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Abstract 

Air flow through the door opening induced by a room fire was studied by Computational Fluid Dynamics (CFD) model Fire Dynamics 
Simulator (FDS) version 5 in this paper. There are two key problems in applying CFD. The first one is on design fire boundaries, and the 
second one the computing grid size. Consequently, many arguments were raised in fire hazard assessment for projects applying 
performance-based design in providing fire safe design. Prescribed input heating rate based on the experimental results was used in FDS. 
Three fire scenarios based on different ventilation conditions were simulated. Different boundary conditions were investigated to evaluate 
free open boundary conditions in applying CFD to predict heat release rate (HRR) and the air flow through the opening. The effects of 
open boundary conditions on HRR and pressure distribution at the opening plan under different ventilation factors were analyzed. 
 
© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Capital University of Economics 
and Business, China Academy of Safety Science and Technology. 
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1. Introduction 

It is important to understand the air flow rate through the openings during fires in fire safety engineering.  The minimum 
flashover heat release rate (HRR) in a room fire can be estimated based on the air flow rate [1]. The ventilation factor plays 
an important role in estimating the air intake rate [2].  

CFD has been widely applied in hazard assessment in applying performance-based design (PBD) for providing fire 
safety performance for projects with difficulties to comply with the codes. The CFD software FDS is commonly used to 
study fire driven fluid flow. The Navier-Stokes equations were derived to study low-speed, thermally-driven flow with an 
emphasis on smoke and heat transport from fires [3]. In this paper, FDS version 5 was applied to investigate the air flow rate 
through the door opening induced by an ISO9705 room fire. Results were used to evaluate FDS model in predicting HRR in 
boundary analysis. 

2. CFD simulation setup 

Experiment was conducted [4] with a gasoline pool fire in an ISO9705 room calorimeter at Lanxi, Harbin, Heilongjiang, 
China. A room calorimeter of length 3.6 m, width 2.4 m and height 2.4 m was constructed of brick with a cement finish as 
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in Fig. 1. The thickness of the brick wall was 0.25 m, with the cement finish of thickness 20 mm. The ceiling was 
constructed with 0.2 m reinforced concrete. There is a door of height 2.0 m and width 0.8 m. HRR was measured by an 
oxygen consumption calorimeter. This measured curve of HRR was used in FDS simulation.  

 
A three-dimensional Cartesian coordinate system was used with length along the x-direction, width along the y-direction, 

and height along the z-direction. Free boundary condition was applied, which allowed fluid to enter and leave the 
computational domain freely. Pressure was taken as the same as the ambient pressure. 

The total time for each simulation is taken to 1300 s. The time step is determined by the Courant-Friedrichs-Lewy (CFL) 
condition to satisfy the stability criteria [3, 5]. 

3. Grid size 

The Large Eddy Simulation (LES) methodology views the transient signatures as comprising larger eddies that are 
resolvable by the calculation procedure and smaller unresolvable eddies which need to be modeled in a manner as 
comprising a time averaged component and a fluctuating perturbation about that average [6].  

What determines the size of eddies that are resolvable and those are not in the LES model is the fineness of the numerical 
grid. The process of refining the grid system is referred to as a grid/mesh sensitivity study. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Experiment room (in mm) 
 

For simulations involving buoyant plumes, the non-dimensional expression D*/δx can play a role as a measure of how 
well the flow field is resolved, where D* is a characteristic fire diameter [3]: 
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and δx is the nominal size of a mesh cell. The quantity D*/δx can be thought of as the number of computational cells 

spanning the characteristic diameter of the fire. A refined grid system can improve the accuracy of results of LES. 
It is suggested by McGrattan [7] that the value of D*/δX should be larger than 10 to guarantee the reliable operation of 

FDS. This value has been confirmed by Merci’s study [8] to be acceptable for FDS simulation. Zou and Chow [9] obtained 
reasonable FDS predictions of temperature and radiation data using D*/δ X of ≈14. Ma and Quintiere [10] found the 
optimum resolution of a pool fire simulation when the value of D*/δ X was around 20. The results of study by Hietaniemi 
[11] on pool fire showed that at least 20 cells should be within the diameter of the pool to get good agreement. 

Stretched mesh (stretched in x- and y-directions and uniform in z-direction) system was applied in order to refine the 
grids in the vicinity of the fire and door where large key spatial gradients of fluid quantities were anticipated. Followed by 
the previous numerical study by the authors [12], grid convergence would be achieved under the grid size of 0.0375 m for 
the core area. 
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4. Free open boundary 

An open boundary on the exterior boundary of the computational domain can allow bi-directional flow with hot gas 
flowing out and cool air coming into the room through the openings. In FDS [5], the hydrodynamic pressure (head) H under 
the outflow condition at OPEN boundary is specified by the velocity vector, pressure perturbation and density  : 

 
1 p2

p = +
2 ρ

u                                                                                                         (2) 

 
Where the pressure is set to ambient pressure by the user,   is the ambient density and   is the most recent value of the 

velocity on the boundary. Under the inflow condition at an OPEN vent, FDS makes the assumption that Bernoulli holds (i.e. 
inviscid, steady, incompressible) and that the fluid element on the boundary has accelerated. Note that the background 
density   is usually equal to the initial ambient density   at the start of a calculation, but may change in time if the baroclinic 
correction term is included. There are many debates on specifying free open boundary conditions in applying CFD to 
building fire hazard assessment and should be watched carefully [13]. 

 

 
Fig.2. Plan of simulation domain  

In the previous study mentioned [12], five different open boundaries were examined using the same ventilation 
arrangement. In this study, two free open boundary conditions labeled OB1 and OB2 with the computational domain 
extended to different distances beyond the room as shown in Fig. 2 were examined with three different ventilation 
arrangements. The impact of changing the boundary conditions on HRR and air flow will be examined case by case later.  

5. Ventilation factors 

The ventilation factor Vf [2] is defined as:  
 

f 0 0V = A H                                                                                                 (3) 
 

Where Ao is the area of the openings and Ho is the opening height. 
Different ventilation scenarios were investigated. Ventilation conditions were adjusted by the door height from sill to 

upper boundary of the door. As shown in Fig. 3, three different ventilation conditions with a fixed door of width 0.8 m but 
different height, labeled SC1 to SC3, used in this study are:  

 SC1: Door height 2.0 m from the floor.  
 SC2: Door height 1.0 m from the floor. 
 SC3: Door height 0.5 m from the floor. 

The door has a sill of 0.1 m height. The scenario SC1 was under the same condition of the experiment mentioned above 
[4]. Simulation results were compared with experimental data. 

 



128   N. Cai and W.K. Chow  /  Procedia Engineering   43  ( 2012 )  125 – 131 

 

 
Fig.3. Ventilation dimensions of the door (in mm) 

6. Results 

As mentioned earlier, there are still many debates on applying free open boundary. In this paper, two free open boundary 
conditions labeled OB1 and OB2 were examined. For condition OB1, open boundary was applied on the plan of the door. 
For condition OB2, the computational domain was extended. The length and height of the extended space were once of the 
room length and height as in Fig. 2(b). Pressure was taken as the same as the ambient pressure. Stretched mesh with cubic 
grids of size 0.075 m by 0.075 m by 0.075 m and finer grids of size 0.0375 m by 0.0375 m by 0.0375 m was used in these 
simulations as shown in Fig. 2. 

With the fire load located in the center of the room, scenarios SC1 to SC3 were tested under boundary condition OB1 
and OB2 respectively. Figs. 4 and 5 show the predicted results of HRR of SC1 to SC3. Except SC3, the predicted curves of 
HRR are very similar to that of the experimental results. 

7. Comparisons with experiment 

In order to quantify the comparison precisely, functional analysis recommended by Peacock et al. [14] on zone modeling 
was applied to evaluate the CFD results [15-17]. Transient predicted and measured data are expressed as vectors   and  . The 
Euclidean norm and secant inner product cosine between   and   are calculated: 

 

Norm=
P - M

P
                                                                                         (4) 

Cosine=
P M

P M
                                                                         (5) 

 
Values of norm and cosine are used to compare CFD predicted results with measured data. For a good agreement of the 

two curves on experiment and model, norm (a measure of the difference in the overall magnitude) is expected to approach 0; 
and cosine (a comparison of the shapes of the curves) is expected to approach 1. 

Table 1 shows the functional analysis results of the point-to-point comparison for different boundary conditions. For SC1 
which is under the same condition of the experiment, results of both boundary conditions OB1 (cosine of 0.967 and norm of 
0.029) and OB2 (cosine of 0.969 and norm of 0.027) agree well with the experiment. Though the functional analysis 
confirms that boundary condition OB2 agrees better with experiment, extending the boundary from OB1 to OB2 gives little 
changes in both curve shape and magnitude. However, for SC2 and SC3, decreasing the ventilation factors would increase 
deviations between the predicted results of HRR and that of input. The most significant case is SC3 which has the lowest 
ventilation factor. Prediction in oxygen supply with the decreased opening area would decrease the heat release rate. 
Moreover, extending boundary to OB2 resulted in higher predicted value of HRR, as in Fig. 6.   

Pressure distributions at the central line of the door in different scenarios are shown in Fig. 7. No significant differences 
are observed under SC1 and SC2 for both boundary conditions. However, the pressure profiles across the door under SC3 
were entirely different. Though experimental pressure data were not available, the predicted pressure profile of OB1 under 
SC3 is hardly acceptable. It is because such pressure profile would induce almost single direction air flow through the 
opening. 

For both boundary conditions, increasing the ventilation factors would increase the pressure difference at the opening 
plan, which suggests increase of the air flow rate through the opening. 
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Fig.4. Comparison of the curves of HRR of SC1 to SC3 under OB1 
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Fig.5. Comparison of the curves of HRR of SC1 to SC3 under OB2 
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Fig.6. The curves of HRR of SC4 
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Fig.7. Pressure distribution at the central line of the door at 600s 

 
Table1. Functional  analysis  results for different boundary conditions 

 
Boundary conditions Norm Cosine 

OB1 
SC1 0.029 0.967 
SC2 0.074 0.805 
SC3 0.725 0.491 

OB2 
SC1 0.027 0.969 
SC2 0.028 0.951 
SC3 0.452 0.527 

 

8. Conclusion 

Air flow through the door opening induced by a room fire under different ventilation factors was studied by CFD. 
Pressure distribution at the opening plan suggests that the air flow through the opening would be more vigorous with 
increase of ventilation factors. The location of the opening will also have an effect on air flow. When the opening is closer 
to the top of the room, ventilation rate would increase due to buoyancy of the hot air. 

Functional analysis was carried out to compare predicted results of HRR with the input (experimental) data under 
different open boundaries. The computational domain outside did not give much difference to the predicted HRR when 
ventilation factor is relatively large. The impact of boundary condition would be more significant on fire development with 
decreasing the ventilation factor. Especially when the ventilation factor is fairly small, extending the open boundary might 
avoid underestimating the HRR. For pressure distribution, extending the computational domain would give fairly reasonable 
results. Therefore, free opening boundary condition should be evaluated before being applied in CFD simulations, especially 
when the combustion process is included while simulating fires in rooms with small ventilation factors. Extending the 
computational domain to a sufficient distance beyond the opening is recommended. Further related work on validation and 
verification of proper description of free boundaries in FDS should be conducted. 
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