y2(t)|2 + λ2

∫ T

t

e−λsE|Y1(s)− Y2(s)|2ds

+ (1− k6K4)

∫ T

t

e−λsE|Z1(s)− Z2(s)|2ds

≤ (k2
11 + k2

12)e−λTE|X1(T )−X2(T )|2 + (k4 + k5)K3

∫ T

t

e−λsE|X1(s)−X2(s)|2ds,

where λ2 := −λ− 2λ2 − (k4 + k5)K−1
3 − k6K

−1
4 . Moreover,

(A.11)

e−λtE|Y1(t)− Y2(t)|2 + (1− k6K4)

∫ T

t

e−λ2(s−t)e−λsE|Z1(s)− Z2(s)|2ds

≤ (k2
11 + k2

12)e−λ2(T−t)e−λTE|X1(T )−X2(T )|2

+ (k4 + k5)K3

∫ T

t

e−λ2(s−t)e−λsE|X1(s)−X2(s)|2ds.

Proof. We denote X :=X1−X2, Y :=Y1−Y2, Z :=Z1−Z2, f := f(X1,E[X1|FW0 ],
Y1, Z1)−f(X2,E[X2|FW0 ], Y2, Z2). Applying Itô’s formula to e−λt|Y1(t)−Y2(t)|2 and
taking expectation, we obtain

(A.12)

e−λtE|Y (t)|2 − λ
∫ T

t

e−λsE|Y (s)|2ds+ E
∫ T

t

e−λs|Z(s)|2ds

= e−λTE|Y (T )|2 + 2E
∫ T

t

e−λs〈Y (s), f(s)〉ds.

D
ow

nl
oa

de
d 

08
/0

8/
19

 to
 1

58
.1

32
.1

61
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2874 YING HU, JIANHUI HUANG, AND TIANYANG NIE

Noticing that

2〈Y (s), f(s)〉 = 2〈Y (s), f(s,X1(s),E[X1(s)|FW0
s ], Y1(s), Z1(s))

− f(X1(s),E[X1(s)|FW0
s ], Y2(s), Z1(s))〉

+ 2〈Y (s), f(s,X1(s),E[X1(s)|FW0
s ], Y2(s), Z1(s))

− f(X2(s),E[X2(s)|FW0
s ], Y2(s), Z2(s))〉

≤ 2λ2|Y (s)|2 + 2|Y (s)|(k4|X(s)|+ k5|E[X(s)|FW0
s ]|+ k6|Z(s)|)

≤ (2λ2 + k4K
−1
3 + k5K

−1
3 + k6K

−1
4 )|Y (s)|2 + k4K3|X(s)|2

+ k5K3E[|X(s)|2|FW0
s ]|+ k6K4|Z(s)|2

and
|Y (T )|2 = |g(X1(T ),E[X1(T )|FW0

T ])− g(X2(T ),E[X2(T )|FW0

T ])|2

≤ k2
11|X(T )|2 + k2

12E[|X(s)|2|FW0
s ].

Then, from (A.12) and E[E[|X(s)|2|FW0
s ]] = E|X(s)|2, we can obtain (A.10).

Now, we apply Itô’s formula to e−λ2(s−t)e−λs|Y1(s) − Y2(s)|2 for s ∈ [t, T ] and
taking expectation, it follows that

(A.13)

e−λtE|Y (t)|2 − (λ+ λ2)

∫ T

t

e−λ2(s−t)e−λsE|Y (s)|2ds+ E
∫ T

t

e−λ2(s−t)e−λs|Z(s)|2ds

= e−λ2(T−t)e−λTE|Y (s)|2 + 2E
∫ T

t

e−λ2(s−t)e−λs〈Y (s), f(s)〉ds.

From the above estimates and (A.13), one can prove (A.11).

Remark A.2. Now we choose K4 satisfying 0 < K4 ≤ k−1
6 ; then by integrating

both sides of (A.11) on [0, T ] and using 1−e−λ2s

λ2
≤ 1−e−λ2T

λ2
for all s ∈ [0, T ], we have

(A.14)

‖Y1−Y2‖2λ ≤
1−e−λ2T

λ2

[
(k2

11+k2
12)e−λTE|X1(T )−X2(T )|2+(k4+k5)K3‖X1−X2‖2λ

]
.

Let t = 0 in (A.11) and notice that 1 ∧ e−λ2T ≤ e−λ2s ≤ 1 ∨ e−λ2T for all s ∈ [0, T ];
thus

‖Z1 − Z2‖2λ

(A.15)

≤ (k2
11+k2

12)e−λ2T e−λTE|X1(T )−X2(T )|2+(k4+k5)K3(1 ∨ e−λ2T )‖X1−X2‖2λ
(1− k6K4)(1 ∧ e−λ2T )

.

On the other hand, if λ2 > 0, letting t = 0 in (A.10), we have

(A.16)

‖Z1 − Z2‖2λ ≤
(k2

11 + k2
12)e−λTE|X1(T )−X2(T )|2 + (k4 + k5)K3‖X1 −X2‖2λ

1− k6K4
.

Now, we present the proof of Theorem 4.1.
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Proof of Theorem 4.1. We define M := M2 ◦M1, recalling that M1 is defined
through (A.1) and M2 is defined through (A.9). Thus M maps L2

F (0, T ;Rl) ×
L2
F (0, T ;Rl×(d+1)) into itself. To prove the theorem, it is only needed to show that
M is a contraction mapping for some equivalent norm ‖ · ‖λ. In fact, for (Yi, Zi) ∈
L2
F (0, T ;Rl)× L2

F (0, T ;Rl×(d+1)), let Xi :=M1(Yi, Zi) and (Y i, Zi) :=M((Yi, Zi));
from (A.6), (A.7), (A.14), and (A.15), we have

‖Y 1 − Y 2‖2λ + ‖Z1 − Z2‖2λ

≤

[
1− e−λ2T

λ2

+
1 ∨ e−λ2T

(1− k6K4)(1 ∧ e−λ2T )

]
×
[
(k2

11 + k2
12)e−λTE|X1(T )−X2(T )|2 + (k4 + k5)K3‖X1 −X2‖2λ

]
≤

[
1− e−λ2T

λ2

+
1 ∨ e−λ2T

(1− k6K4)(1 ∧ e−λ2T )

]

×

[
(k2

11 + k2
12)(1 ∨ e−λ1T ) + (k4 + k5)K3

1− e−λ1T

λ1

]
×
[
(k2K1 + k2

9)‖Y1 − Y2‖2λ + (k3K2 + k2
10)‖Z1 − Z2‖2λ

]
.

Recall that λ1 := λ− 2λ1 − k2K
−1
1 − k3K

−1
2 − 2k1 − k2

7 − k2
8 and λ2 := −λ− 2λ2 −

(k4 + k5)K−1
3 − k6K

−1
4 . Then by choosing suitable λ (e.g., we can easily choose λ big

enough such that λ1 ≥ 1 and λ2 ≤ 0), the first assertion of Theorem 4.1 is immediate.
Now let us prove the second assertion. Since 2(λ1 + λ2) < −2k1 − k2

6 − k2
7 − k2

8,
we can choose λ ∈ R, 0 < K4 ≤ k−1

6 , and sufficiently large K1,K2,K3 such that

λ1 > 0, λ2 > 0, 1−K4k6 > 0.

Then from (A.6), (A.8), (A.14), and (A.16), we have

‖Y 1 − Y 2‖2λ + ‖Z1 − Z2‖2λ

≤
[

1

λ2

+
1

1− k6K4

]
×
[
(k2

11 + k2
12)e−λTE|X1(T )−X2(T )|2+(k4+k5)K3‖X1−X2‖2λ

]
≤
[

1

λ2

+
1

1− k6K4

]
×
[
k2

11 + k2
12 + (k4 + k5)K3

1

λ1

]
×
[
(k2K1 + k2

9)‖Y1 − Y2‖2λ + (k3K2 + k2
10)‖Z1 − Z2‖2λ

]
.

This completes the second assertion of Theorem 4.1.
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