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Abstract. We consider a class of linear-quadratic-Gaussian mean-field games having a major
agent and numerous heterogeneous minor agents in the presence of mean-field interactions. The
individual admissible controls are constrained in closed convex subsets I'y, of R™. The decentralized
strategies of individual agents and the consistency condition system are represented in a unified
manner through a class of mean-field forward-backward stochastic differential equations involving
projection operators on I'y,. The well-posedness of the consistency system is established in both the
local and global cases through the contraction mapping and discounting methods, respectively. A
related e-Nash-equilibrium property is also verified.
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1. Introduction. Mean-field games (MFGs) for stochastic large-population sys-
tems have been well-studied because of their breadth of applications in various fields,
such as economics, engineering, social sciences, and operational research. Large-
population systems are distinguished by having numerous agents (or players). The
individual influence of any single agent on the overall population is negligible, but
the effects of its statistical behaviors cannot be ignored at the population scale.
Mathematically, all agents are weakly coupled in their dynamics or cost function-
als through the state average (in a linear-state case) or the general empirical measure
(in a nonlinear-state case), either of which characterizes the statistical effect generated
by the population from a macroscopic perspective. Because of these features, when
the number of agents is sufficiently high, complicated coupling features arise, and it
is unrealistic for a given agent to obtain all other agents’ information. Consequently,
for an agent to design centralized strategies on the basis of information concerning
all peers in a large-population system is an intractable problem. Alternatively, one
reasonable and practical solution is to transform a high-dimensional and weakly cou-
pled problem to a low-dimensional and decoupled one; thus, the complexity in both
analysis and computation can be reduced. To accomplish this task, one method is
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to investigate relevant decentralized strategies based only on local information. The
relevant strategies are based only on the individual state of a given agent and some
mass-effect quantities that are computed offline.

In this context, and motivated by the theory of the propagation of chaos, Lasry
and Lions [39, 40, 41] proposed distributed closed-loop strategies, which were for-
mulated as a coupled nonlinear forward-backward system consisting of a Hamilton—
Jacobi-Bellman (HJB) equation and a Fokker—Planck equation. Moreover, the lim-
iting problem enabled the design of approximate Nash-equilibrium strategies. Inde-
pendently, Huang, Malhamé, and Caines [37] developed a similar program called the
Nash certainty equivalence (NCE) principle, which was motivated by the analysis of
large communications networks. In principle, the MFGs procedure consists of the
following four main steps (see [5, 17, 34, 36, 41]): (1) A limiting mass-effect term,
which comes from the asymptotic mass-effect behavior when the agent number N
tends to infinity, is introduced. This limiting term should be treated as an exogenous
and undetermined “frozen” term at this moment. (2) Through the replacement of the
mass-effect term with the frozen limiting term, a related limiting-optimization prob-
lem can be formulated. Thus, the initial, highly coupled problem can be decoupled
and only parameterized by this generic frozen limit. Subsequently, an HJB equation
can be obtained on the basis of the dynamic programming principle (DPP) using
standard control techniques (see [57, 46]), or a Hamiltonian system can be obtained
on the basis of the stochastic maximum principle (SMP); the obtained equations can
characterize the decentralized optimal strategies. (3) A consistency condition is estab-
lished to ensure that the set of decentralized optimal strategies collectively replicates
the mass-effect. (4) The derived decentralized strategies are shown to be e-Nash equi-
librium, which justifies the aforementioned scheme for finding the approximate Nash
equilibrium.

Recently, Cardaliaguet and Rainer [16] studied the efficiency of MFG Nash equi-
libria. For further analysis and technical details of MFGs, readers are referred to
[1, 5, 15, 17, 26, 34, 54, 55|, the comprehensive notes of Cardaliaguet [14], and the
books [18, 19] authored by Carmona and Delarue. We mention that there exists
a substantial body of literature on MFG in the linear-quadratic-Gaussian (LQG)
setting. For example, [35] studied LQG MFGs and its closed-loop strategies using
the standard Riccati equation approach; [36] studied LQG MFGs having nonuniform
agents through state-aggregation using empirical distribution; [8] investigated the
MFG strategies using the SMP method and how the well-posedness of closed-loop
strategies is connected to that of a family of open-loop strategies by using a Hamilto-
nian system; and [2] and [42] studied ergodic and long-time LQG MFGs. For further
research on MFG in various LQG settings, readers are referred to [3, 7, 51] and the
references therein.

Almost all of the aforementioned works examine standard MFGs, which require
that all the agents be statistically identical and that the individual influence on the
overall population of a single agent be negligible as the number of agents tends to
infinity. However, in the real world, some models exist in which a major agent ex-
erts a significant influence on other agents (called minor agents), regardless of how
numerous the minor agents may be. Such interactions appear in numerous socioeco-
nomic problems (e.g., [18, 19, 38]). This type of game involving agents with different
hierarchical levels is usually called a mixed-type game. Compared with MFGs having
only minor agents, a distinctive feature of mixed-type MFGs is that the mean-field
behavior of the minor agents is affected by the major agent; thus, it is a random
process, and the influence of the major agent on the minor agents is not negligible
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in the limiting problem. To deal with such new features, conditional distribution
with respect to the major agent’s information flow is introduced (see [47, 20]), and
additional analytic steps are required to approach the major and minor agents in a
sequential manner. We also remark that there are essential analysis differences be-
tween major-minor games and leader-follower (Stackelberg) games, in particular in
their response functionals and necessary fixed-point arguments, although both types
of games involve some sequential optimization arguments.

For the literature review, we will now briefly describe some relevant works on
MFGs involving a major (dominating) agent and minor agents. To the best of our
knowledge, the first MFG work having a major agent and minor agents was [33], which
studied the mixed game having a major agent and a total finite K class of minor agents
in a LQG and infinite-time horizon framework. Using the state-augmentation tech-
nique, the related decentralized strategies were derived through the algebraic Riccati
equation, and the approximate Nash-equilibrium property was also verified. In a
subsequent study [48], the authors examined mean-field LQG mixed games having
continuum-parameterized minor agents. Nourian and Caines [47] investigated non-
linear, stochastic dynamic systems having major and minor agents and introduced
a coupled stochastic HJB system to MFG strategies because of the random state-
average limit. Buckdhan, Li, and Peng [12] studied nonlinear stochastic differential
games involving a major agent and numerous, collectively acting, minor agents, en-
gaged in two-person zero-sum stochastic differential games of feedback type control
against feedback control, and the limiting behaviors of the saddle-point controls were
also studied. For further research on mixed MFG using more probabilistic methods,
readers are referred to [4, 20] and the references therein.

In this study, we investigate a class of LQG MFGs with a major agent and mi-
nor agents acting in the presence of control constraints. In all of the aforementioned
papers concerning linear-quadratic (LQ) control problems, the control was uncon-
strained (in this sense, it can be called “full control”), and the (feedback) control
can be constructed through either DPP or SMP, both of which are automatically
admissible. However, if we impose constraints on the admissible control, the entire
LQ approach fails to apply (see, e.g., [21, 32]). We emphasize that the LQ control
problems concerning control constraints have broad applications in finance and eco-
nomics. For example, the mean-variance problem in relation to the prohibition of
short-selling can be transferred to LQ control problems having positive control (see,
e.g., [6, 32]). The optimal investment problems, where the agents have relative per-
formance characteristics (i.e., their portfolio constraints have different half-space or
polyhedron forms), can also be addressed through the approach of using LQ control
problems having input constraint (see, e.g., [28, 24]). Remark 2.1 of the current pa-
per provide several other constraint sets I' C R™ as well as their applications. For an
investigation of LQ problems having positive controls or a more general study where
the control is constrained in a given convex cone, readers are referred to [9] for a
deterministic case and [21, 32, 43] for a stochastic case.

As far as we know, the present study is the first to examine constrained LQG
MFGs having a major agent and a large number of minor agents. In addition to
the control constraint being a completely new feature, our study also has other novel
features, and these distinguish it from other relevant studies. In [33, 48], the dif-
fusion term directly assumes a constant; hence, the state is driven only by some
additive noise. By contrast, the present study considers the mean-field LQG mixed
games in which the diffusion term depends on the major agent’s and the minor agent’s
states as well as the individual control strategy. This introduces additional difficulties,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/08/19 to 158.132.161.185. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

2838 YING HU, JIANHUI HUANG, AND TIANYANG NIE

especially when applying the general SMP, because now the dynamics are driven by
controlled multiplicative noise. In [47, 12], nonlinear stochastic differential games were
studied in which the control domain may be an arbitrary (nonconvex) subset. We,
however, adopt an LQ mean-field framework having individual controls constrained
in a closed convex set; thus, we can explicitly present the optimal strategies through a
projection operator. Moreover, we use SMP to obtain the optimal strategies through
Hamiltonian systems that are fully coupled forward-backward stochastic differential
equations (FBSDEs). This approach differs from [47], in which they used DPP and a
verification theorem to characterize the optimal strategies. Here, we connect the con-
sistency condition to a new type of conditional mean-field forward-backward stochastic
differential equation (MF-FBSDE) involving projection operators. We establish its
well-posedness under suitable conditions using a fixed-point theorem, in both the lo-
cal case and the global case. Unlike in our previous paper [29], we now focus on the
mixed game, which is more realistic and challenging. In this situation, the consistency
condition is a conditional MF-FBSDE that does not satisfy the usual monotonicity
condition of [31]. Moreover, we require an additional subtle analysis to analyze the
major agent’s influence and to establish the approximate Nash equilibrium. Finally,
motivated by [24], we contend that our results can be applied to solving the optimal
investment problems having a major agent and N minor agents.

The remainder of this paper is structured as follows. In section 2, we formulate
the LQG MFGs with a control constraint involving a major agent and minor agents.
Decentralized strategies are derived through an FBSDE having projection operators.
A consistency condition is also established using some fully coupled FBSDEs that
come from the SMP. In section 3, we prove the well-posedness of fully coupled con-
ditional MF-FBSDESs, which characterize the consistency condition in the local time
horizon case. In section 4, we ascertain the well-posedness of the global time case. In
section 5, we verify the e-Nash equilibrium of the decentralized strategies. Moreover,
we examine the convergence rate of the empirical measure.

The main contributions of this paper can be summarized as follows:

e We introduce and analyze a new class of LQG mixed MFGs using SMP. In
our setting, both the major agent and minor agents are constrained in their
control inputs.

e The diffusion terms of the major and minor agents are dependent on their
states and control variables.

e The consistency condition system or NCE principle is represented through a
new type of conditional mean-field FBSDE having projection operators.

e We establish the existence and uniqueness of such an NCE system in the local
case (i.e., small time horizon) using the contraction mapping method, and in
the global case (i.e., arbitrary time horizon) using the discounting method.

2. LQG mixed games with control constraint. Consider a finite time hori-
zon [0,7] for fixed T > 0. We assume (Q, F,{F;}o<i<7,P) is a complete, filtered
probability space satisfying usual conditions. {W;(t), 0 <i < N}o<i<r is an (N +1)-
dimensional Brownian motion on this space. Let F; be the natural filtration generated
by {W;(s),0 <i < N,0 < s <t} and augmented by Np (the class of P-null sets of
F). Let FYo, FVi| Fi be respectively the augmentation of o{Wy(s),0 < s < t},
o{Wi(s),0 < s < t}, o{Wy(s), W;(s),0 < s < t} by Np. Here, {F}"°}o<i<r stands
for the information of the major agent, while {]:twi}ogtg’f represents the individual
information of the ith minor agent.

Throughout the paper, 2’ denotes the transpose of a vector or a matrix x, and
S™ denotes the set of symmetric n X n matrices with real elements. For a matrix
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M € R4 we define the norm |M| := /Tr(M'M). If M € S" is positive (semi)
definite, we write M > (>)0. Let H be a given Hilbert space, and the set of H-valued
continuous functions is denoted by C(0,T;H). If N(-) € C(0,7;8™) and N(¢t) > (>)0
for every t € [0,T], we say that N(-) is positive (semi) definite, which is denoted by
N(:) > (>)0. Moreover, for a given Hilbert space H and a filtration {G,}o<i<T,
we introduce the following spaces: LéT(Q;’H) denotes the space of Gr-measurable
random variables {¢} such that E|¢|? < oo; LZ(0,T;H) denotes the space of Gy-

progressively measurable processes {x(s),s € [0,7]} such that EfOT lz(t)|2dt < oo;
LE(;C(0,T;H)) denotes the space of G-adapted continuous processes {z(s),s €
[0, 7]} such that Esupy<, < |2(t)]* < oo.

Now, we consider an LQG mixed mean-field game involving a major agent Ag and
a heterogeneous large population with N individual minor agents {A4; : 1 <i < N}.
Unlike other works of LQG mixed games, our control domain is constrained in a closed
convex set (more details of constraints will be given later). The states zp for major
agent Ag and x; for each minor agent A4; are modeled by the following controlled
linear stochastic differential equations (SDEs) with empirical state-average coupling:

dzo(t) = [Ao(t)zo(t) + Bo(t)uo(t) + Fi )z ™) (1) 4 bo(t)]dt
(2.1) + [Co(t)a?o(t)—I—Do(t)UQ(t)—‘ng(t)JJ(N)(t)—FO'o(t)]dWo(t), xo(O) =10 € R",
and

dx;(t) = [Ag, (t)xs(
(22) +[C(t)zi(t)

t) + B(t)ui(t) + Fy (t)z™) (1) + b(t)]dt
+ Dy, (t)us () +Fa ()™ (8) + Hao (t)+0 (£)]dWi(t), ;(0)=z € R,

where 2V (:) = L Zf\[:l z;(-) is the state-average of minor agents. Note that JF;
is the individual decentralized information, while F; is the centralized information
driven by all Brownian motion components. We point out that the heterogeneous
noise W; is specific for individual agent A;, whereas z;(t) is adapted to F; instead
of F} due to the coupling state-average 2(¥). The coefficients of (2.1) and (2.2) are
deterministic matrix-valued functions with appropriate dimensions. The number 6;
is a parameter of agent 4; to model a heterogeneous population of minor agents, for
more explanations, see [33]. For the sake of notational brevity, in (2.2), we only set
the coefficients A(-) and D(-) (see also R(-) in (2.4)) to be dependent on ;. A similar
analysis can proceed when all other coefficients depend also on ;. In this paper, we
assume that 60; takes values from a finite set © := {1,2,..., K}, which means that
totally K types of minor agents are considered. We call A; a k-type minor agent if
0; =k € 6.

In this paper, we are interested in the asymptotic behavior as N tends to infinity.
This is essentially to consider a family of games with an increasing number of minor
agents. To describe the related large-population system, let us first define

where N is the cardinality of index set Z;,1 < k < K. Let 7r,(€N) = % for k €
{1,...,K}; then 7(") = (’R’;N), .. ,WE{N)) is a probability vector to represent the

empirical distribution of #1,...,0y. The following assumption gives some statistical
properties for ;. For more details, the reader is referred to [33].
Al. There exists a probability mass vector # = (m,m9,...,7g) such that

th—>+oc 7T(N) =7 and minlSkSK i > 0.
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From Al we know that when N — 400, the proportion of k-type agents becomes
stable for each k£ and that the number of each type agents tends to infinity. Otherwise,
the agents in a given type with bounded size should be excluded from consideration
when analyzing asymptotic behavior as N — +o0o. Throughout the paper we make
the convention that IV is sufficiently large such that minj<p<x Ny > 1.

Now let us specify the admissible control and cost functionals of our LQG mixed
game with input control constraint. We call uy a centralized admissible control for
the major agent if ug € US), where U} := {u(-) | u(-) € L%(0,T;Ty)}. Here Ty C
R™ is a nonempty closed convex set. For each 1 < i < N, we define centralized
admissible control u; for the minor agent A; as u; € Z/{;j, where for a nonempty
closed convex set Ty, C R™, U = {u;(-) | ui(-) € L%(0,T;T,)}. Moreover, in
contrast, we call uy a decentralized admissible control for the major agent if ug € U2,
where U0, = {u(-) | u(-) € L%w,(0,T;Tq)}, and for each 1 < i < N, we also
define decentralized admissible control u; for the minor agent A; as u; € U, ,;, where
Uy = {u;(-) | wi(-) € L%,(0,T;T,)}. Note that we have U}, C Z/l;:j, for 0 <i < N.

Remark 2.1. We give the following typical examples for the closed convex con-
straint set I': T'! = R’ represents that the control can only take positive values.
It connects with the mean-variance portfolio selection problem with a no-shorting
constraint; see [6, 32]. The linear subspace I'? = (Re;)t (where (eq,e2,...,6ey) is
the canonical basis of R™) represents that the control can only take from a hyper-
plane. It is used to deal with the following situation: each manager for portfolio
investment has access to the whole market except some fixed firm who has private
information and thus linear constraint with segment arises. For more examples of
linear constraints and their economic meaning, the reader may refer to [24]. T' can
also be some closed cone (i.e., I' is closed and if w € T', then au € T, for all a > 0),
eg, [P ={ueR™:Yu=0}orI'*={ueR": Yu<0}, where Y € R**™. For
investigations on stochastic LQ problems with conic control constraint, the reader
may refer to [21, 32].

Let u = (ug,u1,...,un) be the set of strategies of all N + 1 agents, u_g =
(u1,us,...,uyn) be the control strategies except Ag, and u_; = (ug, U1, - - -, Ui—1, Wit1,
...,un) be the set of strategies except the ith agent A;. We introduce the cost func-
tional of the major agent as

(2.3)
T
Jo(ug,u_o) = ;E[/O <Q0(t) (zo(t) — pox™ (1)), zo(t) — Pofﬂ(N)(t)>

+ <R0(t)U0(t),U0(t)>dt + <G0 (a’,‘o(T) - pox(N) (T)),.’I,‘Q(T) — pO:L‘(N)(T)>:|

and the cost functional of the minor agent A; as

Tl i) = 3E [/OT ((@ai=pr™ ~(1=p)zo(t).

(2.4) +(G e~ pa ™ (1)~ (1=p)ao(T)), s(T) =™ ()~ (1-p)o(T))

We mention that for notational brevity, the time argument is suppressed when nec-
essary, and p does not depend on 6;; a similar analysis can proceed when p depends
on 6;.
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We impose the following assumptions:
A2. The coefficients of the states satisfy that, for 1 <1i < N,

AO(')vAei(')7 CO(')7 C()7F01()’ Fl(')’FOQ(')v F2()7H() € LOO(O>T; Rnxn)v
BO(')’ B()’ DO(')? D9i(')€LOO (07 T Rnxm)’ bO(')7 b()v UO(')) U(')ELOO (0’ T Rn)

A3. The coefficients of cost functionals satisfy that, for 1 <i < N,

QO()aQ() € LOO(O’Tasn)’RO()7R9@() S LOO(OaT, Sm)aG07G S Snv
QO() > 07@() > O;RO() > O7R91() > O7G0 > 07G > O7p0ap € [07 1]

Here L°°(0,T;H) denotes the space of uniformly bounded functions mapping from
[0,T] to H. It follows that, under assumptions A2 and A3, the system (2.1) and (2.2)
admits a unique solution zo(+), z;(-) € L%(Q; C(0,T;R™)) for given admissible control
uo and u;. Now, let us formulate the LQG mixed games with control constraint.

Problem (CC). Find a strategy profile @ = (@, 1, ..., an) where 4,;(-) € U/, 0 <
i < N, such that

T i) = i F(w() (), 0<i<N.
uz()GU;;
We call @ Nash equilibrium for Problem (CC).
For comparison, we also present the definition of e-Nash equilibrium.

DEFINITION 2.1. A strategy profile w = (to, @1, .. .,an) where u;(-) € Z/lg(’;, 0<
i < N, is called an e-Nash equilibrium with respect to costs J!, 0<i<N, if there
exists an e = e(N) > 0,limpy_, 100 £(N) = 0, such that for any 0 < i < N, we have

Ji(i(-),u-i(-)) < Ji(ui(-), u-i(-)) +¢,
when any alternative strategy u; € Z/{;’j is applied by A;.

Remark 2.2. If ¢ = 0, Definition 2.1 reduces to the usual exact Nash equilibrium.

2.1. Stochastic optimal control problem for the major agent. As ex-
plained in the introduction, the centralized optimization strategies to Problem (CC)
are rather complicated and infeasible to be applied when the number of the agents
tends to infinity. Alternatively, we investigate the decentralized strategies via the
limiting problem with the help of frozen limiting state-average. To this end, we first
figure out the representation of limiting process using heuristic arguments. Based
on it, we can find the decentralized strategies by the consistency condition and then
rigorously verify the derived decentralized strategy profile is an e-Nash equilibrium.
We formalize the auxiliary limiting mixed game via the approximation of the average

state (V). Since W](CN) ~ m, for large N and

2N _ ii > :iﬂwi >
N i £ k Ny i

k=1i€Zy 1€1y

we may approximate (V) by Zszl mpmyi, where my € R™ is used to approximate
N%c > ier, Ti- Denote m = (mf, my, ... my)", which is called the set of aggregate quan-

tities. Replacing (V) of (2.1) and (2.3) by Zszl My, the major agent’s dynamics
is given by
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dZO(t) = Ao(t)Zo(t) + Bo(t) + FO Zﬂ'kmk + bo ) dt
Co(t) ( )+ DO( + FO Zﬂkmk + 00( )] dWo(t),
(2.5) Zo(O) =0 € Rn,

and the limiting cost functional is

/ <Qo(t) <ZO(t) —po Yy ﬂkmk(t)> »20(t) = po Z mmk(t)>
0 k=1

+ (Ro(t)uo(t), uo(t))dt + <Go <Z - o mek ) ;
(26) Z()(T) — Po Z TEMmy (T)>
k=1

For simplicity, let ® be the Kronecker product of two matrix (see [25]) and we denote
Fy™ =1 @F), Fy™ =1 ®F2, p§ := 7 ® polnxn. Then (2.5) and (2.6) respectively
become
(2.7)
dzo(t) = [Ao(t)20(t) + Bo(t)uo(t) + Fy ™ (¢)m(t) + bo(t)]dt
+ [Co(t)ZO(t) + Do(t)uO(t) + Foz’ﬂ'(t)m(t) + O'O(t)]dWO(t), 20(0) =29 € Rn,

1
Jo(’lLo) = §E

and

Jo(uo) = ;E[/T <Q0(t) (20(t) — pgm(t)), zo(t) — Pgm(t)>

0

+ (Ro(t)uo(t), uo(t))dt + <G0 (20(T) = pfm(T)), 20(T) — pgm(T)>] .

We define the following auxiliary stochastic optimal control problem for the major
agent with infinite population (note that the admissible control belongs to Z/{gd rather
than US)):

Problem (LCC-Major). For the major agent Ag, find ug(-) € U, satisfying

Jo(wy()) = inf o).

Then u(-) is called a decentralized optimal control for the auxiliary Problem (LCC-
Major).

Now, similar to [29], in order to obtain the optimal control, we would like to apply
the SMP to the above limiting LQG problem (LCC-Major) with input constraint. We
introduce the first order adjoint equation
(2.8)

dpo(t) = —[AL(t)po(t) — Qo(t)(20(t) — pgm(t)) + Co(t)qo(t)]dt + qo(t)dWo (),

po(T) = —=Go(20(T) — pgm(T)),
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as well as the Hamiltonian function
Ho(t,p,q,2,u) = (p, Aoz + Bou + Fy™m + bo) + {(q,Coz + Dou + Fy™m + 00)
1 x - 1
— §<Q0(x —pom),x — p0m> — §<R0u,u>.

Since I'g is a closed convex set, for optimal control uf, related optimal state zg, and
related solution (pg, ¢}) to (2.8), the SMP reads as the following local form:

OH
(2.9) <80(t,p87q5,zg,u(’§),u - u3> <0 forallueTly, ae. tel0,T], P-a.s.
u

Similar to the argument in p. 5 of [29], using the well-known results of convex analysis
(see Theorem 5.2 of [10] or Theorem 4.1 of [29]), (2.9) is equivalent to

(2.10)  wi(t) = Pr[Ry ' (t)(By(O)pi(t) + Dy(H)q)(1)],  ae. t € [0,T), P-a.s.,

where Pr,[-] is the projection mapping from R™ to its closed convex subset I'g under
1 1
the norm || - ||z, (where ||lz[|%, = ((z,2)) :=< Rz, R{x >). Finally, by substituting
(2.10) in (2.7) and (2.8), we get the following Hamiltonian system for the major agent:
dzo = (Aozo + BoPr, [Ry " (Bypo + Dyao)] + Fy"m + bo ) dt
+ (C()ZO + D0P1'*U [RO_I (B(/)p() + D(')qo)} + Foz’ﬂm + O’o) dWQ(t),

dpo = — (Appo — Qo(z0 — pgm) + Coqo)dt + qodWo (1),
20(0) =0, po(T) = —Go(20(T) — p§m(T)).

(2.11)

Remark 2.3. We mention that since the cost functional for Problem (LCC-Major)
is strictly convex and I'g is compact, it admits a unique optimal control. Then uj
defined by (2.10) is the optimal control. Moreover, we have Jo(ug(-)) = inf, )0

ad

Jo(up(+)), due to the fact that Jo(ug(-)) < Jo(ug(-)) still holds even if the control ug
is merely adapted to a larger filtration (e.g., {F:}) as long as the Wiener process Wy
remains a Brownian motion for this filtration; see Remark 2.3 of [17].

2.2. Stochastic optimal control problem for the minor agent. Denoting
FU™ .= 1@F,, F?>™ := 1QF,, p™ := m®pl,xn, the limiting state of minor agent A; is

{ dz; = (Agizi + Bu; + FY™m + b) dt + (C’zi + Dg,u; + F>™m + Hzp + J) dW(t),
zi(0) =z

The limiting cost functional is given by

(2.12)
K
k=1

K
Zi — Pzﬂ'kmk - (1- P)Zo> + <R9iui7ui>> dt

k=1
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K
+ <G (zl(T) - pZﬂkmk(T) —(1- p)zo(T)> )
k=1
K
(1) =0 Y. mn(T) — (1= pha(D))]
k=1

= 2]E[/OT <<Q(zz —p"m— (1= p)z), 2 —pm—(1— P)ZO> + <R9i“z"“z‘>> dt

(G (T) = pm(T) = (1= p)2o(T)). 5(T) = p*m(T) — (1 - p)zOmﬂ,

and the related limiting stochastic optimal control problem for the minor agents is
the following.

Problem (LCC-Minor). For each minor agent A;, 1 < i < N, find u}(-) € U},
satisfying

T () = i Jiw()).
ui(')EZ/{l:d

Then w}(-) is called a decentralized optimal control for Problem (LCC-Minor).

Similar to the major agent, we obtain the following Hamiltonian system for minor
agent A;:

(2.13)
dz; = (A, + BPr, [Ry (B'ps + Dg)] + Fim +b) dt

+ (CZi + Do, Pr, [Ry ' (B'pi + Dy, qi)] + F5m+ Hzo + J) dWi(t),

dpi = — (A pi — Q(zi — p"m — (1 — p)zo) + C'q;)dt + q:dW;(t) + q;0dWo(t),
20 = o i) = ~C(a(T) — pm(T) — (1 - p)=o(T)).

Here, Pr,, [-] is the projection mapping from R™ to its closed convex subset 'y, under
the norm || - || g, . We mention that the limiting minor agent’s state z; also depends on
the limiting major agent’s state zo; it makes that z; is F*-adapted, and thus ¢i,0dWo(t)
appears in the adjoint equation.

2.3. Consistency condition system for the mixed game. Let us first focus
on the k-type minor agent. When i € 7, = {i | 6; = k}, we denote Ay, = Ay,
Dy, = Dy, Ro, = Ry, and I'g, = I'y,. We would like to approximate z; by z; when
N — +o00; thus my, should satisfy the consistency condition (noticing that Assumption
A1 implies that Ny — oo if N — 00)

mg(-) = lim L Z zi(+).

N—+oco Ny, =
k

Recall that for i,j € Zy, z; and z; are identically distributed and conditional inde-
pendent (under E(- |F°)). Thus by the conditional strong law of large number, we
have (the convergence is in the sense of almost surely; see, e.g., [45])

(214) m()= Jim 2 i) = B0

where z; is given by (2.13) with Ay, = Ay, Do, = Dy, Ry, = Ry, T'g, = T'y.. By com-
bining (2.11), (2.13), and (2.14), we get the following consistency condition system
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or Nash certainty equivalence principle of k-type minor agent for 1 < k < K (as
mentioned, for notational brevity, the time argument is suppressed in the following
equations except E(ay(t)|FY°) to emphasize its dependence on conditional expecta-
tion under F,"°):

(2.15)

K
dag, = (Akozk—i—BPp,c [R,;l(B/ﬁk-l-D;ﬂk)] +F ZWiE(ai(t”FtWO)"‘b) dt
i=1

K
+ (Cozk + DkPFk [Rlzl (B/ﬁk + D;ﬂk)] +F5 Z WiE(Oéi(tHftVVO)—l-HOzo—FU) de(t),

=1

K
dpy =— (AkﬂkQ <%PZW¢E(%@)|}?%)(1P)O‘O> +Cl7k> dt

i=1

+yRdWi(t) +Y%,0dWo (t),

a(0) =, ﬂk(T)G< Zm ai(T)|Fr°) — (1 P)Oéo(T)>7

where « satisfies the following FBSDE which is coupled with all k-type minor agents:
(2.16)

K
dog = (Aooéo-i-BoPFo [Ry ™ (BhBo+Diyvo) | +Fy ZﬂiE(Ofi(tﬂfthO)‘*‘bO) dt

i=1

K
+ (Coao + DoPr, [Ry " (ByBo+Diyro) | +F5 > WiE(ai(t)U:tWO)“’UO) dWo (t),

i=1

dfBo = — ( 080 — Qo <ao —POZM ( |]:WO)> +C(/)70> dt +yodWo(2),

ap(0) = xo, Bo(T) = =Gy ( — po Zﬂ-l o (T ]_-Wo)>

We consider toge of minor agents, i.e., (2.16) and (2.15) for all 1 < k < K; then
there arise 2K + 2 fully coupled equations including K + 1 forward equations and
K + 1 backward equations. Such fully coupled equations are called a consistency
condition system. Once we can solve it, then my = E(ay(t)|F*°) which depends on
the conditional distribution of ay. This allows us to use arbitrary Brownian motion
Wi in (2.15) which is independent of Wy. Finally, let us introduce the following
notation, which will be used in the following sections:

K K
(2.17) D(t) := mei = ZmE(ai(tﬂftWO)-

The consistency condition system (2.15)—(2.16) is a fully coupled conditional
mean-field FBSDE with projection operator. Its solvability is not a direct consequence
on current existing results, hence the next two sections investigate its well-posedness,
in the local and global cases, respectively. Note that the maximal solvability horizon
in the local case always takes some small time horizon, while the global solvability
can admit an arbitrary time horizon. Before our discussions in sections 3 and 4, we
end this section with the following remarks.
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Remark 2.4. (1) For general classical fully coupled FBSDEs, the standard con-
traction mapping method (see [44]) can be utilized to derive local solvability on a
small time horizon. In addition, one counterexample presented there (p. 11 in [44])
implies that such a small horizon feature cannot be relaxed in general. Pursuing
this line of thought, section 3 is devoted to addressing the local solvability of system
(2.15)—(2.16) in the presence of the new structures (conditional mean-field, projection
operator) of the current work. To approach these new structures, some new analytic
arguments are required.

In comparison with our work, [8] also establishes the well-posedness of a consis-
tency condition system for a class of LQ MFGs on a small time horizon (Theorems 3.2
and 3.3 of the cited work). However, [8] only involves (symmetric) minor agents, no
control constraint is imposed, and the diffusion term of minor agents in [8] is free of a
control variable. Consequently, feedback representation using the Riccati equation is
workable and takes the standard form, which is more tractable in analysis. Moreover,
the solvability of the consistency condition system (i.e., the special FBSDE (1) of [8])
can be transformed to that of the Riccati equation, which is further equivalent to that
of a family of FBSDESs in a local sense according to Radon’s lemma.

In contrast to [8], our current work has the following features in setting and anal-
ysis: the diffusion term of our agents depends on both the major and minor agents’
states as well as individual control strategies. In addition, the input constraint is
imposed and thus full control is no longer available, and neither is feedback repre-
sentation through the Riccati equation permitted. Therefore, as shown later, our
arguments proceed differently from those of [8].

(2) From both theoretical and practical perspectives, it is more appealing to
study the global solution to fully coupled FBSDEs (see [31, 49, 50]). One reason is
from the following fact: the decision horizon is always prespecified without modeling
flexibility, whereas the system parameters, to some extent of freedom degree, might
be appropriately designed. In response, section 4 turns to a discussion of the global
solvability of the system (2.15)—-(2.16).

With respect to global solvability, one relevant work is [29], which also studies
the global solvability of MFGs with input constraint. However, their FBSDE (see
(9) of [29]) satisfies the monotonicity assumption addressed in [31]. More specifically,
it is satisfied by one subtle argument leading to Theorem 2.1 in [29] that Ep = 0,
where p is the solution to (9) of [29]. However, in our current work, Eg; = 0, 0 <
i < K, cannot be ensured because of the presence of the coupling coefficient p in the
terminal condition and the heterogeneities between major and minor agents’ states.
Hence, new analysis is required to handle our mixed mean-field game having a control
constraint.

In addition, as mentioned before, the diffusion term of dynamics here depends
on the states of both major and minor agents as well as individual control strate-
gies. Such a structure is very different from [29], where the dependence is limited
to the individual control strategy only. Consequently, the monotonicity analysis in
[31, 29] cannot be implemented in the current setup. Instead, we need some partic-
ularized monotonicity conditions motivated by [49]. The related arguments are also
different (see Theorem 4.2, assumption (H1), and Remarks 4.1 and 4.3 of the present
paper).

(3) An intriguing remark was proposed in [15], whereby monotonicity conditions
on the mean-field term can be interpreted in some “spatial” sense: the agents in a
large population tend to dislike rather congested areas and to prefer configurations
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in which they are more scattered (for details, see p. 4 and Remark 2.6 of [15]). For
system (2.15)—(2.16) in our current work, a spatial monotonicity condition (different
from [29]) on the mean-field term holds automatically (see Remark 4.1 (Hy) — (¢')).
Also, a crucial condition in our work is the relation on the norms of some matrices (see
Theorem 4.2 and Remark 4.3). Such a relation, especially the condition on matrices
FII FI has the same spatial interpretation as in [15]. Furthermore, such a relation,
especially the condition on the eigenvalue value of matrix A, can also be interpreted
in a “temporal” sense because it is related to some stability property of the system
(2.15)—(2.16) in an asymptotic time scale.

3. Well-posedness of the consistency condition system: The local case.
This section aims to establish the well-posedness of consistency condition system
(2.15)—(2.16) in small time duration. Similar to the classical results on FBSDEs (see,
for example, Chapter 1, section 5, of Ma and Yong [44]), we need to introduce the
following additional assumption:

A4 Ry'(1), Ry (1) € L*(0,T;8™) and M| D|? < 1, where | D| := maxo<r<x | D|

and My := max{|Go|*(1 + p3), |G|*(1 + p? + (1 — p)?)}.
For simplicity, we denote ¢ (p, q) := Pr,[Ry (Byp+ D}q)] and e, (p, q) := Pr, [RB:I
(B'p + Dy,q)]. We have the following theorem.

THEOREM 3.1. Assume Al1-A4; then there exists Ty > 0 such that for any T €
(0,Tp], the system (2.15)-(2.16) has a unique solution (o, Bo, Y0, ks By Vi, Vk0)s 1 <
k < K, satisfying

a0, Bo € Low, (%C(0,T5R™)),  au, B € L% (Q;C(0,T;R™)),

3.1
( ) Yo € L_27-‘W0 (OvTv Rn)v V&5 Vk,0 € LQ}"C (OvTaRn)7 1 < k < K.

Proof. Let Ty € (0, 1] be undetermined and 0 < T' < Tj. We denote

N0, T) := Liw, (2;C(0,T;R™)) x -+ x L%k (Q;C(0,T; R™))
X Low, (0, T;R™) x -+ x L%, (0, T;R™)
X L3 (0, T;R™) x -+ x L34 (0, T;R™).
For (Yo,...,Yx,Zo,...,Zr,Y10,---, TKo0) € N[0,T], we introduce the following

norm:

(Y0, -+, Yic, Zo, -+, Zic, T0s -+ Tic0) oy

(3.2) - K ) K T ) K /T )
= sw B[S0 +k§/ 124()] ds+;/0 Tualo)Ps.

t€[0,T] =0

Let N[0,T] be the completion of N0, T] in L%, (0,T;R"™) x --- x L2, (0, T;R™) X
L2

2w (0, T5R™) 5+ x L5, (0, T; R™) X L% (0, T R™) X - - - X L5 (0, T5 R™) under norm
(3.2). Now for any

Y5, Y, 2] 23,0 g T ) ENTOLT], j=1,2,
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we solve respectively the following system including K +1 SDEs for 1 <k < K:
(3.3)

dy, (Aooéo—&-Bo@o(Yo,Zj +F0127Tz 1|7, ]+bo> dt
=1
K
(Coao + Dopo(Yy, Z0) + F§ Zm T 7] + 00) dWo(t)
i=1
dod = (Akai + Bop(Y{, Z) + By Zm Vo] 4+ b) dt
+ (C’a{C + Dktpk(ij, Z,JC) + F ZmE[ai(tﬂftWO] + Hol + cr) AWy (t)
i=1
aé(O) = o, ai(O) = .

Then (3.3) admits a unique solution for j = 1,2,
(0. 0%) € Liw, (,C(0, T;R™)) x -+ x Ly (4 C(0,T;R™)).

Indeed, (3.3) is an n(K +1)-dimensional SDE with the mean-field term Zf{:l B (t)]
]—'tW °], and we can prove the well-posedness of such SDEs system by constructing a
fixed point using the classical contraction mapping method; we omit the proof here.
Now let us denote for 0 < k < K,

dk = allg_aia gbk = on(yklvz]i)_gok(ykgazlg)a
Vi=Y) —Y2 Zn=2L-ZF Tio=Tio—Tio
By applying It6’s formula and by using A2-A3, E[E[d;(s)|FV°]|? < E|dsi(s)|?, as well

as that ¢y, is Lipschitz with Lipschitz constant 1 (see Proposition 4.2 of [29]), then
for a constant C. independent of T" which may vary line by line, we have

2

¢
Eldo(t)|* < 2E/O <AO||040|2 +1Bolldollo] + [ F5 ]Gl Z |E[ |]:W°]|> s
K
Cob + Dogo + F§ ZWZ i(s)[F]

(3.4) +E /
=1

t K t
< CEIE/ Z|di|2ds+E/ (IDof? + &) (Vo2 + | Zo[2)ds
0 = 0

ds

and

t K
E|éu (t)|* < Q]E/ <|Ak||04k|2+|B||0<k||80k|JF|F1|Oék|z:|IE fwo”) s
0 =1
t
(3.5) +]E/
0

t K t
< CEE/ Z|di|2ds+E/ (IDk)? + &) (|Yx|* + | Zk|?)ds
0 i=o 0

2

K
Cén + Dir + Y FaElai(s)| FL°] + Hao| ds

=1
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Adding up (3.4) and (3.5) for 1 < k < K, we have

K
Ezmmﬁscgﬁ/ Zm |ds+E/ Z|D 2+ &) (%I + |Z4l2)ds
=0

and the Gronwall’s inequality yields

(3.6) EZ@ ()2 < €€ TIE/ Z IDi[2 + ) (T3 + | Zi[2)ds
Next, we solve the following BSDESs, for j = 1,2:
(3.7)
dgl = — | ALY{ — Qo <a0 0 Zm )|]-'W°]> + CLZ3 | dt + AL dWy(t),
=1
gl = — | ALY — ( Zm ]—‘W"}> —(1—p)od +C'Z]

VAW (t) + 77, odWo (2),

%avz—e< m§jm |f%0
BUT) = — < Zm T)|Fp°) - (1 mﬁw)

Since A2-A3 hold and «;, 0 <4 < K, have been solved from (3.3), the classical result
of BSDEs yields that (3.7) admits a unique solution
(B35 ++ Bl Vs -+ Vi Taos -2 Vo) € N0, T S N0, T].
Thus we have defined a mapping through (3.3) and (3.7),
T : N0,T] — N0,T),
(Y()]77Y]](aZ(j)a Z;{le 07"'7TJ].(70) — (ﬂ(y)-v"'7/8ﬂ7’yga"'a’7§(a7{707" '77%.(70)'
Similarly, we denote

Bk::ﬁéfﬂﬁ, A=k =72, for 0 < k < K, and 'Ayky(]::'y,iyof'y,io, for 1 <k <K.

Applying It6’s formula to |8y(t)|2, and noticing E[E[@;(s)|FV]2 < Elai(s)]? , we
obtain

T
E(&@F+/|%%%

T K
= E|6o(T))* + ZE/ </§o, ApYo — Qo <do ~ po ZmE[di(s)U-‘SW"]) + 0520> ds

=1

< |Gol*(1 + p?) EZ@ )2+ C. ]E/ |Bo|?ds

1=0

T K T .
]E/ Z|di|2d8+5/ (o2 +|Z0[2)ds
t i t
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Substituting (3.6) into the above inequality, we have
R T
E (5o + / fol?ds
t
K .7
(3.8) < (IGoP(+p3) +T) e“TEY / (IDif? + &)1V + |2 ds
. 0
T R T . R
+CEIE/ |Bo|2ds+s/ (Vo2 + | Zo[2)ds
t t

Similarly, by applying It6’s formula to |3k ()%, 1 <k < K, we have
(3.9)

5 2 e T 2
Bla] +B [ P ds+E [ ol ds
t
R 2 T/, . .
:E’Bk(T)’ +2E/ <ﬁk,A;€Yk (ak pZm Gy (s ]:Wo] (1—p)d0> —C’Zk>ds
<GP+ + EZM e CE [l as
T A~ A~
+]E/ Z|ai|2ds+5E/ (1Y]? +121]?)ds
t o t
K T
<(IGPA+p*+ (1= p))+T) €C€TEZ/ (1D +e)(IYi]*+|Z:[*)ds
, 0
T T .
+CE [ |hPds B [ (TP + 2P
t t
where the second inequality comes from (3.6) and the first inequality is due to
5 2 2| A W, N 2
E[5u(r)| < 1GI2|an(T) pZm &(T)|F) = (1= p)éo(T))

<GP (9 + (1)) [ |y (1) il (1) 73]

Z E|a; (T))?

1=0,i#k

<|GPA+p*+(1-p EZ\az 7

and here we used the fact that

E|ay(T) — pryElan(T)|F2)|

= E|a(T)” + pP*miE[E[6x(T)|F7°)* — 2pmiE |G (T)E[Gr(T) 1 Fp )
= E|a(T)” + (0°% — 2pmi) BB (T)| F°]1* < E |65 (T)[ .
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Adding up (3.8) and (3.9) for 1 < k < K, we obtain (recall |D|? := maxo<p<x |Dx|?
and My := max{[Gol2(1 + 2), [GI2(1 + 2 + (1 - p)?)})

K ) K T K T
EY |3 +EZ/ |%|2ds+]EZ/ 0|2 ds
i=0 i=0 71 i=17t
K T
<o+ T)CTEY [ (D42 (Fif+ 12 ) ds
- 0
T K 7T K ) )
+CEIE/ / Z(|Yi|2+|Zi|2)dS

<C IE/ Z|,3,| ds + [(Mo+T)e“T(ID|* + &) +e EZ/ (V3] + | Zi|?)ds.

The Gronwall’s inequality yields that
(3.10)

K - K T K T
EZ’@’ —HEZ/ |’%|2d8+EZ/ Hi0* ds
i=0 i=0 7t =17t

K T
< T [(Mo+T) e“T(ID” + ) + €] EZ/ (1Yif* +1Z:I)ds
: 0

IN

e“ T (T+1) [(Mo+T) e (| DI +&)+e] |(Yo, .-, Ve, Zo, - - 2, Ta0, -
TK,O)”N[(),T]
= Y T(T +1) [Moe®T(ID|* + &) + e + Te " (|D|* + ¢)]
Ny Vi, Z0s - 2k, Y10, Yico) 0.1y
Noticing assumption A4, by first choosing € > 0 small enough such that My(|D|? +

€) + e < 1, then choosing 7' > 0 small enough, we obtain from (3.10) that for some
0<d<1,

H(BO» .. '73[(1/3/07 cee 7&[(7&1,07 e 7/?K,O)||W[O7T]
S 6”(%’ cee 7?K7207' . '7ZK7T~1,07 .. -aTK,O)Hﬁ[QT]~

This means that the mapping 7 : N[0, T| — N[0, T] is contractive. By the contraction
mapping theorem, there exists a unique fixed point

(ﬁ0761a"'a/8K770771""77K771,07"'7’YK,0) GN[OaT]

Moreover, classical BSDE theory allows us to show that

(60,513"'7BK7707717"'77K771,07‘~'7’YK,0) GN[OaT]

Let o, 0 < k < K, be the corresponding solution of (3.3). Then, one can obtain that
the system (2.15)—(2.16) has a unique solution (cv, 8o, Y0, ¥k, Bk, Vs Vh,0)s 1 < k < K,
such that (3.1) holds. |

4. Well-posedness of the consistency condition system: The global
case. This section aims to establish the well-posedness of consistency condition sys-
tem (2.15)—(2.16) for arbitrary 7. We first study one general kind of conditional
MF-FBSDE by using the discounting method of Pardoux and Tang [49].
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Let (2, F,P) be a complete, filtered probability space satisfying usual conditions.
{Wi(t), 0 < i <d}o<i<r is a d + 1-dimensional Brownian motion on this space. Let
F; be the filtration generated by {W;(s),0 <i < d,0 < s <t} and augmented by Np
(the class of P-null sets of ). Let F}"° be the augmentation of o{Wy(s),0 < s < t}
by Np. We consider the following general conditional MF-FBSDE:

(4.1)
dX(s) =b(s,X(s),E [W( s)|FL Y (s), Z
Fo(s, X(s), E[X(s)|F5"], Y (s), Z(s))dW (s),
~dY(s) = f(s, X(s), BIX(s)|[F°], Y (s), Z(s))ds — Z()dW(s), s € [0,
X(0) ==z, Y(T)=g(X(T),E[X(T)|Fy"]),
where the adapted processes X, Y, Z take their values in R”, R}, and R**(4+1) | respec-
tively. The coefficients b, o, and f are defined on Q x [0, T] x R™ x R” x Rl x RV (d+1)]
such that b(-, -, z,m,y, 2), o(-,-,x,m,y, z), and f(-,-, x,m,y, z) are {F; }-progressively
measurable processes for all fixed (z,m,y,z) € R x R® x Rf x R (@D The co-
efficient g is defined on £ x R™ x R™ and g(-,x,m) is Fp-measurable for all fixed
(z,m) € R™ x R™. Moreover, the functions b,o, f, and g are continuous w.r.t.
(x,m,y,2) € R" x R" x R! x R*(4+1) and satisfy the following assumptions:
(Hp) There exist A1, Ay € R and positive constants kg, k;, ¢ = 1,2,...,12, such
that for all ¢, x, x1, 2, m, m1, ma, y, Y1, Y2, 2, 21, 22 a.8.

() (b(t,z1,m,y,2) — b(t,x9,m,y, 2), 11 — 22) < A|21 — X0|?,
(ii) |b(t, ,ma, Y1, 21) — b(t, 2, ma, ya, 22)| < k1|my — ma|
+halyr — yo| + kslz1 — 22,
(i) [b(t, 7,m, 5, 2)] < [b(t, 0,m, 5, 2)| + ko(1 +|a),
(iv)  (f(t,z,m,yn,2) — f(E2,m,ye,2), 1 — y2) < Xalyr — y2l?,
(v) |f(t, w1, me,y,21) — f(t,21,ma,y, 22)| < ky|z1 — 22
+ks|lm1 — ma| + ke|z1 — 22/,
Vi) [f(t 2z m,y, 2)| < [f(t2,m,0,2)] + ko(1 + |y]),
(vii) |o(t, @1, m,y1,21) — o(t, T2, M2, Y2, 20)[?
< kFlay — xo? 4+ kZlma — mal? + klyr — 2l® + kiolz1 — 22/,
(viii) |g(z1,m1) — g2, m2)|* < kfilwr — wa| + kiy|ma — mal.

(H2) It holds that
T
E/ (16(s,0,0,0,0)[*+|o(s,0,0,0,0)|*+|£(s,0,0,0,0)[*) ds+E|g(0, 0)|*<+oc.
0

Remark 4.1. From the mean-field structure of (4.1), sometimes the following con-
dition holds: R
(H1)(i") There exist A1, k; € R, such that for all ¢, y, z, and process X, X», a.s.

E(b(t, X1, E[X1 ()| F"°], y, 2) — b(t, Xa, E[Xa ()| F}"°], 9, 2), X1 — Xa)
< (A + kDE|X] — X5
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For example, if b(t,x,m,y,2) = Az + Tum + by (y, z), then it obviously satisfies the
above assumption. Indeed, our mean-field FBSDE (2.15)—(2.16) satisfies this assump-
tion.

Let H be a Hilbert space. Recall that L%(0,7;H) denotes the space of H-
valued {F,}-progressively measurable processes {u(s), s € [0,7]} such that |u|?® :=
EfOT lu(s)|?ds < co. For X € R, we define an equivalent norm on L%(0,T; H):

T 1/2
ullx == (E/ e’\8|u(s)|2ds> .
0

Now let us consider MF-FBSDE (4.1); its fully coupled structure brings difficulties
for establishing its well-posedness. Similar to [49], when the coupling is weak enough,
MF-FBSDE (4.1) should be solvable. The proof of the following theorem is given in
the appendix (see also the appendix of [30]).

THEOREM 4.1. Suppose that assumptions (Hi) and (Hs) hold. Then there exists
a 69 > 0, which depends on ki, A1, Ao, T, fori =1,4,5,6,7,8 11,12 such that when
ko, ks, ko, k1o € [0,00), there exists a unique adapted solution (X,Y,Z)€ L%(0,T; R™)x
LZ(0,T;RY) x L%(0,T;R>@HD)Y to MF-FBSDE (4.1). Further, if 2(A1 + \g) <
—2ky — k% — k2 — k2, there exists a 61 > 0, which depends on ki, A\1,\a, for i =
1,4,5,6,7,8,11,12 and is independent of T, such that when ks, ks, kg, k10 € [0,61),
there exists a unique adapted solution (X,Y,Z) to MF-FBSDE (4.1).

Remark 4.2. If in addition (Hy) (') holds (see Remark 4.1), by repeating the proof
of the above theorem, one can show that if 2(A1 +X2) < —2k; —k2 —k2—k2, there exists
a 01 > 0, which depends on El, ki, A1, Ao, for i =4,5,6,7,8,11,12 and is independent
of T, such that when ks, k3, ko, k19 € [0,01), there exists a unique adapted solution
(X,Y, Z) to MF-FBSDE (4.1).

Now let us apply Theorem 4.1 to obtain the well-posedness of consistency condi-
tion system (2.15)—(2.16). Recall that

vo(p,q) =Pr, [Ry " (Bip+ Dya)],  er(p.q) = Pr, [R; " (B'p+Dia)].
If we denote
W= (Wo,Wi,....Wg), H=(0,m,...,7x), a=(ah,a},....ak), B=I(,
Bl Bi) X = (af,, . 2), Ela()|FY) = Elao(t)| 7Y, Elar () F"),
B (8)]F))  2(8,7) = (po(Bo,70), 01 (B ), - 0 (Bre, vic)) s pg =11
@ plosn, P =T@ plysn, g =Tl@ FY, FPU=TNeF:, FY.=Ieh,
FPUl—TIe F,

Yo 0 PN 0 bo ao 0O ... 0
Y0 M -.- O b 0 o ... 0
Y= . . . . ) IB0 - . 5 ]DO— . . 5
vko 0 ... 7k b 0 0 ... o
Ay O 0 By 0 0 Ry O 0
0 A 0 0 B 0 0 Ry 0
A == , B = . s R_l = s
0 0 Ag 0 0 B 0 0 Ry
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Qo 0 ... 0 Go 0 ... 0
Ql—p) Q@ ... 0 Gl—-p) G ... 0
Q - . . . . }G - . . . . 9
Ql—p) 0 ... @ Gl—-p) 0 ... G
0
FLI F2I
C .
FLH F2,H
Qopl! Gopp' 0 0 0 ... 0
11 11 H 0 HO(() 0
= | | o= || m= || B =], T ,
Q'pl'[ Gpl'[ H 0 0 ... Haqyg
FyE(a(t)]F") 0 0
. 0 F2UE(a(t)| FM° 0
P (B(a(t)| 7)) = @) | ,
0 0 F2UE(a(t)| FM)
Co 0 0 C()Oé() 0 0 C(/)’YO
0o C 0 0 Cua 0 C'v
C = B (C(Oé) == : . 9 C ’Y = . ]
0 0 C 0 0 Ca C'vi
Dy O 0
0 D; 0
D= . ,
0 0 ... Dg
Doo(Bo,70) 0 0
0 Dip1(Bi,m) - 0
D(B,7) = : : . :
0 0 DKQDK(BK,’)/K)

Using the above notation, the system (2.15)—(2.16) can be written in compact form as
do = <Aa + B®(8,7) + FIE(a(t)| 7)) + IBO> dt

12 + (C0)+ B3 + B8 (B(a() 7)) +(a) + By ) (1)

a8 = — (&'8 - Qa+ QE(a()|F*)) + C(7)) dt +vdW(2),
a(0) =X,  B(T) = -Ga(T) + GME(a(T)|F}°).
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Now let A* be the largest eigenvalue of the symmetric matrix (A + A’). Since the
projection operator is Lipschitz continuous with Lipschitz constant 1, by compar-
ing (4.2) with (4.1), one can check that the coefficients of assumption (H;) can be
chosen as

M=K =X, ko= Al ki =IFTl, k2=ks=[R7[IB](IB] + D),
ko= QI ks =IQ", ke =ICIl, k% =4(IC|+IHI)? k3= 4|F]?
ko = kio = [RTYIDIBI + DI, k% =2IIGI*, ki, = 2|G"|>.

Thus by applying Theorem 4.1, we obtain the following global well-posedness of (4.2).
THEOREM 4.2. Suppose that

AN < =2||F{|| = ICI1* = 4(IC] + [1H])? — 4]

then there exists a §; > 0, which depends on \*, ||FX(|, |Q|, [|Q™], |||, | H]|, [|FE,
|G|, |G|, and is independent of T, such that when |[R™Y|,||B]|, |D| € [0,d1), there
exists a wunique adapted solution (a,B,7) to consistency condition system
(2.15)~(2.16).

Remark 4.3. Let Az be the largest eigenvalue of 3 (F1'+(F}")). Noticing Remark
4.1, one can check that (Hy) — (i) holds with k; = M- Thus, from Remark 4.2, we
1
have that if
AN < =2Mn — [[CIJ* — 4([Cl| + [[E])* — 4]F5 1%,

then there exists a 6 > 0, which depends on X*, X, [Q[, [|Q™], [C]|, [[H[, [F5],
1

|G|, [|G"]], and is independent of T, such that when |[R™|,|B]|, |[D| € [0, 1), there
exists a unique adapted solution («,f,7y) to consistency condition system
(2.15)—(2.16).

5. e-Nash equilibrium for Problem (CC). In section 2, we characterized
the decentralized strategy profile @ = (@, @1, ...,4y) of Problem (CC) through the
auxiliary Problem (LCC) and the consistency condition system. Now, we turn to
verify the e-Nash equilibrium of this decentralized strategy profile. Here, we proceed
with our verification based on the assumptions of the local case (section 3). Note that
it can also be verified based on the global case (section 4) without essential difficulties.
For the major agent Ay and the minor agent A;, the decentralized states &) and %
are given, respectively, by

dzg = [Aoifo-l-BosDo(ﬁo,QO)+F&if(N)+bO} dt

+ [Cofo+Do<P0(130,670) + Fgf(N)+Jo] dWo(t),
(5.1) d; = [Agia“c,'—ingpgi (i, @) + P ™ + b] dt
+ [C#i+ Do oo, (5, @) + o™+ Hig+o | awi(2),

.’fo(O) = X, .’fl(O) =,
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where #(V) = % Zfil ¥ and the processes (Po, o, Pi, @;) are solved by
(5.2)

K

di‘o = (Aol‘o—‘rBQ(po(po,QQ)—f—FOl Zﬂ'kE(O&k(t”]:tVVO)‘i‘bQ) dt
k=1
K

+ (C'ofo + Dowo(po, 4o)+F§ Zﬂk]E(ak(t)|Fz}/V0)+00> dWo(t),
k=1

K
dpy = — (A/po — Q()(.’fo — pPo ZW}C]E(Oék(t”]:tVVO)) + ClqO> dt + quWO(t),

i=1

K
dz; = (Ae,-fri-B@ai (i, @) +F1 ZﬂkE(@k(t)|]‘—tW0)+b> dt
k=1

K
+ (sz- + Do, 0, (pi» @)+ Fa Y wkE(ak(t)|FtW")+Hm0+a> dWi(t),
k=1

K
dp; =—< 0,0i—Q (%-PZWkE(Oék(t)U:tWU)—(l—P)ﬂCo) +Clqi> dt
k=1
+ ¢ dWi(t)+qli,0dWo(1),

K
z9(0) =z0,  po(T) = —Go (xo(T) —Po ZME(%(T)J#VO)) )
k=1

K
i(0) =z,  p(T)=-G (fi(T) —p Y mE(a(T)|Fp*) — (1 - P)fo(T)> :
k=1

Here we recall that ¢o(p,q) := Pr,[Ry (Bip + Dhq)], e, (p,q) := Pr,, [Re_il (B'p+
Dy q)], and a, 1 < k < K, are given by (2.15) and (2.16). We mention that (5.2)
gives also the dynamics of the limiting state (Zg, Z1, ..., Zy) and one can check easily
that (Zo, Po,do) = (a0, Bo,70). Now, we would like to show that for @y = o (po, go)
and u; = @y, (D, Gi), 1 <i < N, (4o, U1, ...,un) is an e-Nash equilibrium of Problem
(CC). Let us first present the following several lemmas.

LEMMA 5.1. Under A1-A4, there exists a constant M independent of N, which
may vary line by line in the following, such that

sup E sup

i 2
il(t)’ < M.
0<i<N  0<t<T

Proof. From Theorem 3.1, we know that on a small time interval the system of
fully coupled FBSDE (2.15)—(2.16) has a unique solution (for the global case, see
Theorem 4.2 and Remark 4.3),

(@0, Bo,70) € Liw (0, T R™?) and (ak, B, Yo w.0) € L (0, T;R™Y),  1<k<K.
Then, the classical results on FBSDEs yield that (5.2) also has a unique solution,
(i'Oaﬁ()a(jO) € L;Wo (OvTa Rnx?)) and (fiaﬁia q@’v @,0) S L_27-‘1 (OaT; RnX4)a 1 S 1 S N.

(Indeed, FBSDE (5.2) has a unique solution for arbitrary T by using similar arguments
as in Theorem 2.1 of [29] and [31, 50]). Thus, SDEs system (5.1) has also a unique
solution,

(Z0,%1...,7Nn) € L%(0,T;R™) x L%(0,T;R™) x --- x L%(0,T;R™).
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Moreover, since {W;}I¥ | is an N-dimensional Brownian motion whose components are
independent and identically distributed, we have that for the k-type minor agents,
under the conditional expectation E(-|F"W0)), for each 1 < k < K, the processes
(ZiyDi, @), © € Iy, are independent and identically distributed. We also note that
for each 1 < k < K, ¥;, i € Iy, are identically distributed. Noticing that (po, Go) €
]:Wo (0, T;R™) x L2;w0 (0,T;R™), and (p;,q;) € Lfﬁ(O,T; R™) x Lfl.,-(O,T; R™), 1 <
i < N, then the Lipschitz property of the projection onto the convex set yields

that g, (Po,%) = @o(Po;d0) = Pry(Ry (BT + DTq)) € L%y, (0,T;T)) and
o.(pi, @) = Pr, (R, (BTp; + DTq;)) € L%,(0,T;Ty,), 1 < i < N. Moreover,
there exists a constant M independent of N such that forall 0 <i< N, 0< k< K,

Eoi?ET“a’“(t)lQ + 1Bk + |Z:())* + [P (t)]?)
(5.3) o T
+ E/O (e ()7 + 1@ ()1 + o, (Bi(t), @ (1)) < M.

From (5.1), by using Burkholder-Davis—Gundy (BDG) inequality, it follows that for
any t € [0,77,

t
E sup |o(s)[? < M+M]E/ [l£0(s)/2-+ [0 (5) ] ds
0

0<s<t
t 1 N
o 2 o 2
< M—|—MIE/O l|mo(s) + N igzl |Z:(s)] ] ds
and by Gronwall’s inequality, we obtain

t N
1
(5.4) E sup |&o(s)? < M+M]E/ = ) l#i(s)[*ds.
0<s<t o N &=

Similarly, from (5.1) again and using (5.4), we have
¢

E sup |#;(s)|* < M—|—ME/ lZ0(s)|? + |Zi(s Z|x ds
0

0<s<t
(5.5) t
gM—i—ME/ lx |2]ds
0

||Mz

Thus

t
E su Zi(s 2<E su Zi(s 2<MN—|—2M]E/
o<£t2' Z 1, 14i(5) 0

By Gronwall’s inequality, it follows that Esupy<,<p Zi\il l#;(#)]? = O(N), 1 <
i < N. Then, substituting this estimate to (5.5) and Gronwall’s inequality yields
Esupg<;<r |Z:(t)]> < M,1 < i < N. By applying this estimate to (5.4), we get
ESUPogth |570(t)|2 <M. o

LEMMA 5.2. Under A1-A4, there exists a constant M independent of N such that

E sup |#MV)(¢t) —@(t)‘ < M( +5N> , where eny = sup ‘W](CN) — Tkl
0<t<T N 1<k<K
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Recall that i) = LS008 S 0@ = S ml A Sy d and ®() = Y m
E(au (1) F).

Proof. For each fixed 1 < k < K, we consider the k-type minor agents. We denote
k) = L ZiGIk ;. Let us add up N states of all k-type minor agents and then

Ng,

divide by N; we have
(5.6)

B
dz*) = Aki‘(k)—i—ﬁ > on(pi @) +F # N +bo | dt

k i€Ty,
1
5 > {Ciﬂercpk(ﬁi,@') + ngi'(N)+Hf0+Uo} dwi(t), 2 (0) = .

1€Ty

Now we take conditional expectation E(-|F;"°) on the first equation of (2.15). Noticing
that ay(s) is F¥-adapted and recalling my = E(ay(t)|F°) and E(pw (5, 3)|F°) =
E(ox (B, )| FL7°) for any i € I, we have

(7)) dmy = (AkkarB]E(gak(pi,ql-)|]-'f‘/°)+F1<I>+b) dt,  mp(0) = .

From (5.6) and (5.7), by denoting A () := #*)(t) — my(t), we have

N B _ o
A = | ApApt Fy (3N @)+ = mpi,qﬁ—BJE(sak(pi,qi)WO)] dt
k i€Ty,
1 y o . .
+ N, Z [C’:ci—FDkgok(pi,qi) + FQI(N)+HIO+UO] dW;(t), A(0) =0.

1€Ty,

The Cauchy—Schwarz inequality and BDG inequality yield that

E sup [Ax(s)]? < M]E/O [18(8)P + 15 (s) - B(s)?] s

0<s<t

t 1 ~ ~ ~ ~ 2
(58)  +ME / N 2 or0i(5),6i(5) — Elor(pi(s), 6i())| 7)) ds
1€Ty,
M t N 2
+WIEZ/ C#i4 Dror(piy @) + Fo (i >—<I>)+F2<1>+Hgt~o+00’ ds.
k 0

1€Ty

Let us first focus on the second term of the right-hand side of (5.8). Since for each
fixed s € [0, 7], under the conditional expectation E(-|F/V0)), for each 1 < k < K, the
processes (Z;($), pi($), @:(s)), i € Iy, are independent and identically distributed, if we
denote pu(s) = E(pr(pi(s),Gi(s))|F?)), then p does not depend on i and moreover
we have

2

E Nik Zezz:k 0k (Di(s), @i(s)) — p(s)
- §E< S okl @ (s)) ()
k i€Ty

+ ) <<Pk(pi(5)aQi(s))_ﬂ(s):Wk(pj(s)v%(s))_,u(s»>-

4,5 €Ly, jF#1
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Since (p;(s),qi(s)), i € Ik, are independent under E(-|FV0)), we have

E > {eni(s),ai(s) = p(s)s on(B;(s), 45 (s)) = p(s))

4,J€Ly,jF#1

=E| Y E((puBi().a(s) —als). oupy (). 4, ()~ u(s)) [ 717
1. E Tk i
“E| Y (B (i), ai() ()| FI7)

| i,GET j#i

E (n(5;(5). 4;(s) —n(s)| F") ) | =0,

Then, due to (5.3) and the fact that (p;,@), 1 < i < N, are identically distributed,
we obtain

]E/ ukZ o1 (Pi(5). () — B (0e(pi(s), (s)) | FI¥0) [ ds

- ]\23/0 B lor(pils). di(s) — u(s)| ds

i€Ty,

~ o [ Eloi, a6~ o) s <

_Nko Pr Pils), qils HAS S_Nk-
Now we focus on the third term of the right-hand side of (5.8). Recalling ®(t) =
Zle mE (o (1) F7?), we have Esupgc;cr |®(t)|* < M; then using (5.3), Lemma
5.1, and that (%;(s), pi(s), @ (s)), @ € Iy, are identically distributed, it follows that

M K 2
Nz Z E/ ‘C:fi-i-chpk(ﬁi,(ji) + FQ(Qf(N) — @)+ Fo® + Hip + O’(]’ ds
k i€Ly, 0
M b o y
< x2S 8 [ (156 + louma) P+ 15)
k i€Ly,

= O(s)]* + |®(s)* + [Zo(s)]* + IU(S)IQ)dS

M /t M
< —E E|:MV)(s) — ®(s)|%ds + —.
SN | (s) (s)] N

Therefore, from the above analysis, we get from (5.8) that

t
E sup |Ay(s)]? < MIE/ Ak +2(s) 7<I>(s)|2}ds+£,
0<s<t 0 N,

and Gronwall’s inequality yields that

t
M
(5.9) E sup |Ax(s)? < MIE/ ) (5) — D(s)ds + L.
0<s<t 0 N
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vy 1 9 w,
0 —Exis—ﬂEa §)|Fg°
A P (s) rE(ck(s)] )1

[W,EN) (Jék 3 i(s) - E(ak(s)|f;/vo)> + (m(gN) - m) E(O&k(S)IFZVO)]
M Ag(s) + Z (W,(CN) - Wk) E(o ()| F0),

by using (5.3), (5.9) and m; ’ = f < 1 we obtain that for any ¢ € [0, 77,

K

E sup |20 (s) — ®(s)|? < EZ sup 7T,(€N)|Ak(s)|2 + Me%
0<s<t f—1 0<s<t
K M
< MIE/O |2V () — ®(s)[2ds + ~ Me%;.
Finally, by using Gronwall’s inequality, we complete the proof. 0

LEMMA 5.3. Under the assumptions of A1-A4, we have

Fi(t) — @(t)f <M (zir + s%v) .

sup E sup
0<i<N  0<t<T

Proof. On the one hand, from the first equations of both (5.1) and (5.2), we have
(@0 — 70) = | Ao (0 — 7o)+ F3 (5 @) | di+ | Coltg — o)+ F (™) — @) | awi(1),
Zo(0) — Zo(0) = 0.

The classical estimate for the SDE yields that

2 T 2
E sup [foft) — 7o(t)| < ME/ EO0(s) — 0(s)
0<t<T 0

ds,
where M is a constant independent of N. Noticing Lemma 5.2, we obtain

2 1
(5.10) E sup ’io(t) - a‘so(t)’ <M <N +52N> .
0<t<T

On the other hand, from the second equation of (5.1) and the third equation of (5.2),
with the help of the classical estimate for the SDE, we have that for 1 <i¢ < N,

E sup |#:(t) - ji(t)r < MIE/OT ( V) (5) @(s)f  J#o(s) — ;vo(s)|2) ds,

0<t<T

and noticing Lemma 5.2 and (5.10), we obtain Esupg<, < |i(t) — Z;(t)|]* < M(+ +
€2), 0<i < N. 1]
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LEMMA 5.4. Under the assumptions of A1-A4, for all 0 < i < N, we have
o (7w +er)
= — 4+ .
N

Proof. Let us first consider the major agent. Recalling (2.3), (2.6), and (2.17),
we have

(5.11)
Jo(tig, u—o) — Jo(to)

= ;E{/OT <<Q0 (%0 — poi ™)), &g — Poff(N)> - <Q0 (Zo — po®), o — Poq’>) dt
+ <G0 (#0(T) — po ™) (T)), #o(T) — poi™ (T)>

- <G0 (Z0(T) — po®(T)), 7(T) — poq)(T)>].

Ti(ti, u—) — Ji(u;)

From (5.3), we have Esupg<,<r|Zo(t)|* < M and Esupg<,<r |a;(t)]* < M for any
0 <i < N. Recalling Esupy<;<7 |®(t)]* < M and Lemmas 5.2 and 5.3, as well as

(Qo(a—b),a—b) — (Qo(c—d),c—d)
={Qola—b—(c—d)),a—b—(c—d))+2(Qo(a—b— (c—d)),c—d),
we have
' (N) (N)
E Fo—pot ™), 20— pod ™) —( Qo (T0— po®), To—po® ) ) d
‘ /o (<Qo($o pod ™)), 20— po ™)) <Qo(i€o po®), To—po >) t’
T 2
SM/ E|f0—p0.’f‘(N)—(.’Eo—p0(I))‘ dt
0
T
0 [ Bl = oo™ = (@0 = @70 — po® i

T T
gM/ E|f0—j;o\2dt+M/ E[#™) — o[ dt
0 0

1
2

(E |z — p0q>|2) dt

N|=

T
+ M/ (E|530 — pod ™) — (Zo — PO(I))|2>
0

#N) —o|%at

T ) T
gM/ E|&o — Zo| dt+M/ E
0 0
T 2 2\ %
+M/ (Elzo - @o[* + B[z — @|") " at
0
=0 (1 +e )
vN )
A similar argument allows us to show that

’E {<Go (£0(T)—po ™) (T)), &0 (T) — po™) (T)>

—<Go (fo(T)—po‘I)(T))»fo(T)—pofb(TM ‘

:O<\/1N+5N>.
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Thus, the proof for the major agent is completed by noticing (5.11). Let us now focus
on the minor agents; for 1 <i < N, recalling (2.4), (2.12), and (2.17), we have

\7i(ﬂhﬂ—i)
T
= 71E[/ ((@@: = p2™ = (1= p)zo), &1 — ps™) = (1= p)ito)+(Ro, i, wi) ) dt
0

+ (G (#(T) - &™) (T)—(l—p):r:om),a—(T)fpi:(N)(T)f<17p)fo<T>>]

1

T

+(G(@T) = p®(T) = (1= p)ag(T)), 2:(T) = p®(T) = (1 = p)o(T))] .

From (5.3), we have Esupg<, < |%i(t)]> < M. Using such an estimate, Esupy,<r
|®(t)]* < M, and Lemmas 5.2 and 5.3, similar to the major agent, it follows that
| T (s, 0—) — Ji ()] ZO(\/LN—FEN). 0

5.1. Major agent’s perturbation. In this subsection, we will prove that the
strategy profile (g, 1, @z, - .., uy) is an e-Nash equilibrium of Problem (CC) for the
major agent, i.e., there exists an ¢ = ¢(N) > 0, limy_,00 €(N) = 0 s.t.

Jo(ao(-)ya—0(-)) < To(uo(-),a_o(-)) +&  for any ug € U .

Let us consider that the major agent Ay uses an alternative strategy ug and each
minor agent A; uses the control @; = g, (P;, @;), where (p;, G;) are solved from (5.2).
Then the realized state system with major agent’s perturbation is, for 1 <¢ < N,

(5.12)
dyo = [Aoyo+Bouo+Fyy™) +bo]dt+ [Coyo+Doug + Fiy™ +00]dWo(t),
dyi = [A,yi+Beo, (i @) +Fry™ +bodt
+ [Cyi+Do, 00, @) + Fay™ + Hyo+00] dWi(t),
yO(O) = To, yz(o) =,
where y(V) = % Zf\; y;. The well-posedness of the above SDE system is not hard

to check. To prove (g, u1,...,uy) is an e-Nash equilibrium for the major agent,
we need to show that for possible alternative control wug, infuoeucf Jo(ug,t—g) >

Jo(tg,u—g) — . Then we only need to consider the perturbation uy € U(f;io such that
Jo(uo, t—g) < Jo(@g, u—g). Thus, noticing Qo > 0 and Gy > 0, from Lemma 5.4, we
have

T _ o B 1
]E/o (Rouo(t), uo(t))dt < Jo(ug, t—o) < Jo(to, u—o) < Jo(uo) + O (\/N + EN) ,

which implies that (noting A4), E fOT lug (t)|2dt < M, where M is a constant indepen-
dent of N. Then similar to Lemma 5.1, we can show that

(5.13) sup E sup |y;(t)]* < M.
0<i<N  0<t<T
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LEMMA 5.5. Under the assumptions of A1-A4, we have

1
E sup |y(N)(t)<I>(t)|2O<+€?V) .
0<t<T N

Proof. For each fixed 1 < k < K, we consider the k-type minor agents. We denote
y*) = N% Ziezk y;. As there are N, minor agents of the k-type, let us add up their
states, and then divided by Ny, it follows that

B
dy® = | Ay + =D 7 on(p @) +Fry™ +bo | dt

i€Ly,
1
o O [Cot Depn(Bi @) + Foy™ 4 Hyo+oo| aWi(t), 4 (0) = .

N,
k 1€y

Recall (5.7) and if we denote Ay (t) := y*)(t) — my(t), it follows that

. - B
dAp = | AeBr + 5= > on(pi @) — BE(or(pi, )| F"°) + Fi(y™) — @) | dt
" €T,
1 ~
= 2 [Cit Duonpis @) + Fay ™)+ Hyo+oo| awi(t),  A(0) = 0.

k i€Ty,
Similar to the argument in the proof of Lemma 5.2, using (5.3), (5.13) and (y;(s), pi(s),
di(s)), i € Iy, are identically distributed, we can show that
- b M
B sup (i) < ME [ [IBu(s) + 1y (o) - (o) PJds + 3
0<s<t 0 Np,

and Gronwall’s inequality yields that

E sup |Bu(s)” < 015 | [1565) - a(5)7] .

0<s<t

Similar to the proof of Lemma 5.2 again, and using A1, we have for any t € [0, T],

K
E sup [y™(s) ~@(s)? <EY sup m|Aw(s)? + Mek
0<s<t ] 0<s<t
K M
< MIE/O [|y(N)(s) - @(s)ﬂds + N + Me3.
Finally, Gronwall’s inequality allows us to complete the proof. O

Now, we introduce the following system of the decentralized limiting state with
the major agent’s perturbation control for 1 < i < N:

5.14
o dyo = [Aofio + Bouo + Fy® + bo] dt + [Cogo + Douo + Fy® + a0] dWo(t)
dy; = [Ag,yi + Bye, (i, @) + F1® + bo] dt
+ [CYi + Do, o, (i @) + Fo® + Hijo + 00] dW;(t)
90(0) = zo, #:i(0) = x.
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LEMMA 5.6. Under the assumptions of A1-A4, we have
_ 2 1 2
sup E sup ‘yl(t) — yi(t)’ =0 N +exr |-
0<i<N 0<t<T

Proof. From the first equations of both (5.12) and (5.14), we obtain

{d(yo —90) = [Alyo — %o) + Fy (™ — ®)]dt + [Clyo — 7o) + Fg(y™) — ®)|dWo(t),
Y0(0) — 70(0) = 0.

With the help of classical estimates of SDE and Lemma 5.5, it is easy to obtain

2 1
(5.15) Esw‘m@—m@‘:O<N+%>.
0<t<T

Now, for any 1 <4 < N, from the second equation of both (5.12) and (5.14), we get

d(y; — 5i) = [Ae, (yi — Ti) + Fi(y™) — ®)|dt
+ [Cly; — 5:) + F(y™ — @)+ H(yo — o) dWi(t), :(0) — ;(0) = 0.

The classical estimates of SDE, Lemma 5.5, and (5.15) allow us to complete the
proof. ]

LEMMA 5.7. Under A1-AA4, for the major agent’s perturbation control ug, we have

Jo(uo, o) — Jo(uo)| = O L +en |-
vN

Proof. Recalling (2.3), (2.6), and (2.17), we have
(5.16)

Jo(uo, i—0) — Jo(uo)

L oY e o (NN (O (7 —
= 5E (<Qo(yo poy™), 90 — poy™) —(Qo (%o — Po®), %o po<1>>)dt
0

+{(Go(yo(T) = poy ™ (1)), yo(T) — poy ™ (T))

—(Go(50(T) = po®(T)), 50(T) — po®(T))

Similar to Lemma 5.4, by using Lemmas 5.5, 5.6 and E(|5jo()|? + |®(t)]?) < M, we
have

‘E/OT <<Qo (0 — oy ™). 50 — poy™) = (Qo (G0 — po®), 7o — pO(I)>> dt‘
T

T
<M M%—%ﬁﬁ+M/)MWW—@%t
0 0

T 1
+M/)@ww@ﬁ+EMm—@%Mt
0

o)
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and
‘E[<Go (%0(T) = poy™ (1)), y0(T) = poy ™ (T))
—(Go(90(T) = po®(T)), 50(T) — po®(T } ’ = < + €N>
The proof is completed by noticing (5.16). ]

THEOREM 5.8. Under the assumptions of A1-A4, the strategy profile (uo, a1, .. .,
un) is an e-Nash equilibrium of Problem (CC) for the major agent. More precisely,
there exists a constant M > 0 and a sequence of positive numbers {e(N)}n>1 such
that for each N > 1,

(i) e(V) < M(\lﬁ—i—sN) where ey := SUP; << g |7r,(€N) — T|;
(i) for any ug € U d , one has

Jo(to(-),u-0(-)) < Jo(uo(-),u—o(-)) +&(N).

Proof. Combining Lemmas 5.4 and 5.7, we have

Jo(to, u—o) < Jo(tig)+0 (\;NJFEN) < Jo(uo)+0O <\/1N + EN)

VN

where the second inequality comes from the fact that Jo(to) = infy,ep0 Jo(uo) (we

mention that even if ug is adapted to {F;} other than {F'°}, Jo(iio) < Jo(uo)
still works as pointed out in Remark 2.3). Consequently, Theorem 5.8 holds with
E(N) = O(Ls +<n). 0

1
< Jo(ug, t—g)+0O <+5N> ;

5.2. Minor agent’s perturbation. Now, let us con81der the following case: a
given minor agent A; uses an alternative strategy u; € U/ 1> the major agent uses
o = o(Po,Go), while other minor agents A; use the control @; = g, (p;,q;), Jj # 4,
1 <j < N, where (pj,q;), 0 < j < N, j # i, are solved from (5.2). Then the realized
state system with the minor agent’s perturbation is, for 1 < j < N, j # 1,

(5.17)

dly = [Aolo-l-Bo@o(ﬁo,(Io)-&-F&l(N)—kbo] dt
+ |:Col0+D0(po(ﬁo, (jo) + FOZZ(N)+O'Q:| dWo(t)

dl; = |:A91l1+Bul+Fll(N)+b0:| dt+ |:Cll+D91Ul + Fgl(N)-‘rHlo—l-O'o dWZ(t),

Ly = [ Ao, 4+ B, (5 3)+ Fil™ +bo | dt
+[Cl+ Do, 20, (57, @5) + Fal ™)+ Hlg +0 | dWi(2),

10(0) = Xo, ll(()) = l]<0) =x

where [V) = % Ef\il I*. The well-posedness of the above SDE system is easy to
obtain. Similar to the argument of the major agent, to prove the strategy profile
(tg, U1, ...,un) is an e-Nash equilibrium for the minor agent, noticing @ > 0, G > 0,
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Ry, > 0, and Lemma 5.4, we only need to consider the perturbation u; € Ugl’; satisfying
T
(5.18) IE/ lus (t)|2dt < M,
0

where M is a constant independent of N. Similar to Lemma 5.1, we can show that

(5.19) sup E sup |l;(¢)]* < M.
0<i<N  0<t<T

We first present the following lemma.

LEMMA 5.9. Under the assumptions of A1-A4, we have

E sup [[¥)() - @(t)f _0 (N +5N>

0<t<T

Proof. We know that for each fixed i, there exists a unique 1 < k < K such that
i € Tr. Let us denote I(F) := N%@ >ier, lis 1 <k < K. We first consider the k-type
minor agents, where k # k. Adding up their states and then dividing by Ny, similar
to the proof of Lemma 5.2, for k # k and my, = E(ay(t)|F"°), we have

2 ' M
(5.20) B sup [10(s) ~my(s)]* < ME / [1(5) = @(9)?]ds + -

Now let us focus on the k-type minor agents. Recall (5.7) and denote Z := [F) —my;
it follows from the Cauchy—Schwarz inequality and BDG inequality that
(5.21)

E sup |Z(s)[’ SME/O <|E< I+ gyghsts >|2+|1<N><s)<1><s>|2) ds
k

0<s<t

t 1 2
WME [ S el ) - sl @) F)| ds
0

k

JETR,J#1
IEJZ/|F2 1) ()~ (5)) + Fyb(s)+ Cl (s)+ Hlo(s) +0 (s)|*ds
JET;
/ e 2ds+—E 3 / ok (55(5),33(5))2ds.

JETR,j#i

On the one hand, since for each fixed s € [0,T], under the conditional expectation
E(-|F¥0), the processes (p;(s),qi(s)), i € Zj, are independent and identically dis-
tributed. If we denote pu(s) = E(pz(pi(s), gi(s))|FV0)), then u does not depend on 4.
Moreover, using (5.3), similar to the proof of Lemma 5.2, we can obtain

/0 By Y o)) - pte) s

k

jEIKajii
N —1 _ _
Stk / - (7151, 1 (5) o) s + 305 2 [ Butoras
k—
GI NE)
Ny —1 [ o i M
=270 /OEij(s),qj(s)) ol ds+N2/E|u<s>|2dssN—E.
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On the other hand, due to (5.18) and (5.19), we get

M /t
—E [ |ui(s)|?ds

M N et 2
+N§IE;/O [F10V(5) — () +-Fot()+Cly )+ Hlo(s) +(s)| ds

M /t M
< —E [ [1M™(s) — ®(s)]?ds+—.
Nt Jo Nz

Moreover, since (p;(s),qi(s)), i € I, are identically distributed under E(-|FV0), we
, ¢ - _

have NL%E et jzi Jo 19R(D;(5), g;(s))|?ds < NM; Therefore, we get from (5.21) that,

for any t € [0,T],

t
M
E sup [5(s)? < M]E/ S + 1) (s) — B(s) ] ds + 1+
0<s<T 0 Ny,

which yields, by using Gronwall’s inequality, that

_ t
(5.22) E sup |I%)(s) — my(s)]? < M]E/ [|z<N>(s) - <1>(s)|2] ds+ L.
0<s<t 0 N;

Consequently, noticing (5.20) and (5.22), we have for each 1 < k < K,

t
M
E sup [I%)(s) — mx(s)[2 < MIE/ (1109 (5) — ()] ds + -
0<s<t 0 Nk

Then similar to the proof of Lemma 5.2, we can complete the proof. O
Now, we introduce the following system of decentralized limiting state with the
perturbation strategy of the minor agent A;: for 1 < j < N, j # 1,
dlo = [Aolo+Bowo(Po, @)+ Fg ®+bo] dt+ [Colo+Dowo(Po, Go) + Fs ®+00] dWo(t)
dfi = [AgiE+Bui+F1<I’+b0] dt+ [CL—FD‘%UZ + F2¢+HZO +O’0] dWi(t),
dlj = [Ag,lj+Bye, (p;, 3;)+ F1®+bo] dt
+[CLi+ Dy, 0, (pj, G;) + Fo®+Hlg+00] dW;(t),
LEMMA 5.10. Under the assumptions of A1-A4, we have

E sup (’lo(t) - Zo(t)|2 + L) - ii(t)’2) =0 (]17 +5?v) :

0<t<T

LEMMA 5.11. Under the assumptions of A1-A4, for each 1 < i < N, for the
minor agent A;’s perturbation control u;, we have

1
=0|—=+c¢ ) .
(W "
THEOREM 5.12. Under the assumptions of A1-A4, the strategy profile (to, a1, - . -
un) is an e-Nash equilibrium of Problem (CC) for the minor agents. More precisely,

Ji(ug, u—i) — Jo(u;)
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there exists a constant M > 0 and a sequence of positive numbers {e(N)}n>1, such
that for each N > 1,

(i) e(V) < M(ﬁ +en), where ey = SUP <p< i |7T](€N) — ks

(i) for any minor agent A; and any u; € Z/lg'j, 1<i< N, one has
Ti(ti(-), u-i(+)) < Fi(ui(-), u—i(-)) +e(N).

We mention that, based on Lemma 5.9, similar to the proofs of Lemmas 5.6 and
5.7 and Theorem 5.8, respectively, we can easily prove Lemmas 5.10 and 5.11 and
Theorem 5.12. The proofs are omitted here; one can find them in [30]. By combining
Theorems 5.8 and 5.12, we obtain the following main result of this section.

THEOREM 5.13. Under the assumptions of A1-A4, the strategy profile (to, @1, - . .,
un) is an e-Nash equilibrium of Problem (CC), where tg = vo(Po, Go), Ui = e, (Di; Gi),
1<i<N, for

eo(p, q) :== Pr, [Ry ' (Bop+ Dya)], e, (p,q) :== Pr,, [Ry,' (B'p+Dp,q)].

More precisely, there exists a constant M > 0 and a sequence of positive numbers
{e(N)}n>1 such that for each N > 1,

(i) e(N) < M(\/%JrsN), where ey := SUp| << |7r,(€N) — T|;

(ii) for any agent A; and any u; € U(fj, 0 <i< N, one has
Ji(wi(-), u—i(-)) < Fi(ui(-), u-i(-)) + e(N).

5.3. Convergence of the empirical measure. In this subsection, we discuss
the convergence rate of the empirical measure using the method of [15, 17] under the
assumption that high order estimates of «aj hold, 1 < k < K. More precisely, we
suppose that

A5. Ef0T|ak(t)|”+5dt < 00,1 <k < K, where a3, 1 < k < K are given by

(2.15)—(2.16).

Remark 5.1. The system (2.15)—(2.16) is a fully coupled FBSDE, and A5 holds
true on a small time interval; see, e.g., [27]. For high order estimates of general
FBSDEs on an arbitrary interval, readers are referred to [11, 23] et al. We mention
that we cannot use the method of [23] to obtain the high order estimates for system
(2.15)—(2.16). This is mainly because the diffusion term of the forward equation
depends on 7. One may combine the methods of [11, 49] (applying the It6 formula
to e *M|a(t)[P and e~*|B(t)|P) to prove the high order estimates for system (2.15)—
(2.16). Nevertheless, here we just suppose that A5 holds to focus on our convergence
rate of the empirical measure.

Let us first recall the following notation (see [15, 17]). Let E be a separable
Banach space and h > 1 be an integer. Pj(FE) stands for the space of probability
measures of order h, i.e.,

1/h
Pur(E) = {19 is a probability measure s.t. My g(9) := (/E |x||%d19(m)) < —l—oo} .

For any integer h > 1, ¥,9" € Py (FE), the Monge-Kantorovich distance Wi, (¢, 9’) is
defined by
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Wh(9,9")

— inf { U lz =yl b x(dz, dy)
ExXE

Let ¥ be a probability measure on R™ and X7, Xo,... be an independent and identi-
cally distributed random variable sequence with common probability law . Denote
9N =L Zf\il 0x,, where dx is the Dirac measure. Then (see Theorem 10.2.1 in [52])
we have the following.

1/h
;X € Pn(E x E) with marginals ¢ and 19’} .

LEMMA 5.14. Given 9 € P,45(R™), there exists a constant M depending only on
n and Mays e (9) such that EDVZ (9N, 9)] < MN~2/(nH4),

Moreover, if X1, Xo,... is an infinite exchangeable sequence with directing mea-
sure ¥, we still denote 9V := + Zil dx, and let v be the marginal distribution of
X,. Then (see Theorem 10.2.6 in [52]) we have the following.

LEMMA 5.15. Suppose M;+57Rn (9) := [|z|"Tv(dz) < 4o0; there exists a con-
stant M depending only onn and Mc/i+5,lR" () such that E]W3 (9N, 9)] < MN—2/(n+4),

Now let us focus on our system (2.15)—(2.16). For each 1 < k < K, we denote
Ig(t) == E(ak( t)|FY0), where L(oy(t)|F¥°) represents the conditional law of ay(t)
w.r.t. .7-"t (recall that we can always find a regular version of the conditional law
L(ar(t)|F7®)). By recalling (5.2) and (5.1), we introduce, for each 1 < k < K and

t € [0,T],
—Z(sm), IN( —Zal(t

ZGIk 74€Ilc
Then we have (recall ey 1= sup; << |7r,iN) — mi|) the following.
THEOREM 5.16. Under the assumptions of A1-A5, we have, for each 1 < k < K,

(5.23) sup E [W2(ON (1), 9(t))] < MN, >+
0<t<T
and
(5.24) sup B [WEWY (1), 9s(1)] < M(N /0 123,
0<t<T

Proof. Since under the conditional expectation E(-|F"°)), for each 1 < k < K,
the processes z;, i € I, are independent and identically distributed with the com-
mon conditional law 9y (t) = £(a(t)|F}"°). Then Lemma 5.15 yields that SUPg<i<T

EW2(0N (), 95 ()] < MN, > which is (5.23).
Moreover, for each ¢t € [0,T ] it follows that

W3R (), 0u(t)) < Z |23(t) — () + 2WE (R (1), D (t)).

ZEIk

Now we take expectation on both sides of the above inequality, and by using Lemma
5.3 and (5.23) we obtain that there exists a constant M independent of ¢ which may
vary line by line, such that

E [WEWY (1), 94(1)] < MEJzi(t) - 2:(t)2 + MNH O
< M(N7'+&%) + MN, 2O < p(N 2 00 4 g2y,
which yields (5.24) (noticing that M is independent of t). d
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Finally, let us recall I; defined by (5.17). Here we assume that 1 € Iy, for some
1 < k < K. We only need to consider the perturbation u; € U, satisfying (5.18)
(see the argument in section 5.2); thus (5.19) holds. Now, we focus on estimating
supg<; <7 EIW3 (v (), 91 (t))], where vp) (t) := NL;? > jer, O1;(t)- We first give the fol-

lowing lemma.
LEMMA 5.17. Under the assumptions of A1-A4, we have
- 2 - 2 1 9
sup E sup (|l0(t) — o ()" + |1;(t) — 2;(t)| ) =0 N +ex |-
JE€Tk#i  O<t<T

Proof. From the first equation of (5.2) and (5.17), we obtain

Aty — o) = [Ao(lo — o)+ Fy (1) = ®) | dt-+ | Colly — 70) + FF 1)~ @) | aw; (1),
10(0) — Zo(0) = 0.
The classical estimate for the SDE and Lemma 5.9 yield that
2 T 2 1
(525) E sup ’lo(t) —Eo(t)‘ < ME/ ‘I(N)(s) - @(s)‘ ds < M ( +E§V) .
0<t<T 0 N

On the other hand, from the third equation of (5.17) and (5.2), with the help of
classical estimate for the SDE, we have that for j € 7y and j # i,

2 T 2
£ sw [0, < ME [ (1906 - 26 + lats) - 20(5)* ) s,
0<t<T 0
and by noticing Lemma 5.9 and (5.25), we complete the proof. d
THEOREM 5.18. Under the assumptions of A1-Ab5, we have

sup B [W2(od (1), 9x(1))] < M(N, 2/ 4 6%).
0<t<T

Proof. By the triangle inequality, we have

e @] <rfe (5 T o 3 a)

" JET ]EIk I
2
(5.26) + W; <Nk 1 Z O1,( O Z Oz, t))
JE€Lk,jF#i JEIk,J#Z

+W22< 1 Z Oz, (1), Vx(?) )1}
Nk JELk,jFi

We note that

1 1
E |W; mz%(t), Z ;1) SW > L)~ 1)

JETLk jGIk,Jfl JE€Lk,j#1

and by noticing (5.19), we have

sup E W22 Zél () Z 01, (¢) SMNk_2.

0<t<T
== JGIk JGIM#
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For the second term in the right-hand side of (5.26), by using Lemma 5.17, we have

supo<;<7 E [W%(ﬁ D jeTh i O (8)s NoTT Dojety.jsti ‘5@'(15))}
< ﬁ sWocr<r E Y ez, i 1Li(t) — 207 < M(y +e3) < M(N%c +e3)-

Moreover, Lemma 5.15 yields that

1

sup B (WS [ —— Y 05,00, 0k(®) | | < M(Ni—1)72/ 00 = (N, 2/ ),
0<t<T N, —1 . -
JELy,j#i

Plugging the above estimates into (5.26), we complete the proof. ]

Remark 5.2. If we suppose some mild assumptions (as in Theorem 10.2.7 of [52])
on ay, we should obtain a uniform convergence rate but with order NV, 2 (F8) The

readers are referred to Lemma 6.8 in [15] for some similar results.

Appendix A. We give this appendix to prove Theorem 4.1. The fully coupled
structure of MF-FBSDE (4.1) raises difficulties for establishing its well-posedness.
Motivated by Pardoux and Tang [49, Theorem 3.1], we can establish the well-posedness
of MF-FBSDE (4.1) for arbitrary time duration when it is weakly coupled.

Let us first note that for a given (Y (), Z(+)) € L%(0, T; RY) x L% (0, T; R*(d+1),
the forward equation in the MF-FBSDE (4.1) has a unique solution X(-) €
L%(0,T;R"); thus we introduce a map M; : L%(0,T;R!) x L%(0,T;R>*(4+D)) —
L%(0,T;R™), through

X(t) :fer/ b(s, X (s), E[X (5)|FL"], Y (s), Z(s)])ds
(A1) 0
+/OU(S,X(s),E[X(s)U:SWO],Y(s),Z(s))dW(s).

We mention that the well-posedness of (A.1) can be established by using the contrac-
tion mapping method under the assumptions (H;) and (Hs), although it has the term
E[X,|F0]. We omit the proof here. Moreover, with the help of the BDG inequality,
it follows that Esup,co 1 |X(t)]? < o0.

LEMMA A.1. Let X; be the solution of (A.1) corresponding to (Yi(-), Zi(+)) €
L2(0,T;RY) x L2(0, T; R+ i = 1,2, Then for all A € R, K1, K2 > 0, we have

(A.2)

t
e ME|X (1) — Xa(t))? + Xl/ e ME| X (s) — Xo(s)|*ds
0

t t
< (ko Ky +k§)/ e ME|Y1(s)—Ya(s)|?ds + (k3K2+k$O)/ e ME|Zy(s)—Za(s)|2ds,
0 0

where A\ == X — 2\; — kgKl_l — k3K2_1 — 2k, — k2 — k3. Moreover,
t o _
e_ME|X1(t)—X2(t)\2 < (ko Ky + k;g)/ e_Al(t_s)e_AsE\Yl(s)—Yg(s)|2ds
0

(A.3) -
+ (k3 Ko + k) / e M=) ME| 7, (5) — Zo(s)|?ds.
0
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Proof. Wedenote X := X, —Xo, Y :=Y1-Ys, Z := Z1— 7, b := b(X1,E[X;|F"°],
Yla Zl)ib(X% ]E[X2|‘FWO]7 Y2a 22)7 o= U(le ]E[X1|‘FWO]7 Yla Zl)io—(XZv E[X2|]:W0]a
Ya, Z5). Applying Itd’s formula to e | X (t) — Xo(¢)|* and taking expectation, we
obtain

(A4)
e ME|X (1)]? = f)\/o 67A5E|Y(s)|2ds+2]E/0 e*>‘5<Y(s),B(s)>ds+]E/o e 7 (s)|2ds.

Notice that

2(X (s),b(s)) = 2(X(s), b(s, X1(s), E[X1 ()| FJ"°], Yi(s), Z1(s))
— b(Xs(s), E[X1(5)|FL"], Yi(s), Z1(9)))
+2(X(5), b(s, Xa(s), E[X1(s)| F°], Y (s), Z1(s))
— b(Xs(s), E[Xa(s)|FL"°], Ya(s), Za(s)))
< 20| X (s) +2|Y( )| (k1 [E[X ()70 + KoY ()] + k3| Z(s)])
< 2\ + koK 4 ks Ky )X (5)[7 4 2k [ X () [E[[ X (5)[|F°]]
+ ko K1Y (5) % + k3K2|Z(s)|2

and
[7(s)]* < k31X (5)]” + KZIE[X ()| FL°)° 4+ k3 [Y () ” + kol Z(s)|?

< k71X (5)? + REE[X ()P 7S] + Y (5)]” + Kio [ Z (s) 1.

X
X
Then, from (A.4), E[E[| X (s)[?|F°]] = E|X(s)|? and

E [|X(s)[E[X ()| F"]] = E [E [[X(s)|E[X (s)[| 7] F7]]
= E [(E[IX(s)[|F7))°] < E [E[[X(s)*|7:"]] = E|X(s)]”

we can obtain (A.2). B
Now, we apply It6’s formula to e~ 1(t=9)e=2%| X (5) — X5(s)|? for s € [0,] and
taking expectation, it follows that

e ME[X (1)

t LA
A5 = —(/\,Xl)/ e~ M=) X (5)[2ds + QIE/ e MU (X (), b(s))ds
(A.5) 0 0

t
—HE/ e M=) 23 17 (5) 2 ds.
0

From the above estimates and (A.5), one can prove (A.3). d
Remark A.1. By integrating both sides of (A.3) on [0, 7] and using 1 7?(%5) <
1_% for all s € [0,T], we have

l—e=NT

(A6) X —Xa|2 < =5
A1

(k2 K1 + k3)IIV1—Y2 |3 + (ks K2 + ki) || 21— Z2|13] -
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Let ¢t = T in (A.3) and notice that e=*(T=%) < 1v e~M7 for all s € [0,T]; thus
A7) ePTEXT) - )P < [Lve T (K + BV - Y}
+(ks K + ko)1 21 — Zo| 3] -

In particular, if \; > 0, we have
(A.8) e MEIXy(T) — Xo(T)” < (koK1 + k3)I[Y1 — Yal 3 + (ks K2 + k7o) | 21 — 22 3.

Similarly, for a given X(-) € L%(0,T;R™), the backward equation in the MF-
FBSDE (4.1) has a unique solution (Y (-), Z(:)) € L%(0,T;R!) x L%(0,T; R (d+1)),

thus we can introduce another map My : L%(0,T;R") — L%(0,T;R") x L%(0,T;
RO+ “through

(A9)  Y(t) = g(X(T),E[X(T)|F"])
T
/ F(s, X (), ELX ()| F0], Y (5), Z(s))ds —/t Z(s)dW (s).
The well-posedness of (A.9) under assumptions (Hj), (Hsz) is referred to in Darling

and Pardoux [22, Theorem 3.4] and Buckdahn and Nie [13, Lemma 2.2]. Moreover,
we have E sup,¢(o 7 Y (#)]? < o0.

LEMMA A.2. Let (Yi(+), Zi(+)) be the solution of (A.9) corresponding to X; €
L%Z(0,T;R"™), i = 1,2. Then for all A\ € R, K3, K4 > 0, we have

(A.10)
T
e MEY; (1) — Ya ()2 + Xz/ MRV, (s) — Y(s)|2ds
t
T
+(1— k6K4)/ e ME|Z1(s) — Zo(s)|?ds
t
T
< (B2, + K2)e TE|Xy (T) — Xo(T) + (ks + ks) K / e ME|X, (s) — Xa(s)[2ds,
t

where Xg := —\ — 2y — (kg + ks)K5 " — ke . Moreover,

T _
e ME[Y;(t) — Yo (8)2 + (1 — k6K4)/ e 2BV ME| 7, (s) — Zo(s)|2ds
t
(A.11) < (k) + kip)e 2T e TR (X (T) — Xo(T) [
T _
+ (kg + kg,)Kg/ e 207D ME X (s) — Xo(s)|ds.
t
Proof. We denote X := X1—Xo,Y :=Y1-Ys, Z:=Z1—Z, f = f(X1, E[X1]|F"°],

Y1, Z1) — f(Xo, E[X3|FW0], Ys, Z5). Applying Ito’s formula to e~ |Y; (t) — Ya(¢)|? and
taking expectation, we obtain

T
NETOF - [ L NET () ds+E/ e (Z(s)2ds
(A.12)

T
_ e*’\TIE|?(T)|2 g / e (V' (s), F(5))ds
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Noticing that

2(Y(s), f(s)) = 2(Y(s), f (s, X1(s5), E[X1()| FL"°], Ya(s), Z1(s))
— f(X1 (), E[X1 (s)|F2°], Ya(s), Zu(s)))
+2(Y(s), f(s, X1(s), E[X1(s)| F°], Ya(s), Z1(s))
— f(Xa(s), E[Xa(s)|F{"), Ya(s), Za(s)))
< 22|V (5)[* 4 2V ()] (ka| X (5)] + ks [E[X (s)[FS"°)] + ko Z(s)])
< (2N + kK3t + ks Kyt 4+ ke K M)V (8)]? + ka K| X (s))?
+ ks K[| X (5) P FL]| + ke Ka|Z(s)]?

and

Y(T))? = |g(X1(T), E[X1(T)|F1°]) — g(X2(T), E[Xo(T)| F7°))?
< KL X (D) + KLE[X (s)[|F ).

Then, from (A.12) and E[E[|X (s)[*|F{"]] = E[X (5)|?, we can obtain (A.10).

Now, we apply Itd’s formula to e=*2(5=9)e=23|Y(s) — Yi(s)|? for s € [t,T] and
taking expectation, it follows that

(A.13)

T _ T _
e—)\tE|?(t)|2 _ (/\ _’_Xz)/ G_AZ(S_t)e_/\SE‘?(S)FdS + E/ 6_/\2(S_t)€_)\5‘7(8)|2d8
t t

B T _
= e T ARV (5)2 4 2E / e 22V (s), f(s))ds.
t

From the above estimates and (A.13), one can prove (A.11). 0
Remark A.2. Now we choose Ky satisfying 0 < K4 < kzgl; then by integrating

—Ros

both sides of (A.11) on [0,7] and using 17% < I’EX_AQT for all s € [0,T], we have
(A.14)

1—e 2T _
IY1-Y2|} < — (k3 +kT)e MEIX1(T) = Xo(T) P+ (kaths ) K3l X1— X2 3] -
2

Let ¢ = 0 in (A.11) and notice that 1 A e 27 < e=*25 < 1v e 27 for all s € [0, T];
thus
(A.15)

1Z1 — Zs||3

< (k2 +k)e 22T e TE| X (T) = Xo (1) >+ (ka+ks) K3 (1 V e 2T | X1 — X513
- (1 — keK4)(1 A e=22T) '

On the other hand, if Ay > 0, letting ¢t = 0 in (A.10), we have
(A.16)

o _ (K3 + k3)e ME|Xy (T) — Xo(T)|? + (ks + ks) Ks|| X1 — X513
1Z1 — Zs|)5 < .

1 —FkeKy

Now, we present the proof of Theorem 4.1.
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Proof of Theorem 4.1. We define M := My o My, recalling that M; is defined
through (A.1) and M, is defined through (A.9). Thus M maps L%(0,T;R) x
L%—(O,T; Rlx(d“)) into itself. To prove the theorem, it is only needed to show that
M is a contraction mapping for some equivalent norm || - ||5. In fact, for (V;, Z;) €
L2(0,T;RY) x L2(0, T; RV et X; = My (Y3, Zi) and (Y, Z;) := M((Yi, Z:));
from (A.6), (A.7), (A.14), and (A.15), we have

V1 =YolX+ 121 — Z23
1 —E_)QT n 1V e AT _
TN (1— koK) (1A e |
X [(kf1 + kT2)e MEIX1 (T) = Xo(T)[? + (ka + ks) Kal| X1 — Xa|3]
1 —E_)QT n 1V e AT _
" (1— koK) (1A e |

<

IN

1—e T
A
X [(ka Ky + k§) Y1 = Ya| 3 + (ks K2 + ko) | 21 — Za|3] -

(ki) + k&) (1 vV e_XIT) + (ka4 ks) K3

Recall that A\; := A\ — 2\; — koK' — ks Ky ' — 2ky — k2 — k2 and Ay := —\ — 2)\y —
(ks + k5)K§1 — keK ;. Then by choosing suitable A (e.g., we can easily choose A big
enough such that A >1and \s < 0), the first assertion of Theorem 4.1 is immediate.

Now let us prove the second assertion. Since 2(A\; + \o) < —2k1 — k2 — k2 — k3,
we can choose A € R, 0 < Ky < kﬁ_l, and sufficiently large K7, K5, K3 such that

A >0, A2 >0, 1 — Kykg > 0.
Then from (A.6), (A.8), (A.14), and (A.16), we have
V1 =YX + 121 — Za3

1 1
S | <[ B TR ()~ Xa(T) P ) Kol X~ X )
-

1 1
< | = 2 2 Ky—
= {AQ 1o kGKJ . [k“ Rz (ks K

X [(ke Ky + k§)IIY1 = Ya|3 + (ks Ko + ko)1 21 — Za|3] -

This completes the second assertion of Theorem 4.1. 0
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