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ABSTRACT In high efficiency video coding (HEVC), transformation and quantization are separately
performed to eliminate the perceptual redundancy of visual signals. However, a uniform quantizer can
inevitably degrade the compression efficiency of fixed transform matrices due to varying space-frequency
characteristics of video content. This paper introduces a joint optimization of transform and quantization
approach for video coding. First, we compute a content dependent transform from the reconstructed reference
by a fast Karhunen-Loéve transform (KLT). Second, using a template-based rate regularization, we jointly
optimize transform and quantization (JOTQ) as a rate constrained optimization problem and obtain a feasible
solution to improve coding performance. Finally, we design fast algorithms and early terminations to reduce
the computational complexity of JOTQ. The experimental results show that JOTQ outperforms several
previous methods by providing Bjøntegaard Delta rate reductions of 4.11% and 3.38% on average under
the low-delay and random-access configuration, respectively.

INDEX TERMS Video coding, content dependent transform, block adaptive quantization, high efficiency
video coding (HEVC).

I. INTRODUCTION
With the rapid development of Internet of Video Things
(IoVT), video applications [1]–[3] (e.g. video-on-demand
(VoD), live over-the-top (OTT), video surveillance, etc.) have
become ubiquitous, which also promotes the fast develop-
ment of video coding techniques [4], [5]. The ITU-T Video
Coding Experts Group (VCEG) and ISO/IECMoving Picture
Experts Group (MPEG) jointly released H.264/Advanced
Video Coding (AVC) [6] and High Efficient Video Coding
(HEVC) [7] in the past two decades. However, basic trans-
form and quantization methods have not changed much. For
example, H.264/AVC uses integer discrete cosine transform
(DCT), while HEVC adopts almost the same scheme, except

The associate editor coordinating the review of this manuscript and
approving it for publication was Nilanjan Dey.

for 4×4 intra-coding using discrete sine transform (DST).
Moreover, both of them adopt uniform reconstruction quanti-
zation (URQ), except that HEVC employs an additional rate
distortion optimized quantization (RDOQ) method.

HEVC takes a quadtree-based partitioning scheme to
divide similar content into a coding block (CB), which
boosts the content adaptability performance of an encoder.
To enhance the coding performance of prediction, it employs
more flexible prediction block (PB) partitions, and more
intra-prediction directions. HEVC supports various transform
block (TB) sizes to compress the energy of prediction residue.
In URQ, it adopts different dead-zone (DZ) offsets for intra-
and inter-mode coding when the same quantization param-
eter (QP) is applied at the block level. Furthermore, HEVC
uses a hierarchical QP cascading (QPC) approach, where
frames in a lower layer are encoded by smaller QPs, and
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FIGURE 1. Example of hierarchical low-delay P and B structure in HEVC.
Frames in lower layers are used as reference for higher layers. A ‘‘P’’
frame is encoded by uni-prediction, while a ‘‘B’’ frame is encoded by
bi-prediction.

TABLE 1. Main abbreviations used in this work.

hence high-quality reconstructions can be used as reference
frames for a higher layer (see Fig. 1). Specifically, a QP offset
value between adjacent layers is set as one [8]. Since the
legacy video coding standards take a ‘‘first transform then
quantization’’ strategy, it is beneficial to review recent studies
that improve the performance of transform or quantization in
video coding. We summarize somemain abbreviations of this
work in Table 1.

Various transform methods have been designed to better
compress the energy of residual blocks, which can be roughly
categorized into directional transform [9], [10], non-square
transform [11], secondary transform [12], [13], and con-
tent dependent transform [14]–[16]. Directional transform is
based on that DCT is less efficient in the edge region (except
vertical and horizontal edges), and 1D transform along edge
direction is used to address this problem. Non-square trans-
form is designed for non-square PBs, where it is reported
that splitting non-square PBs and applying to the non-square
transform can improve the coding performance by 1.0%
BD-rate (Bjøntegaard Delta rate [17]) reduction. Secondary
transform is used to further compact the coefficient energy of
the primary transforms (i.e., DCT), where the energy is clus-
tered in the low-frequency region after performing a primary
transform, and then a secondary transform is conducted on the
primary result. Experiments show that secondary transform
can provide about 0.5-2.5% BD-rate saving.

Karhunen-Loé ve transform (KLT) is considered as an
optimal content dependent transform, which utilizes online
transform matrices to compensate the coding loss of a fixed
transform.One key problem ofKLT is that transformmatrices
are required to send to a decoder, which results in over-
head bits problem [15]. To address this overhead problem,

Biswas et al. [14] proposed to rotate motion compensated
prediction block by some certain degrees (e.g. −0.5◦), and
then shift it horizontally (or vertically) to produce training
dataset which was used to compute transform matrices by
KLT. Wang et al. [15] proposed to down-sample a residual
block into four equal-sized sub-blocks. The first sub-block
was transformed by DCT, while the other three sub-blocks
were de-correlated by transform matrices that were estimated
from the first reconstructed sub-block by Singular Value
Decomposition (SVD). Lan et al. [16] proposed to establish a
training dataset by searching for similar blocks in a region that
are used to compute transformmatrices byKLT. Since search-
ing similar content is computationally expensive, it greatly
increases encoding and decoding complexity.

In addition, many efforts [18]–[24] have been dedicated
to explore a better quantizer for video coding. Sullivan [18]
introduced an adaptive rounding-based quantizer, where the
adaptive rounding could first obtain the statistics of residual
coefficients and then adjust the rounding offsets accordingly.
Karczewicz et al. [19] used RDOQ to obtain an optimal
quantized level for a transform coefficient among a ceiling
rounding value, zero and a floor rounding value. Yu et al. [20]
proposed to use a hard decision partition and adaptive recon-
struction level to do quantization, where the reconstruction
levels were computed adaptively based on the statistics of
reconstructed residual blocks. Lee et al. [21] introduced a soft
thresholding quantization method by adjusting multiplication
factor (MF) in URQ, where MF was weighted by Euclidean
distance between the current coefficient and DC coefficient.
Wang et al. [22] proposed an optimized quantization method
for motion compensation prediction (MCP) residual cod-
ing, where an adaptive QP is computed for each block.
Ropert et al. [23] proposed a spatial-temporal scheme to
compute a local quantization parameter based on a temporal
distortion propagation model. Xiang et al. [24] proposed
to estimate adaptive quantization by a spatial-temporal just
noticeable distortion (JND)model, where both bit-rate saving
and subjective quality can be improved.

As can be seen from the above discussions, the exist-
ing works mainly focus on how to improve compression
efficiency by individually optimizing transform or quanti-
zation to reduce the perceptual redundancy [25]. However,
the transform coding gain can be degraded by a quan-
tizer due to the ‘‘first transform then quantization’’ strategy,
as residual blocks usually exhibit varying space-frequency
characteristics [22]. To address this challenge, we propose
to jointly optimize the conventional transform-quantization
(T-Q) paradigm with the goal of finding optimal quantized
transform coefficients (QTCs).

The main contributions of this study comparing with the
existing publications are summarized as follows.

1) We design a content adaptive transform (CAT) that can
compute online transform matrices from some recon-
structed similar blocks by a fast KLT decomposition,
which avoids sending block-based transforms but pre-
serves data dependent merit.
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2) By employing a template-based rate regulation in block
adaptive quantization (BAQ) optimization, we jointly
optimize transform and quantization (JOTQ) as a rate
constrained optimization problem, and obtain a feasi-
ble solution which outperforms previous methods for
various video sequences.

3) We introduce fast algorithms and early termination
strategies which can reduce the computational com-
plexity of JOTQ.

The reminder of this study is organized as follows.
Section II gives problem formulations used in the pro-
posed JOTQ. Section III demonstrates the details of JOTQ.
Section IV presents experimental results. Section V con-
cludes this work.

II. BACKGROUND AND PROBLEM FORMULATION
In this section, we introduce some necessary background, and
establish the formulations of transform and quantization used
in the proposed JOTQ model.

A. ADOPTED TRANSFORMS IN HEVC
Suppose that xi is a row-ordered column vector of the i-th
residual block X i

N×N
, C is a 2D orthogonal transform matrix

with the size of N × N , and yi is a row-ordered column
vector of the transform coefficient blockY i

N×N
. Then, in video

coding, transform coding can be formulated as

yi = (C ⊗ C)× xi (1)

where ⊗ is the Kronecker product.
In HEVC, C takes an approximated integer implementa-

tion of core transform [26]. In order to improve the coding
performance, there are multiple transform sizes as well as
transform types. For instance, C supports four DCT matrices
of size 4×4, 8×8, 16×16, and 32×32 in the context of
motion compensated video coding. Meanwhile, C includes
an alternate DST matrix for the encoding of 4×4 luma
intra-prediction residue.

1) DISCRETE COSINE TRANSFORM (DCT)
The forward orthogonal DCT-II can be expressed as

Cm,n
dct =

σm
√
N

cos
(
mπ
N

(
n+

1
2

))
, (2)

wherem, n = 0, 1, ...N −1 and σm is equal to 1 whenm = 0,
otherwise σm is equal to

√
2.

The integer approximation of Equation (2) is to scale each
matrix element by 26+log(N )/2. Keeping the first row of Cdct
to be equal to 64, the rest matrix elements are carefully
hand-tuned to achieve a balanced performance. A detailed
description is provided in [27].

2) DISCRETE SINE TRANSFORM (DST)
For a 4×4 luma intra-prediction block, the forward transform
matrix is given by a fixed-point representation of DST-VII,

Cm,n
dst = round

(
256

√
2N + 1

sin
(
(2m+ 1) (n+ 1) π

2N + 1

))
.

(3)

In intra-prediction, prediction error tends to be bigger away
from the left and/or top boundary due to the direction predic-
tion scheme, which can be better modeled by a DST basis.
A theoretical analysis of this phenomenon is given in [28].
DST can provide about 1% bit-rate saving.

B. BLOCK ADAPTIVE QUANTIZATION
URQ can be expressed as

QQP
(
yi
)

= sgn
(
yi
)
·

⌊
Diag (8 (QP))×

∣∣yi∣∣+ 1 · f

2qbits

⌋

= sgn
(
yi
)
·

⌊
Diag (8 (QP))× |(C ⊗ C)× xi| + 1 · f

2qbits

⌋
,

(4)

where sgn(·) is a sign function, Diag(·) is a diagonal matrix
operation,8(QP) is the row-ordered column vector of φ(QP)
which is a map function of six constant multiplication factors
related to an argument QP, f is a constant which is used to
adjust the width of DZ, qbits is a right-shifted factor (e.g.
qbits = 21 − log2(N ) + QP/6), and 1 is a vector with the
size of N 2

× 1. According to (4), a vector result of quantized
coefficient ỹi,QP = QQP

(
yi
)
.

However, URQ is frequency independent, so all coeffi-
cients are uniformly quantized in a TB. To improve cod-
ing performance, BAQ can obtain the best QP for a cod-
ing block (CB) in a rate-optimization (R-D) sense, where
the encoder needs to search over multiple QPs in a small
range. If the number of QP candidates is bigger than 1 (i.e.,
1QP > 0), then it employs the following R-D optimization
process,

argmin
QP∈

[
QPb−1QP,
QPb+1QP

] J i (QP) = D
(̃
yi,QP

)
+ λ · R

(̃
yi,QP

)
, (5)

where J i is a R-D cost of the i-th CB, R (·) denotes a
bit-rate cost, D (·) denotes a reconstruction distortion cost,
λ denotes the Lagrange multiplier, and QPb denotes a
base QP.

Some previous studies [22], [29], [30] show that
BAQ is helpful to enhance the compression perfor-
mance. BAQ can provide the bit-rate reduction by about
1.0-2.0% [22], [30].

III. PROPOSED JOINT OPTIMIZATION METHOD
A. CONTENT ADAPTIVE TRANSFORM (CAT)
In this section, we introduce an efficient CAT method. The
proposed CAT can be trained in a block-by-block way. CAT
is designed to avoid encoding transformmatrices while main-
taining data dependent merit.

The CAT matrices can be computed as follows. First,
suppose that we have K residue vectors xrk , k = 1, 2, ...,K .
The mean values of K residue vectors is µ = 1

K

∑K
k=1 x

r
k .

Let uk=xrk -µ. Then, we take these residual vectors uk as
the training samples to compute a data dependent transform.
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FIGURE 2. Illustration of uni-prediction (P frame) for the luma motion
compensation with 1/4 pixel accuracy and the construction of the training
set U . The training data of frame P7 is collected from its reference
frame P6.

We denote the covariance matrix of those residual vectors as

Ru = UUT , (6)

where U = (u1,u2, · · · ,uK ) with the size of N 2
× K .

Since Ru is real and symmetric, there is an orthogonal
matrix Ccat that diagonalizes Ru.

CT
catRuCcat = 3, (7)

where 3 is diagonal.
The performance ofCcat is based on the similarity between

training vector uk in U and xi. In order to obtain a better
Ccat in Equation (7), we need to establish a high-quality
training dataU . Searching similar xrk involves a large amount
of computation. Our empirical studies suggest a light-weight
estimation of xrk . We introduce the detailed construction ofU ,
and computation of Ccat as follows.

1) TRAINING DATA U
For an inter-coding block, we first collect highly cor-
related blocks uk to construct the training set U .
We then compute K similar patches from a reference
frame at a quarter-pixel level for the luma component.
A symmetric 8-tap, [−1, 4,−11, 40, 40,−11, 4, 1]/64,
for half-pixel accuracy and an asymmetric 7-tap filter,
[−1, 4,−10, 58, 17,−5, 1]/64, for quarter-pixel accuracy
are used to interpolate the fractional positions in this research.

More precisely,U is estimated by shifting the motion com-
pensated predictor onto a small grid of pixels centered around
the motion vector associated with xi. For uni-prediction,
we collectK shifting residues of xrk in the fractional positions.
For bi-prediction, we also obtain 2K residues of uk by the
same way.

Fig. 2 shows an example of obtaining uk for a P frame
in uni-prediction. In the frame P7 of Fig. 1, the half-pixel
sample b0,0 is computed by the symmetric 8-tap filter. The
quarter-pixel sample a0,0 is computed by the asymmetric
7-tap filter. Suppose that the motion vector of a CB is at
the center position (i.e., j0,0) of Fig. 2. Then the neighbor-
ing 5×5 candidate blocks are used to construct the training
set U .

FIGURE 3. Example of the proposed CAT framework.

2) ONLINE MATRIX DECOMPOSITION AND INTEGER
IMPLEMENTATION
To directly obtain Ccat that diagonalizes Ru ∈ RN

2
×N 2

can
introduce intolerable complexity in video coding. We diag-
onalizes RTu because it has a much lower dimension,
RTu ∈ R

K×K when K < N 2. The eigenvectors of the original
high dimensional covariance matrix Ru can be obtained by
multiplyingU with the eigenvectors of the lower dimensional
covariance matrix RTu . A detailed description is given in [16].

In order to reuse the quantization design of HEVC,
we scale Ccat by N × 210, and scale the transform entries
of each to its nearest integer. Experiments validate the effec-
tiveness of this design in Section IV-A.

3) SELECTION BETWEEN CAT AND DCT/DST
CAT is data dependent, whose performance is dependent
on the similarity between the current block xi to be trans-
formed and the training data U . It is noted that U has lower
correlations with xi in rich texture area where pixels vary
significantly. To compensate for sub-optimal estimation of U
in Equation (6), we employ an alternative method between
CAT and DCT/DST.

We use the R-D optimization to determine the best coding
mode between Ccat and Cdct/dst . Furthermore, a new binary
flag cat _ coding _ mode is added in the HEVC standard
syntax to notify themode selection betweenCdct/dst andCcat .
The associated semantic is given as follows: cat _ coding
_ mode equal to 0 means that Cdct/dst is used for xi, and
otherwise Ccat is used.

Algorithm 1 gives the modified syntax of our method.
We use a function, transform _ tree(· · ·), to demon-
strate how to parse cat _ coding _ mode. It is worth noting
that the syntax decoding of our CAT is same as that of the
HEVC standard except for parsing the additional flag cat _
coding _ mode, where the corresponding syntax change is
highlighted in blue. For the detailed description of HEVC
decoding, we refer the interested reader to [31].

Fig. 3 shows the framework of CAT. In our implemen-
tation, CAT supports four transform sizes, including 4×4,
8×8, 16×16, and 32×32. In inter-mode coding, we propose
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Algorithm 1: Proposed CAT Syntax Modification
Data: transform split condition Tsplit , coded block

flag condition of chroma Fcbf ,cbcr , coded block
flag condition of luma Fcbf ,luma, transform
block index tbi

Result: transform split flag split _ transform _ flag,
coded block flags of chroma cbf _ cb, cbf _
cr, coded block flag of luma cbf _ luma, CAT
coding flag cat _ coding _ mode

function transform _ tree (..., tbi)
Updating Tsplit
if Tsplit then
Parsing split _ transform _ flag

end if
Updating Fcbf ,cbcr
if Fcbf ,cbcr then

Parsing cbf _ cb and cbf _ cr
end if
if split _ transform _ flag then
transform _ tree (..., 0)
transform _ tree (..., 1)
transform _ tree (..., 2)
transform _ tree (..., 3)

else
Updating Fcbf ,luma
if Fcbf ,luma then
Parsing cbf _ luma

end if
if cbf _ luma then

Parsing cat _ coding _ mode
end if

end if
end function

to choose the best transform mode between DCT/DST and
CAT in the R-D sense. A detailed performance evaluation of
CAT is provided in Section IV-B.

B. BLOCK ADAPTIVE QUANTIZATION (BAQ)
OPTIMIZATION
In Equation (5), BAQ can choose a unique QP for a TB,
and achieve a better coding performance. However, it signif-
icantly increases the computational complexity. The reason
is that the HEVC reference software currently employs a
brute-force search scheme which needs to perform forward
transform, quantization, de-quantization, inverse transform,
and entropy coding for each QP candidate to find the best
result of (5) in the R-D sense. Consequently, we introduce an
efficient approach to obtain a feasible solution for the BAQ
optimization.

1) TEMPLATE-BASED RATE REGULATION
In minimizing J i, the computational complexity to obtain
the rate cost cannot be ignored. We estimate R(̃yi,QP) by

fixing the number of QTCs instead of computing its practical
value for the i-th CB. Specifically, we select the number of
non-zero QTCs as one of the factors to estimate the rate cost.
Also, the position information of these non-zero QTCs is
utilized based on the transform theory. The rate constraint is
computed by a binarization process,

ξ ỹi,QPb
(l) =

{
1, ỹi (l) 6= 0
0, ỹi (l) = 0

. (8)

where ξ ỹi,QPb
is a QTC template, and the sample position

l = 1, 2, ...,N 2.
The proposed template-based rate regularization is

designed for the purpose of determining the most important
QTC positions. We select the important QTCs of ỹi,QP by

ỹ∗i,QP = ξ ỹi,QPb
◦ ỹi,QP, (9)

where ỹ∗i,QP is the selected QTCs to be transmitted to the
decoder, and ◦ is the Hadamard product.

Fig. 4 shows the performance of the proposed rate reg-
ulation method (9), where experiments are conducted on
numerous standard videos with various spatial resolutions,
frame rates, and different scenarios. BD-rate is used to mea-
sure the rate regulation accuracy. It can be observed that our
method can accurately control output bit-rate under the same
distortion. For a detailed analysis, it is referred to our previous
work [22].

2) FAST BAQ MODEL
As discussed above, the proposed template-based rate regula-
tion method can effectively control the rate cost. In this case,
Equation (5) is reformulated as

argmin
QP∈SQP

J i (QP)
ỹ∗i,QP=ξ ỹi,QPb

◦̃yi,QP

= D
(̃
yi,QP

)
+ λ · R

(̃
yi,QP

)
=

∥∥∥T−1Q−1QP (̃y∗i,QP)− xi∥∥∥22 + λ · R (̃y∗i,QP)
=

∥∥∥T−1Q−1QP (̃y∗i,QP)− xi∥∥∥22 + λ · R (̃yi,QPb). (10)

where SQP = {QP|QP ∈ [QPb −1QP,QPb +1QP]}.
In Equation (10), we can obtain D(̃yi,QP) in the transform

domain, where the inverse integer transform C−1 results in
negligible error. In addition, the entropy coding of R(̃yi,QP)
can be saved in minimizing J i. Thus, a fast algorithm is
developed for BAQ optimization.

C. PROPOSED JOTQ MODEL
To improve video coding efficiency, we formulate the prob-
lem of JOTQ under a given QPb as

argmin
T∈{Cdct/dst ,Ccat },QP∈SQP

J i (T ,QP )

=

∥∥∥T−1Q−1QP (QQPT (xi))− xi∥∥∥22 + λR (QQPT (xi))
(11)
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FIGURE 4. Mean absolute difference of the proposed template-based rate regulation method.

FIGURE 5. Flowchart of the proposed JQTQ method.

where T−1 is the inverse of T = C ⊗ C, and Q−1QP
is a de-quantization function (i.e., the inverse process of
Equation (4)).

In Equation (11), our target is to find the optimal transform
and quantization combination. According to the optimization
theory [32], it inevitably introduces a large amount of compu-
tational complexity to find the best (T ,QP) due to the number
of combinations.

In Fig. 5, we show the R-D process of a single T-Q com-
bination (T ,QP). Suppose that the input residue is xi. The
encoding results of CAT are conducted by first collecting
the reference frames (see Fig. 2) to obtain the associated
training dataset (see Section III-A.1), then calculating the
KLT transform matrices by (7), and finally obtaining the R-D
cost J i(Ccat ,QP), which is illustrated at the top row of Fig. 5.
Similarly, the R-D results J i(Cdct/dst ,QP) of DCT/DST are
performed by (2) and (4) as shown in the bottom row of Fig. 5.
The best R-D cost of encoding xi is determined byminimizing
J i(Ccat ,QP) and J i(Cdct/dst ,QP).

1) OVERALL JOTQ ALGORITHM
Using the joint T-Q model (11) [33] and the appropriate cod-
ing parameters, the encoder can achieve the R-D optimized
quantization coefficients. The JOTQ method is implemented
as follows.

Step 1) Constructing the KLT training dataset: For uni-
prediction, the neighboring quarter-pixel samples
of a prediction block are used to construct uk as
shown in Fig. 2. For bi-prediction, the elements
of uk are computed as the same way as that of a
bi-prediction reference block.

Step 2) Computing the CAT matrix and converting to inte-
ger transform: A fast KLT decomposition is used
to obtain Ccat in Equation (7). The elements of
Ccat are multiplied by N ×210 and rounded to the
nearest integers.

Step 3) Performing template-based rate regulation: The
optimal quantization coefficients are selected by
Equation (9).

Step 4) Determining the best QTCs: The optimal QTCs
for a single transformT can be computed by Equa-
tion (10). After obtaining the R-D costs ofCdct/dst
andCcat , the best codingmethod is determined for
a single T-Q combination as shown in Fig. 5.

Step 5) Overall optimization: If there is still a T-Q com-
bination which is not checked, the encoder goes
to Step 3). The best T-Q result is computed
after searching all of the T-Q combinations in
Equation (11).

2) ACCELERATION STRATEGY
To reduce the computational complexity of JOTQ, we do not
fully compute Ccat for all types of PB partitions during the
R-D optimization process. Instead, we perform CAT only
when the best PB is determined. In addition, when all QTCs
are zeros, the computation of Ccat is skipped. In such a
case, cat_coding_mode is not explicitly encoded, because
the decoder can parse cat_coding_mode in the same way.
When QTCs contain non-zero elements and the CAT method
is selected, cat_coding_mode = 1 is signaled in bitstream,
and otherwise cat_coding_mode = 0.
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TABLE 2. General test conditions.

The average R-D costs of the same temporal layer of
size 4 × 4, 8 × 8, 16 × 16, and 32 × 32 in a GOP is
computed as

RDlayerN×N =
1
I

∑
i

J i (T ,QP ), (12)

where layer denotes the hierarchical layer as shown in Fig. 1,
e.g. layer = 0, 1, 2, 3. We use α · RDlayerN×N as a threshold
to reduce the computational complexity. When the R-D cost
of the current TB is smaller than α · RDlayerN×N (e.g. α is
empirically set to 0.4), the computation of Ccat is skipped
and cat_coding_mode = 0.

IV. EXPERIMENTS AND DISCUSSIONS
In order to verify the effectiveness of JODQ, we implement
it into the HEVC reference software HM 16.6 [8]. There are
two different configurations to meet various video applica-
tions (e.g. VoD, OTT, broadcasting, video surveillance and
conferencing, etc.), including low-delay (LD) main encoder
_ lowdelay _ main.cfg and random-access (RA)main encoder
_ randomaccess _ main.cfg.
Due to the simplicity of standard broadcast sequences

(i.e., Class E), we mainly focus on the experiments of more
complex video sequences (i.e., Class A∼ Class D) according
to common test condition. Moreover, JOTQ is compared with
several advanced methods, including Saxena and Fernan-
des [13], Wang et al. [15], Lan et al. [16] and Lee et al. [21].
The detailed test conditions are tabulated in Table 2, where
all the other encoding parameters in the experiments are set
as the same for all methods.

We tabulate the experimental results in terms of Bjø nte-
gaard Delta rate (BD-rate) [17]metric, which has beenwidely
used to measure the performance of video coding tools. This
metric gives an average performance difference between the
benchmark and the comparison methods. The BD-rate value
for each sequence is computed by fourQPs={22, 27, 32, 37},
where a negative value indicates bit-rate saving with the same
video quality in terms of PSNR.

We measure the average complexity Tavg by

Tavg = Tmod
/
Tben × 100%, (13)

where Tmod is the practical running time of a modified
method, and Tben is that of the benchmark method.

TABLE 3. Bjøntegaard delta rate (BD-rate) results of the proposed CAT
method (QPb = 22,27,32,37).

A. BD-RATE PERFORMANCE OF CAT
Table 3 shows the overall performance of CAT. It can be seen
that the average BD-rate improvements for the LD and RA
configuration are 2.94% and 2.14%, respectively.Meanwhile,
CAT reduces the bit-rate reduction up to 9.03% in terms of
BD-rate.

From Table 3, we have two observations based on the
characteristics of video content: (1) CAT obtains a higher
bit-rate reduction for video sequence with rich edges (e.g.
BQTerrace, BasketballDrill and BQSquare). The sharp edges
may raise a great challenge for the fixed kernel transform
Cdct/dst , while Ccat can be trained to efficiently compact the
energy of edge pattern. (2) CAT achieves a higher coding
gain in the LD configuration than in the RA configuration.
RA employs bi-prediction and complex hierarchical frame
structure, which makes the residue has a lower correlation in
a block. In such a case, the CAT training dataset has lower
quality samples, which results in a lower coding gain.

B. ABLATION STUDY
To fully demonstrate the performance of CAT, we conduct
an ablation study to evaluate the influence under a different
number of transform sizes, including (1) a single transform
size 4× 4 (marked as ‘‘4× 4 only’’), (2) two transform sizes
4×4 and 8×8 (marked as ‘‘4×4−8×8’’), (3) three transform
sizes 4×4, 8×8, and 16×16 (marked as ‘‘4×4−16×16’’),
and (4) four transform sizes ranging from 4 × 4 to 32 × 32
(marked as ‘‘4× 4− 32× 32’’).
Table 4 gives the encoding results of our CAT method with

various transform settings from ‘‘4 × 4 only’’ to ‘‘4 × 4 −
32 × 32’’. The detailed results for each video sequence of
‘‘4× 4− 32× 32’’ are provided in Table 3. We have the fol-
lowing observations: (1) When the supported transform size
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TABLE 4. Bjøntegaard delta rate (BD-rate) results of different transform
settings (QPb = 22,27,32,37).

increases, the coding gain is greatly increased. For example,
a single 4 × 4 transform size obtains the lowest coding gain
among four settings. As 4 × 4 and 8 × 8 transform size are
allowed, the performance is better than ‘‘4×4 only’’. The sim-
ilar trends apply to ‘‘4×4−16×16’’ and ‘‘4×4−32×32’’. (2)
When video resolution increases, the coding gain is reduced
under the same transform configuration. For video sequence,
larger resolution usually has higher prediction efficiency [34],
leaving less redundancy for exploration.

C. OVERALL BD-RATE PERFORMANCE COMPARISONS
Table 5 tabulates the overall performance comparisons. The
result of Saxena and Fernandes [13] is provided in Table 5,

where the average BD-rate savings of the LD and RA con-
figuration are about 0.71% and 0.67% in terms of BD-rate,
respectively. Wang et al. [15] obtains 1.58% bits saving in
LD and 1.39% in RA. Lan et al. [16] obtains a signifi-
cant coding gain, where the average BD-rate reductions for
the LD and RA configuration are about 3.01% and 2.20%,
respectively. Meanwhile, Lee et al. [21] achieves 0.37% and
0.41% BD-rate savings in the LD and RA configuration,
respectively. One can see that JOQT achieves the best coding
efficiency in comparisonwith [13], [15], [16], and [21]. JOTQ
is able to save BD-rate up to 10.14%, and obtain the average
BD-rate reductions of 4.11% and 3.38% under the LD and
RA configuration, respectively.

D. R-D PERFORMANCE
Fig. 6 shows the average R-D results of Class A and Class B.
The X-axis is the average bit-rate results which are produced
at QP = {22, 27, 32, 37}, while the Y-axis is the correspond-
ing average PSNR values. From these R-D curves, we can
observe that the benchmark provides the lowest coding gain
for Class B. In addition, JOTQ significantly improves the
compression efficiency. Our experimental results show that
similar results can also be observed for Class C and Class D.

E. OVERALL COMPUTATIONAL COMPLEXITY
For JOTQ, since the optimization process is implemented
based on the quadtree structure, additional encoder and
decoder complexities are increased. We collect the average
results of the practical running time of all five methods
as tabulated in Table 6. Specifically, it is observed that
Lan et al. [16] has the highest computational complexity. The
reason is that Lan et al. [16] needs to search 100 similar
patches to construct the training data U , and computes a data
dependent transform on both the encoder and decoder side.
Especially, it is the most time-consuming part in decoding.

TABLE 5. BD-rate comparisons between the proposed method and state-of-the-art methods under the low-delay (LD) and random-access (RA)
configuration.
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FIGURE 6. Illustrations of the R-D curves (QPb = 22,27,32,37). Top row: Average results of Class A under the LD main and RA
main configuration. Bottom row: Average results of Class B under the LD main and RA main configuration.

TABLE 6. Average encoding and decoding complexity.

Meanwhile, JOTQ consumes an average 358.09% running
time on the encoder side, and 391.14% running time on the
decoder side. On the one hand, JOTQ needs to compute
block-based transform Ccat and QP in encoding, which con-
tribute to the most time consumption functional parts. On the
other hand, JOTQ saves a large amount of computation to
search similar patches xrk compared to Lan et al. [16]. Mean-
while, the increased complexity is only consumed by Ccat on
the decoder side, while BAQ is directly parsed in bitstream.
Thus, JOTQ outperforms Lan [16] in terms of computational
complexity Tavg. It should be admitted that although some fast
algorithms have reduced the computation of JOQT compared
to Lan [16], the complexity reduction still needs more effort.

V. CONCLUSION
In this work, we attempt to jointly optimize transform and
quantization for HEVC. To achieve this objective, we first
compute CAT matrices from the neighboring reconstruc-
tion blocks by a fast KLT decomposition. We then intro-
duce an efficient BAQ approach to obtain the best QP by a
template-based rate regularization. Finally, we model JOTQ
as a rate constrained optimization problem, and exploit fast
algorithms for a feasible solution. Experiments show that the
proposed method improves the coding efficiency by 3.75%
on average in terms of BD-rate.
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