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Abstract
To evaluate our emotionally intelligent software, we put a virtual human capable of speech and facial expressions to an updated
and enriched version of the traditional Turing test. In a speed-date with 54 young females, either our software or human
confederates controlled the simulation of the virtual human’s affective performance. Results were obtained with frequentist
analysis and Bayesian structural equation modeling. Indeed, participants did not detect differences and observed similarity in
the emotional behavior of the virtual human and in the way it assumingly perceived them. Additionally, participants did not
recognize different but similar cognitive-affective structures between humans and our system. As is, designers may use our
software for believable affective virtual humans or robots. Moreover, as far as the richness of interaction possibilities in the
speed-dating session allowed, our software seems to reproduce human cognitive-affective structures.

Keywords Cognitive models · Social agents · Affective computing · Turing test · Bayesian analysis

1 Introduction

Characters in science-fiction media can be most engaging.
Humanoid robots such as Hal in 2001: A Space Odyssey
(Kubrick, 1968), C3PO and R2D2 in Star Wars (Lukas,
1977), the Replicants in Blade Runner (Scott, 1982), The
Terminator (Cameron, 1984), or Data in Star Trek: Genera-
tions (Carson, 1994) communicate with humans on an equal
footing. They are empathic, social, and occasionally hostile
but all of them have an understanding of human affect and
they fascinate us: We feel involved and sometimes emotion-
ally distant.

In a series of empirical studies, reviewed in [19], we inves-
tigated the process of engagement with movie and game
characters, avatars and robots. Research into fictional char-
acters can be quite informative for scientific questions [3]
[6]. We dubbed the resultant model Interactively Perceiving
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and Experiencing Fictional Characters or I-PEFiC for short.
The model describes the cognitive-affective structure of a
person becoming involved with and/or feeling at a distance
towards a virtual other. We then implemented I-PEFiC as an
artificial intelligence (AI) system, Silicon Coppélia, capable
of building up affect for its user [19].

I-PEFiC consists of three phases: encode, compare, and
respond. In the encode phase, the user perceives a robot or
other synthetic character in terms of ‘a good or a bad guy’
(factorEthics), as ‘pretty vs. unattractive’ (factorAesthetics),
and ‘realistic vs. unrealistic rendering’ (factor Epistemics).
The action possibilities, what can be done with the virtual
character, also are encoded, namely as an aid to achieve user
goals or as an obstacle (factor Affordances).

In the comparison phase, the user compares him/herself
with the character to estimate how relevant or irrelevant the
character’s features from the encode phase are to the user’s
personal goals and concerns (factor Relevance). If some-
one is lonely, companionship of a robot is more important
than calendar keeping. Users also build up positive and neg-
ative expectations about interactingwith the character (factor
Valence). If the user talks to a chatbot and expects it to have an
understanding of the conversational context, the interaction
will be disappointing (i.e. evoke negative valence). The final
comparison is for (dis)similarity between user and character
(factor Similarity). Particularly men dislike a character that
performs poorly and looks like them [51].
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In the response phase, the results of the comparison phase
lead to the affective processes of Involvement with, and
Distance toward the character, and parallel to that, to the
emergence of certain Use Intentions: The user’s willing-
ness to interact with the character to achieve his or her
goals. Together, Involvement, Distance, and Use Intentions
integrate into one overall measure of Satisfaction with the
character, comprising of both relationship and utility aspects.

As said, we translated the I-PEFiC model into the Sili-
con Coppélia system. In the current paper, the main aim is
to test Silicon Coppélia’s simulation of affect against real
users. Regarding emotion and affect, will users be capable of
telling the difference between our system and a real person
interacting with them? Because our AI was not embodied,
we had it drive a synthetic character named Tom. To make
the comparison fair to the computer, in a second condition,
Tom also was driven by human confederates. Together, the
two conditions equaled the set-up of a Turing test [48].

Figure 1 provides an overview of this arrangement and
forms a visual diagramof the argument put up in this paper. In
that capacity, Fig. 1will serve as the central point of reference
of our contribution and as a ‘reader’s guide.’ Next, we will
discuss the implementation of I-PEFiC in Silicon Coppélia.

1.1 Silicon Coppélia

In [21, 39], we formalized the relations among the I-PEFIC
factors in a computermodel called SiliconCoppélia, inwhich
the software agent builds up a relationship and estimates the
utility of a user to the agent’s pre-set goals. TomakeCoppélia
autonomous, a loop accepts features of a particular situation
as input, does situation selection, andoutputs certain affective
actions, leading to a new situation (Fig. 2). To do situation
selection, the level of Satisfaction determines the affective
decision-making such as ‘changing the subject,’ ‘avoiding
conflict,’ or ‘positive approach’ [21].

To build up Satisfaction, Coppélia goes through the steps
outlined by I-PEFiC. For the current speed-date, we merely
used the Ethics and Affordances procedures because empir-
ical research showed that these factors are more important
than Aesthetics and Epistemics [52].

1.1.1 Encoding Phase

In the encoding of the Ethics of the user, the agent (A1) per-
ceives that the user (A2) has a certain feature (e.g., ‘kind to
animals’). These are the data-driven aspects of the agent’s
affective processing. A1 calculates how ‘good’ A1 believes
that being kind to animals is and how ‘bad.’ This is a per-
ceived value between [0, 1]. The agent assigns the perceived

value with a certain bias [21], representing themore concept-
driven aspects of the agent’s processing. Hence:

Perceived(Good,A1,A2) � Bias(A1,A2,Good)

∗ Data-driven(Good,A2) (1)

Perceived(Bad,A1,A2) � Bias(A1,A2,Bad)

∗ Data-driven(Bad,A2) (2)

Bias is assigned in the range [0, 2] and then multiplied with
the value between [0, 1] for theData-driven observation of the
feature. When Bias�1, A1 does not do underestimations or
overestimations. If Bias>1, A1 is positively biased towards
A2. If due to large Bias, the result of formula (1) or (2) is
greater than 1, it is reset to 1 to keep the formulae within
range.

The agent also encodes Affordances from its expectations
about the possibilities to communicate with the user. The
expected utility of a user pertains to the agent’s preset goals
(e.g., ‘to get a date’). For example, if the agent asks “Do
you have many hobbies?” and the user replies “Well, that’s
none of your business,” then possibilities for communica-
tion become fewer and so the level of Affordances decreases.
Agent A1 calculates the Affordances of A2 in terms of aids
(e.g., things that help communication) and obstacles (e.g.,
things that obstruct communication).

For the agent to estimate to what degree a user’s Affor-
dances will help achieve goals, it holds a number of beliefs:
Goal-states are false or true [0, 1] and strongly inhibit [−1]
or strongly facilitate [1] another goal-state or they are neu-
tral [0]. From the goals achieved earlier in the interaction,
the agent calculates the likelihood [−1, 1] that the user will
help to achieve the next goal-state. The agentmultiplies goal-
states being false or true with beliefs of goal-states inhibiting
or facilitating the next goal-state. With each facilitating sub
goal that the agent achieves with its user, the perceived like-
lihood rises of achieving the desired end goal. For that, the
agent uses likelihood algorithm �:

1. Sort values in the facilitation list [0→1] and in the inhi-
bition list [0→−1].

2. In each list, start at zero and average the first value with
the next and so on until EOF.

3. Calculate the likelihood as the weighed mean of the out-
put of the two lists, using proportion weights (#pos/#tot)
for the list of positive values and (#neg/#tot) for the list
of negative values.

Agents also believe that actions of the user affect world-
states with strong inhibition [−1], neutrally [0], or with
strong facilitation [1]. If an agent sees the user execute an
action that influences a world-state, the agent holds the user
responsible, using belief algorithm B:
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Fig. 2 Graphical representation of Silicon Coppélia [21]

IF observe(A1, A2, performs, action)
AND belief(action, facilitates, goal-state)>0
THEN belief(A2, responsible, goal-state)�old_belief+

mfbel_resp * belief(action, facilitates, goal-state) * (1
– old_belief),

where modification factor mf<variable> controls the speed by
which believed responsibility is updated, belief(action, facil-
itates, goal) is the impact value to multiply the modification
factor with, and 1-old_belief is the limiter to avoid out-of-
range values.

Howmuch an agent aspires to achieve a goal, its ambition
level, is designated by a real number [−1, 1]. Positive values
represent that the goal is desired, negative that it is unde-
sired. The higher the value, the higher the desire. The agent
calculates expected utilities of actions and features, taking
facilitation and inhibition into account:

ExpectedUtility(Action,Feature,Goal)

� Belief(facilitates(Action,Feature,Goal))

∗ Ambition(Goal) (3)

ExpectedUtility(Action,Agent,Goal)

� Belief(facilitates(Action,Agent,Goal))

∗ Ambition(Goal) (4)

ExpectedUtility(Action,Agent)

� Σ
(
ExpectedUtility(Action,Agent,Goal))

+ ExpectedUtility(Feature,Agent,Goal)
)

(5)

Actions and features that the agent believes facilitate desired
or inhibit undesired goals affect Expected Utility. When they
facilitate undesired or inhibit desired goals, Expected Utility
drops. Based on its Expected Utility, the agent executes a
user-directed action. Expected Utility is calculated by multi-
plying the ‘believed facilitation of a goal by an action’ with
the ‘level of ambition for that goal.’ Because actions and fea-
tures can build up several expected utilities for more goals,
algorithm� calculates aGeneral Expected Utility across the
goals that are believed to be affected by that action or that
feature. The general expected utilities of actions produce an
agent’s Action Tendencies, which have the same value.

Action Tendencies have a mix of positive and negative
sides. An Action Tendency is multiplied with the positivity of
an action, which leads to a measure ofGeneral Positivity that
goes in list GP. Multiplied with the negativity of an action, it
renders a measure of General Negativity, going into list GN.
From these two lists, algorithm� then calculates theGeneral
Positive Action Tendency (GATpos) and theGeneral Negative
Action Tendency (GATneg) over all action tendencies in the
agent.

1.1.2 Comparison Phase

In the comparison phase, the agent retrieves beliefs about
actions that either facilitate or inhibit the desired or undesired
goal-states. This is to calculate a general expected utility
for each action. The agent also determines certain appraisal
variables, such as the belief that someone is responsible for
accomplishing certain goal-states or not. The features and
variables as perceived by the agent are related to the goals
and concerns it has stored (e.g., to get a date).
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In the comparison phase, the agent system has knowledge
of its own features and features it encoded from the user. It
also has biases towards itself:

Perceived(Feature,A1,A1) � Bias(A1,A1,Feature)

∗ Data-driven(Feature,A1) (6)

The differences between the two feature sets determine the
level of Similarity (similar vs dissimilar) that A1 perceives
in A2, where the sum ranges over all encoded features:

Similar(A1,A2) � 1−(Σ(βsim←feature

∗ abs(Perceived(Feature,A1,A2)− Perceived(Feature,A1,A1)
))
(7)

Dissimilar(A1,A2) � (Σ(βdis←feature

∗ abs(Perceived(Feature,A1,A2)−Perceived(Feature,A1,A1)
))
(8)

To determine the level of being dissimilar, the differences
between the perceived values for A1’s features and A2’s fea-
tures are added with a particular regression weight β. For the
level of being similar, 1 minus the sum of all differences is
taken, while using different weights. Note, however, that in
the current application, the Similarity module was not active
because it is empirically one of the least important factors
[52].

Then the system estimates the Relevance (relevant-
irrelevant) of the user’s features to A1’s goals as well as
their Valence (i.e. positive–negative outcome expectancies).
Because the formulas are quite elaborate but look alike, we
provide the one for positive Valence regarding Ethics:

Positive_Valence_Ethics(A1, A2)

� βpv←good ∗ Perceived(Good,A1,A2)

+ βpv←bad ∗ Perceived(Bad,A1,A2)

+ βpv←pos ∗ (GATpos + 1)/2

+ βpv←neg ∗ (GATneg + 1)/2 (9)

Note that by adding 1 and dividing the result by 2, GATpos

en GATneg are transformed from [−1, 1] to the [0, 1] range.
In the comparison phase, the user’s features come from

Ethics and Affordances. The result of the comparison is a
set of values for how similar, dissimilar, relevant, irrelevant,
positive, and negative those user features are to the agent
and the agent’s preset goals. The values that the comparison
phase outputs then go to the response phase.

1.1.3 Response Phase

The response phase consists of a measure of Involvement
with the user, a measure of Distance, and Intentions to Use

(i.e. interact with) the user at a next occasion. Involvement is
calculated as:

Involvement(A1,A2)
� βinv←good ∗ Perceived(Good,A1,A2)

+ βinv←bad ∗ Perceived(Bad,A1,A2)

+ βinv←aid ∗ Perceived(Aid,A1,A2)

+ βinv←obst ∗ Perceived(Obstacle,A1,A2)

+ βinv←pv ∗ Pos_Valence(A1,A2)

+ βinv←nv ∗ Neg_Valence(A1,A2)

+ βinv←ps ∗ Pos_Valence(A1,A2) ∗ Similarity(A1,A2)

+ βinv←ns ∗ Neg_Valence(A1,A2) ∗ Similarity(A1,A2)

+ βinv←pd ∗ Pos_Valence(A1,A2) ∗ Dissimilarity(A1,A2)

+ βinv←nd ∗ Neg_Valence(A1,A2) ∗ Dissimilarity(A1,A2)

+ βinv←pb ∗ Pos_Valence(A1, A2) ∗ Perceived(Good,A1,A2)

+ βinv←nb ∗ Neg_Valence(A1,A2) ∗ Perceived(Good,A1,A2)

+ βinv←pu ∗ Pos_Valence(A1,A2) ∗ Perceived(Bad, A1,A2)

+ βinv←nu ∗ Neg_Valence(A1,A2) ∗ Perceived(Bad,A1,A2)

+ βinv←rel ∗ Relevance(A1,A2)

+ βinv←irr ∗ Irrelevance(A1,A2)

+ βinv←rs ∗ Relevance(A1, A2) ∗ Similarity(A1,A2)

+ βinv←is ∗ Irrelevance(A1,A2) ∗ Similarity(A1,A2)

+ βinv←rd ∗ Relevance(A1,A2) ∗ Dissimilarity(A1,A2)

+ βinv←id ∗ Irrelevance(A1,A2) ∗ Dissimilarity(A1,A2)

+ βinv←rb ∗ Relevance(A1,A2) ∗ Perceived(Good,A1,A2)

+ βinv←ib ∗ Irrelevance(A1,A2) ∗ Perceived(Good,A1,A2)

+ βinv←ru ∗ Relevance(A1,A2) ∗ Perceived(Bad,A1,A2)

+ βinv←iu ∗ Irrelevance(A1,A2) ∗ Perceived(Bad,A1,A2)
(10)

Distance is calculated in the same way as Involvement. Use
Intentions are calculated with algorithm � based on the
expected utilities of all user features and the actions the agent
can execute. Because a feature can contribute to both Involve-
ment andDistance [18], the agent calculates a fuzzy trade-off,
following [59] (p. 398):

μ and̃
(
μ Ĩ (u), μD̃(u)

) � γ · min{μ Ĩ (u), μD̃(u)}
+ ((1 − γ )(μ Ĩ (u) + μD̃(u))/2),

(11)

where each feature u ∈ U in the trade-off has a membership
function μ in fuzzy Involvement ( Ĩ ) and fuzzy Distance (D̃)
and settles between the minimum and maximum degree of
membership of these sets. The γ-operator is a sort-of-AND
and may have different weights and different levels of com-
pensation [0, 1]. In (11), the number of fuzzy sets is 2.
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Finally, the agent runs an affective decision-making mod-
ule to calculate the Expected Satisfaction of possible actions.
When the agent selects and performs an action, a new situ-
ation emerges, and the model loops back to the first phase
(Fig. 2).

Hoorn, Pontier, and Siddiqui [20] describe that the agent
now works from a weighed mean of the Involvement-
Distance trade-off on the one hand and the �-calculatedUse
Intentions on the other. The agent selects an action through:

ExpectedSatisfaction(A1,Action,A2)

� weu ∗ Action_Tendency

+ wpos ∗ (1 − abs(positivity−biasI ∗ Involvement))

+ wneg ∗ (1 − abs(negativity−biasD ∗ Distance)) (12)

The agent picks the strongest action tendency while the pos-
itive side tends to the level of (biased) Involvement and the
negative side to (biased)Distance. By changing weights, dif-
ferences in positivity, negativity, and expected utility lead to
selecting different actions. This way the agent has a form
of response modulation, allowing for biases in individual
defaults (e.g., optimistic or pessimistic).

Note that both overt (behavioral) and covert (experiential)
responses can be executed in the response phase. Emotions
such as hope, joy, and anger are generated using appraisal
variables (e.g., the perceived responsibility of the interac-
tion partner, and likelihood of achievement of goal-states in
accordance with emotion theory [12]).

1.1.4 Emotion Generation

Silicon Coppélia can generate hope and fear, which orig-
inate from desired or undesired world-states, respectively.
The agent system estimates hope for goal accomplishment
in world-states that are likely to occur:

IF f ≥ likelihood → hope_for_goal �
− 0.25 ∗ (cos(1/ f ∗ π ∗ likelihood(goal))− 1.5)

∗ ambition_level(goal-state)

IF f < likelihood → hope_for_goal �
− 0.25 ∗ (cos(1/(1 − f ) ∗ π ∗ (1 − likelihood(goal))))

− 1.5) ∗ ambition_level(goal-state), (13)

where f is a shaping parameter [0, 1]. If f is close to
0, the agent hopes against the odds. Algorithm � pro-
cesses the values of hope_for_goal,where the positive-values
list produces ‘hope’ and the negative list produces ‘fear.’
Algorithm B determines joy and sadness after world-states
become true of false with ambition_level(world-state) or -
ambition_level(world-state) as impact value. A world-state
that is desired and becomes true raises joy; an undesired

world-state that is true causes sadness. Additionally, a level
of surprise is generated that tends to disbelieve the likelihood
that such world-state would happen:

Surprise � psurp ∗ old_surprise +
(
1 − psurp

)

∗ (1−likelihood) (14)

If an expected goal-state is not achieved, surprise increases
according to algorithm B with likelihood(goal-state) as the
impact value. Yet, persistency factor psurp regulates the speed
bywhich surprise decays again, which can be set at each time
step.

Algorithm B also controls the anger [0, 1] an agent
feels when the user obstructs the achievement of desired
goal-states with belief (A2, responsible, goal-state) * ambi-
tion_level(A1, goal-state) as impact value. Like surprise,
decay of anger follows from (14). The general anger with
the user follows from all levels of anger felt during the inter-
action, according to algorithm � (which stops after step 2).
The same applied to agent A1 self decides the level of feeling
guilty.

From the seven simulated emotions, an overall mood of
the agent follows by taking 1 minus the weighed sum of the
differences between the desired level and the current level of
emotion for all generated emotions:

Mood � 1− (Σ(βemotion ∗ abs(Emotion−desired(Emotion))
(15)

1.1.5 Emotion Regulation

While using algorithm B with (Emotion(timepoint)−
Emotion(timepoint−1)) * Attention(Feature) as impact
value, agents believe that a feature Feat causes an emotion
E. This way, the agent may shift attention Att to regulate its
emotions:

Att(Feat) � old_value−belief(Feat, causes,E)

∗ (E−desired(E)) (16)

Attentional shifts may occur at each time point, owing to
changes in the relevance of features. In taking the absolute
value of the General Expected Utility of a feature:

Att(Feat) � patt ∗ old_value +
(
1 − patt

) ∗ Relevance(Feat)
(17)

where patt is a persistency factor, controlling the pace of the
attentional shift with the sum of the levels of attention nor-
malized to 1 at each point in time.

123



International Journal of Social Robotics (2019) 11:235–253 241

Fig. 3 Family tree of appraisal models [15] (p. 60). Silicon Coppélia is partly based on EMA

1.2 RelatedWork

Theoretically, I-PEFiC and its implementation in Silicon
Coppélia stand in a lineage of psychological appraisal the-
ories, particularly [12] and [45]. In the taxonomy of [15]
(p. 60), Silicon Coppélia partly follows from Emotion and
Adaptation (EMA) (Fig. 3). Particularly the epistemic side
of the appraisal process such as the agent’s beliefs, the like-
lihood of events, and expectations of occurrences in Silicon
Coppélia resemble EMA.

EMA constantly updates the appraisal values connected
to observations of the world-state. Such appraisals pertain to
desirability (i.e. facilitation or inhibition of utility of an event
or other agent), likelihood that a world-state becomes active,
and expectedness (whether a world-state can be causally pre-
dicted).

Next, we discuss four relatedmodels that like SiliconCop-
pélia are indebted to EMA. For the less-related models listed
in Fig. 3, we refer to the authoritative review of [15].

THESPIAN (Fig. 3) operates in story-telling environ-
ments in which agent and user interact [44]. THESPIAN has
decision theory installed to infer agent or user goals andwhile
doing belief maintenance and revision, the system builds up a
representation (including emotion) of a character in its envi-
ronment, using probabilistic preferences and weights.

In the FearNot! system [2], the agent can autonomously
select actions based on the appraisal of the importance of
an event, activating the applicable emotions. If a world-
state becomes true, the agent then pursues goals that become

active. Emotions related to the new goal are fed back into
action selection, which could be an action tendency (e.g.,
approach, avoid) or coping behavior. By means of emotion
regulation, an agent frustrated in achieving a goal state may
do reappraisal of the importance of that goal so to mitigate
its stress levels.

PEACTIDM calculates appraisal information directly
from its processes, producing appraisals and their accom-
panying emotions as a side effect [36]. Appraisals may vary
in how they are produced but also in the values of the various
appraisal dimensions. For instance, goal relevance, discrep-
ancy from expectation, and outcome probability have ranges
[0, 1] whereas a causal agent (self, other, nature) is cate-
gorical. In following EMA, PEACTIDM loads the current
appraisals of the agent into an appraisal frame, which need
not be complete. There may be one (incomplete) frame for
each event or other agent but the agent uses the frames
for attention selection (who to turn to). When active, new
appraisals may happen such as the level of facilitation of the
event for goal achievement.

Similar to other appraisal models, FAtiMA stores
appraisals in an appraisal frame [10]. FAtiMA updates its
memory and appraisal frameswhile checking for new events.
If something new happens, FAtiMA creates a new appraisal
frame for that event, triggering the appraisal process. Then
FAtiMA assesses the relevance of the event and appraisal
variables such as desirability of the event become active
from which corresponding emotions follow. This makes up
the ‘emotional state’ the agent is in. Based on the current
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emotional state, FAtiMA may decide to react with an action
tendency or to plan a strategy towards a desired goal state.

If implemented in a robot as is, Silicon Coppélia does not
have a detection system that analyzes the user’s affective state
[8] like, for instance, Kismet does [7]. It uses simple textual
input for that. Coppélia is a system of emotional reasoning
and action selection, producing a response that is affectively
optimal. Coppélia does not have a special emotional expres-
sion generator either. In this study, we simply connect its
output to smiles, frowns, or grins. In that sense, Coppélia is
in need of an iGrace system that senses emotion from the
user’s language and then selects and performs an affective
action based on a database of emotional experiences [40]
(iGrace was implemented in a cuddle robot for hospitalized
children [40]). Yet, iGrace is in need of a system such as
Silicon Coppélia, because it does not have an architecture in
place that does cognitive-affective appraisals.

The appraisal process is central to the Silicon Coppélia
software. The GAT procedures together with action selection
resembles the approach of [33], who developed a predictive
model of the robot self and its surroundings so to anticipate
what certain affective feedback to the user may do. This sys-
tem was tried in an iCat robot, playing a game of chess [30].
If iCat perceived a mismatch between expectations about the
user and actual user behavior, it would generate an affective
response in line with positive or negative valence [30]. In a
later study [31], this systemwas used to show empathy to one
user (e.g., an ally) and not to the other (e.g., the opponent).

In [13] and [35] as well, moods of the robot build up in
anticipation of an event and fade over time after a mood
was enforced or changed (cf. our approach to anger). These
studies show that emotion simulation systems should drive
away from a fixed set of affective behaviors and become
adaptive to the way users behave socially and emotionally.
If a robot could automatically adapt its mood to the user’s
mood, this would make the robot more empathetic and users
more helpful towards the robot [14]. To that end, we should
know how well a robot simulates human affective responses,
which we will try in an adaptation of the Turing test.

1.3 Turing Test Revised

With Silicon Coppélia in place, we wished to test it against
human affective behavior in a Turing test (Fig. 1). However,
the Turing test is not without controversies [38]. How to
conduct that test has changed over time (e.g., [23]). The lit-
erature reports a number of problems. First, the Turing test is
a pass/fail test, which limits its testing abilities [17]. One can
only test for either full success or failure. If a computer fails
to seem human in 10% of its responses, it most likely fails
the Turing test. Nuance is lost and the test becomes unpass-
able. Second, the instruction focuses participants on cues that
provide evidence for either ‘human’ or ‘machine,’ ignoring

other aspects of interaction and communication. Third, par-
ticipants usuallyworkwith a text-based interface.This results
in a narrow test focus, which prevents the achievement of an
appropriate research goal [38]. A relatively unsophisticated
program such as ELIZA [58] already seemed quite intelligent
to regular observers.

Because in its original form, the Turing test was dichoto-
mous, supposedly unpassable, and text-based (Fig. 1), some
suggested giving up the Turing test all together as a mean-
ingful idea [43]. However, lack of consensus does not have
to keep the Turing test from being useful.

We countered themethodological problems as follows: To
avoid simple pass-fail decisions, we had participants diag-
nose for us the ‘mental state’ of their communication partner
Tom, whether human-driven or by our AI (Fig. 1, Ad 1).
We did this using a structured questionnaire that queried the
cognitive-affective dimensions of the I-PEFiC model.

To make the test passable for a computer, we reversed it
(Fig. 1, Ad 2): Participants did not think they were talking
to a human that turned out to be a machine. We told them
upfront they were conversing with a robot during a speed-
date so that it was the human who should outperform our
software system.

Tomove beyond text interfaces,we followedBarberi [4] in
that text should be accompaniedbymore sensual stimulations
such as facial expressions, vocalization, and the expression
of affect (e.g., joy, fear, hope, anger) (Fig. 1, Ad 3). Further
elaboration of our approach can be found under Methods.

In this paper, then, we present a new variant of the Turing
test with which we examined our research question (RQ1)
whether individuals could detect that affective communica-
tion during a speed-date was produced by our AI or by a
human being.

1.4 Research Question and Hypotheses

RQ1 (Fig. 1):When Tom is driven by our software, will users
diagnose a cognitive-affective structure in Tom that is similar
to when he is driven by a human being? During a speed-date
session, the virtual human Tom was controlled by either the
Silicon Coppélia system (AI) or by a human confederate. In
doing so, we created an enriched Turing test that contrasted
an autonomously communicating computer system with a
human communicating via a computer, respectively. We pre-
dicted that participants interacting with Tom would not be
able to differentiate between Tom as controlled by our soft-
ware versus Tom controlled by a human (H1). Furthermore,
we predicted that participants did not recognize significant
differences in the cognitive-affective structure underlying the
behavior produced by our software and that underlying the
behavior of human confederates (H2).
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2 Method

2.1 Participants and Design

Fifty-four female heterosexual university students
(M=20.07, SD=1.88) volunteered for course credits or
a small financial reward and were uninformed about the
actual background and conditions of the study. Partici-
pants communicated frequently via a computer (M=4.02,
SD=1.00; 0� totally disagree; 5� totally agree), however,
they had limited to no experience in online dating (M= .33,
SD= .80). We chose to confront female participants with
a male virtual human, because women are usually better
equipped to do an emotional assessment of others than men
[5, 47].

The participants were randomly assigned to two experi-
mental conditions (n=27 each): Tom as an agent controlled
by a computer using the software Silicon Coppélia (the AI
condition) versus Tom as an avatar controlled by a human
confederate (the Wizard of Oz (WOz) condition). This con-
federate could control the responses of Tom as well as Tom’s
facial expressions. To control for idiosyncrasies of the human
confederate, we assigned two confederates to the WOz con-
dition.1 The confederates weremale and instructed to behave
as they normally would. They were blind for the study’s pur-
pose, yet trained to handle the situation [27]. For the main
analysis, we could collapse the data of the two human con-
federates into one factor of Human Confederate.

Note that all participants were told they were interacting
with a computer agent, irrespective of who controlled it. This
way, participants understood the limitations of their dating
partner, thus avoiding rejection solely based on his limited
interaction skills.

We applied a between-subjects design to the experiment
to not overstrain participants and for simplicity of methods.
If participants should do the test in both conditions (WOz
and AI), they should fill out the questionnaire twice with
high likelihood that they become bored, repeat answers, and
that we measure test fatigue. The other problem is the order
of conditions. In a within-experimental design, half the par-
ticipants should do condition 1 before 2 and the other half
2 before 1 to avoid halo effects. This would add another
level of complexity to the administration and execution of
the experiment and would add an extra non-theoretical fac-
tor (i.e. condition order) to the analysis.

1 We ran a separate analysis to test for possible differences between the
two human confederates. No significant differences were found for the
main variables of interest (i.e., not for each of the five emotions, not for
each of the eight perceptions, nor for each of the two decision-making
behaviors).

2.2 Materials and Procedure

Upon arrival in our laboratory, participants took place behind
a computer. They were instructed to do a speed-date session
with an agent. In theWOz-condition, the human confederate
controlling the avatar was hidden behind a wall (i.e., invisi-
ble for the participants). In the speed-date industry, sessions
typically take 4 min after which the candidates decide yes or
no about a date [11]. In our application, participants had 2.5
times that time to get to know each other. After finishing a
10-minute speed-date, participants completed a digital ques-
tionnaire. After the experiment, participants were debriefed
and dismissed.

Participants dated with avatar Tom, who was either con-
trolled by our software (i.e., an agent system) or controlled
by one of two human confederates. The participants served
as interrogators and attempted to diagnose the cognitive-
affective structure that was responsible for Tom’s behavior.
They did this along the lines of I-PEFiC, an empirically estab-
lished model of affective responses to virtual others [52].
Additional to questions about how the participants perceived
the behavior of Tom, we also asked them how they thought
Tomperceived them.This approach resembles general speed-
dating settings, where people want to know what their dating
partner thinks of them. The interrogators thus assessed the
emotional behavior of the virtual human, as well as the things
that the virtual human perceived and that led him to that emo-
tional behavior. This way, we could check the differences
between our software and human confederates in producing
emotional behavior. In focusing on the relations between the
things that Tom perceived (according to the participants), we
could also analyze the differences in the cognitive-affective
structure (as perceived by the participants) in our virtual
human versus living confederates.

Whereas we enriched our environment with vocalization
of responses and nonverbal cues, the interactions between
Tom and the interrogator were limited to selecting multiple-
choice responses (±4 options per response). This way,
effects could be attributed to the nonverbal cues, vocaliza-
tions, and emotional expressions that fostered impression
formation (cf. [57]) rather than to the differences in han-
dling the user interface better (human confederates) or worse
(software). We hypothesized that differences in cognitive-
affective structure and emotion expression would be absent
between the communications of Tom as a human-controlled
avatar versus Tom as a software-controlled agent.

We designed a speed-date application, in which users
met the virtual human Tom, to get acquainted, and possi-
bly arrange a next meeting. Tomwas represented by a virtual
human created in Haptek’s PeoplePutty software. To prevent
eeriness caused by the phenomenon known as the uncanny
valley [34], Tom’s face followed the design principles for
computer-graphics animators as given by MacDorman et al.
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Fig. 4 The speed-date application

[32]. As can be seen in Fig. 4, Tom’s facial proportions are
human-like, but Tom does not approach photorealistic per-
fection.

Tom was capable of simulating five emotions: hope, fear,
joy, sadness, and anger, expressed through facial expressions
with low or high intensity. As such, 32 (25) different emo-
tional states were created: one for each possible combination
of two levels of intensity of the five simulated emotions. The
level of intensity depended on the level of relevance of par-
ticipants’ responses to Tom’s goals and concerns.

Human confederates were trained to handle the interface
that steered Tom. From a dropdown box they selected their
replies, a (to them) appropriate emotion, and an intensity
(high, low), which Tom then performed.

We used JavaScript in combination with scripting com-
mands provided by the Haptek software to control Tom’s
behavior within aWeb browser. In the middle of theWebsite,
Tom was prominently present and communicated messages
through a speech synthesizer (e.g., “Do you have many hob-
bies?”). This text could also be read at the top of the screen.
The participant’s text was displayed at the bottom.

During the speed-date session, participants conversed
about seven topics: (1) Family, (2) Sports, (3)Appearance, (4)
Hobbies, (5)Music, (6) Food, and (7) Relationships. Because
we focused on emotional communication and affective
decision-making, and not on the production and interpre-
tation of natural language (which in current systems is poor),
we limited the communication to multiple-choice questions
and answers. This procedure also increased the comparabil-
ity between the two conditions and the various interaction
partners. For each topic, the dating partners went through an
interaction tree with responses they could select from a drop-
down box (Fig. 5). When a topic was done, the participant
could select a new topic or let Tom select one. When all top-
ics were completed, a message appeared: “The speed-date

session is over” followed by an introduction to the question-
naire.

In the AI condition, Tom was designed with certain
‘beliefs’ that specific features of a participant could affect
certain goal-states: ‘get a date’, ‘be honest’, and ‘connect-
ing well’ on each of the conversation topics. Furthermore,
Tom ‘attached’ a general level of positivity and negativity
(both between 0 and 1) toward the user to each response.
For example, Tom attached a positivity level of .2, and a
negativity level of .9 to the response “To be honest, I don’t
think that this date is going well.” We made sure that Tom
(whether AI or WOz) and the participant could always pick
from responses with various levels of positivity and nega-
tivity, to ensure enough degrees of freedom. Below a set
boundary, Tom facially expressed low-intensity emotion. If
greater than or equaling the boundary, Tom expressed high-
intensity emotion.

During the speed-date, Tom’s ‘perceptions’ of the partic-
ipant were continuously updated based on the participant’s
responses during the session. Thus, Tom ‘assessed’ the par-
ticipant’s Ethics and Affordance values while matching these
appraisalswith his goals, reckoningwith the Involvement and
Distance he felt toward his interaction partner, and the utility
he expected of each action. On each turn, Tom could select
his response from a number of options. To achieve Tom’s
goals, he was equipped with search strings to choose actions
with positivity levels that came closest to the level of Involve-
ment and negativity levels closest to the level ofDistance, as
well as achieving the highest Expected Utility.

Tom ‘expressed’ a variety of emotions depending on the
simulated emotional state. We used 5 out of 7 emotions we
could simulate. Hope and fear were calculated in response
to each answer according to the perceived likelihood of a
follow-up date. Levels of Tom’s joy and sadness were based
on achieving desired or undesired goal-states. Tom’s anger
was calculated using the assumed responsibility of the partic-
ipant for the success or failure of the speed-date. Details on
how this was calculated are in the section on SiliconCoppélia
and in [39]. Each of the five emotions were implemented into
the software and simulated in parallel.

2.3 Measures

The questionnaire consisted of 97 Likert-type items, each
followed by 6-point rating scales (0� totally disagree; 5�
totally agree). Each item that was related to theoretical con-
structs queried what the participant thought Tom felt about
her. The complete questionnaire can be found in part A of
“Online Resource 1” and covered 15 measurement scales
as described below per construct. A scale analysis was
performed, in which items were removed until an optimal
Cronbach’s alpha was found with a minimum scale length of
three items. To check divergent validity, we also performed a
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Fig. 5 Interaction tree for topic ‘Relationships.’ A�Agent, P�Participant

factor analysis (see “Online Resource 1”, part B). The results
of the scale analysis are in Table 1.

Emotions were measured by five measurement scales
(after [54]), each indicating one of five emotions: Joy, Anger,
Hope, Fear, and Sadness, assessing the emotions perceived
in Tom by the participants. Example items are: ‘Tom was
happy’, ‘Tom was afraid’, and ‘Tom was irritated’.

Perceptions were measured by eight measurement scales,
each indicating one of eight perceptions according to [52]:
Ethics,Affordances, Similarity,Relevance,Valence, Involve-
ment, Distance, and Use Intentions. Previous studies (e.g.,
[24]) showed that the Ethics scale is consistently reliable.
Therefore, we decided to maintain the Ethics scale despite its
relatively weak measurement quality in this study (Table 1).
Example items for the Ethics scale are: ‘Tom thought I was
trustworthy’, ‘Tom thought I was mean’, and ‘Tom thought
I was evil’.

Decision-Making Behavior consisted of two scales: Sit-
uation Selection and Affective-Decision Making. Situation
Selection measured the perceived decision-making behavior
of Tom in terms of concrete actions, through a scale with

Table 1 Number of items and Cronbach’s alphas after scale and factor
analysis

Scale # Items Cronbach

Joy 5 .93

Sadness 4 .84

Anger 4 .84

Hope 3 .76

Fear 3 .81

Sadness 4 .84

Ethics 3 .61

Affordances 3 .88

Similarity 3 .66

Relevance 5 .93

Valence 8 .93

Use intentions 9 .95

Involvement 4 .75

Distance 3 .82

Situation selection 3 .84

Affective
decision-making

3 .74
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items such as “Tom kept on talking about the same thing.”
Affective Decision-Making measured the amount of affec-
tive influences in the decision-making of Tom, through a
scale with items such as “Tom followed his intuition.”

2.4 Analysis

We tested the effects of the between-factor Control-type
(AI versus WOz) on each of the dependent variables Emo-
tions (Hope, Fear, Joy, Sadness, Anger), Perceptions (Ethics,
Affordances, Similarity, Relevance, Valence, Involvement,
Distance, Use Intentions) and Decision-Making Behavior
(Situation Selection,AffectiveDecision-Making) using three
multivariate analyses of variance (MANOVAs).

We also performed a one-sample t test with 0 as the test
value to test whether the participants saw emotions in Tom
at all. Additionally, we performed separate paired t-tests for
all possible pairs within a group of related variables to inves-
tigate which was strongest.

Structural equationmodeling analyseswithAmos 16.0 [1]
explored the underlying associations among I-PEFiC vari-
ables as found in [52]. With I-PEFiC as the benchmark, we
compared the two cognitive-affective structures underlying
evaluations of Tom in each condition and tested possible dif-
ferences and similarities.

To compare the regression coefficients for the AI group
and the WOz group, we performed a Multiple Group Anal-
ysis. In the ‘unrestricted loadings’ model, the regression
coefficients hadno restrictions. In the ‘equal loadings’model,
the regression coefficients of theAI group and theWOzgroup
were assumed equal.

We used Bayesian estimation to analyze our data. Advan-
tages of Bayesian statistics over frequentist statistics are
well documented in statistics (e.g., [26, 49]). For exam-
ple, Bayesian statistics are less dependent on a large sample
size. Furthermore, Central Credibility Intervals (CCI), the
Bayesian equivalent to Confidence Intervals (CI), actually is
the probability that a certain parameter is in between two val-
ues, which is not the definition of a confidence interval. We
used the default settings of the Bayesian Estimator in Amos
with regard to prior specifications, burn-in, and convergence
criteria.

To compare whether the ‘unrestricted loadings’ or the
‘equal loadings’ model fitted the data better, we used the
Deviance Information Criterion (DIC; [46]). The DIC is
the Bayesian equivalent for the AIC/BIC. It is an evalua-
tion between models using a trade-off model between fit and
model complexity. Several competing statistical models may
be ranked according to their value on the model selection
tool used. The one with the best trade-off is the winner of the
model selection competition.

Joy Sadness Hope Fear Anger

Md = 3.05
SD = 1.03

Md = 0.84
SD = 0.66

Md = 2.96
SD = 0.82

Md = 1.04
SD = 0.80

Md = 1.02
SD = 0.86

Fig. 6 Mean differences and Standard Deviations for Emotions per-
ceived in Tom

3 Results

3.1 Single Occurrence and Isolated Effects

3.1.1 Emotions

Because we were interested in how participants thought Tom
felt about them, we first investigated the differences among
five emotions. Mean difference scores and Standard Devi-
ations are in Fig. 6. The main effect of Control-type on
Perceived intensities was not significant (F(2,51) <1). Also,
the interaction between experimental group and Emotion
was not significant (Wilks’ Lambda� .86, F(5,48) �1.595,
p= .179).2 Thus, the participants assumingly did not detect
differences in the emotions produced by Silicon Coppélia
versus the human confederates.

Because the main effect of Control-type on the Emotion
scales was not significant, this might mean that no effects of
emotion occurred within a condition. To check for this, we
performed a one-sample t-test with 0 as the test value, equal-
ing no emotions perceived. Results showed that all emotion
scales differed significantly from0, the smallest t-value being
(t(2, 51) �8.777, p< .001) for Anger. Thus, effects of Emotion
did occur. Detailed results are in part C of “Online Resource
1”.

To investigate the systematic differences in perceiving
emotions in Tom, we computed paired samples t-tests for
all pairs of emotions within each condition (see Analyses).
Out of the 10 possible pairs, 6 pairs differed significantly.
The 4 pairs that did not differ significantly were Joy and
Hope (p= .444), Fear and Sadness (p= .054), Fear and Anger

2 To exclude the option that there were no effects of emotions, percep-
tions, or decision-making at all, we investigated the intercept. Results
showed that the intercept of the five different emotions was signif-
icant (Wilks’ Lambda� .032, F(5,47) �289.45, p < .001, η2p � .97).
Additionally, the intercept of ‘Perceptions’ was significant (Wilks’
Lambda� .009, F(8,45) �637.61, p< .001, η2p � .99). Finally, the inter-
cept of Decision-Making Behavior was significant (Wilks’ Lambda�
.11, F(2,51) �198.126, p� .031, η2p � .89).
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Ethics Affordances Distance

Md = 3.86
SD = 0.68

Md = 3.78
SD = 0.81

Md = 2.96
SD = 0.93

Fig. 7 Mean differences and Standard Deviations for significantly dif-
fering Perceptions observed in Tom (not all perceptions are listed)

(p= .908), and Sadness and Anger (p= .06). Joy and Hope
were both recognized relatively much in Tom, whereas Fear,
Sadness, and Anger were recognized in Tom in low intensi-
ties.

In conclusion, the t-tests showed that in both condi-
tions emotions were recognized in Tom by the participants.
According to MANOVA, however, the intensity of emotions
in the AI condition was probably not seen as different from
the WOz condition.

3.1.2 Perceptions

The main effect of Control-type on Perceptions in a separate
MANOVA (see Analyses) was not significant (F(2,51) <1).
Furthermore, the interaction between Control-type and Per-
ceptions was not significant (Wilks’ Lambda� .85, F(8,45)

<1, p � .462, η2p � .15).2 Thus, it seems that participants did
not detect differences in the way Tom perceived them in the
AI and WOz conditions.

Again, we performed one-sample t-tests with 0 as the test
value, equaling no perceptions detected. Results showed that
all perception scales differed significantly from 0 (see also
Fig. 7). The smallest t-value was found for Distance (t(2, 51)
�15.865, p< .001). Thus, effects of Perceptions did occur.
Detailed results can be found in part C of “Online Resource
1”.

In addition, we analyzed systematic differences in per-
ceiving the perceptions of Tom by paired samples t-tests for
all pairs (see Analyses). Out of the 28 pairs, 23 pairs differed
significantly. The pair that differed most was Ethics and Dis-
tance (t(51)�13.59, p< .001) (Fig. 7). The participants rated
Tom’s perceptions of their Ethics and their Affordances the
highest. The participants rated Tom’s perceptions of feeling
distant toward them the lowest.

In conclusion, the t-tests showed that Tom’s perceptive-
ness was indeed recognized in all conditions. MANOVA
indicated again, however, that the intensity of emotions in
the AI condition probably was not seen as different from
WOz.

3.1.3 Decision-Making Behavior

The main effect of Control-type on Perceived decisions was
not significant (F(2,51) <1). Also the interaction between
Control-type and Decision-Making Behavior was not sig-
nificant (Wilks’ Lambda� .97, F(2,51) <1).2

Again, we performed a one-sample t-test with 0 as the
test value, equaling noDecision-MakingBehavior perceived.
Results showed that Situation selection (t(2, 51) �14.562,
p .< .001) and Affective Decision-making (t(2, 51) �15.518,
p .< .001) both deviated significantly from 0. Thus, the par-
ticipants did perceive Decision-Making Behavior in Tom.
Details can be found in part C of “Online Resource 1”.

In conclusion, the t-tests showed that Decision-Making
Behavior was recognized in all conditions and theMANOVA
showed that participants most likely saw comparable
Decision-Making Behavior in AI and WOz conditions.

These conclusions were substantiated also by Bayesian
analysis. Table 2 shows that all the CCIs of the AI and
the WOz conditions overlapped. Inspection of the DIC
showed that the model in which the regression coeffi-
cients were assumed equal across both groups fitted the
data better (DIC�404.40) than the model in which the
regression coefficients were unrestricted (DIC�413.43) as
well. This indicates that the participants implied a similar
underlying cognitive-affective structure that produced Tom’s
perceptions and emotions, whether controlled by a human
confederate or by our Silicon Coppélia software. These
results confirmed our conclusions based on the MANOVAs,
which can now be maintained more firmly.

3.2 Structural EquationModeling with Bayes:
Cognitive-Affective Structure

The next step was to test whether the participants recog-
nized a similar cognitive-affective structure in Tom in both
the AI and WOz condition. Before inspecting differences
between the two experimental groups, we modeled all pos-
sible hypothesized direct effects of the encoding variables
on the comparison and response variables, as well as all
possible direct effects of the comparison variables on the
response variables. However, to strive for a more parsimo-
nious model, an association was omitted if it was found to be
not significant in either the AI group, the WOz group, or the
‘equal loadings’model.We continued removing insignificant
associations until only significant associations remained (cf.
[22]). Figure 8 shows the results for the model with factor
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Table 2 Significant influences in
the WOz and AI condition

Influence WOz condition AI condition

B SD CCI95 B SD CCI95

Affordances→ relevance .349 .237 − .118, .816 .766 .245 .284, 1.250

Ethics→ involvement .147 .254 − .354, .648 .486 .171 .148, .825

Valence→ involvement .541 .180 .188, .895 .251 .165 − .074, .575

Relevance→ involvement .264 .168 − .006, .599 .261 .137 − .007, .533

Relevance→distance − .049 .490 −2.006,
− .076

− .102 .368 −1.790,
−353

Similarity→distance − .988 .584 −2.111, .192 − .720 .487 −1.629, .247

Similarity *
relevance→distance

.245 .201 − .156, .634 .272 .137 − .002, .528

Valence→use intentions .936 .133 .672, 1.198 1.067 .059 .950, 1.183

Fig. 8 Significant relations
among the theoretical factors.
Solid arrows indicate positive
influences; dashed arrows
negative influences. Pointed
arrows are significant at (p
< .05); blunt arrows represent
trends (p < .10). The arrow
pointing at another arrow
indicates interaction. Arrow
width is proportional to the
estimated effect size. Indirect
effects are left out

loadings assumed equal. More detailed information can be
found in part D of “Online Resource 1”.

Ethics and Relevance significantly contributed to partici-
pants’ report of Tom being Involved. Thus, if the participants
thought Tom perceived them as morally good and relevant,
they also thought he would feel more involved toward them.
Furthermore, Relevance mediated a negative influence of
Affordances on Distance. This influence was further mod-
erated by perceived Similarity. That is, if the participants
thought Tom perceived them as clumsy, they thought they
would be less relevant for him, making him more distant
toward them. This influence was strengthened if they thought
Tom perceived them as similar. Finally, Valence had a posi-
tive influence on Use Intentions and Involvement. Thus, if

the participants thought Tom had high expectations, they
thought he would feel more involved with them and more
eager to meet again. The found relations matched very well
to relations found in previous research regarding I-PEFiC,
describing human perceptions of fictional characters (e.g.,
[51]).

4 Discussion

The goal of the present study was to test whether affective
behavior performed by our software could be distinguished
from that of a real human. In an enriched variant of the Turing
test, we compared the emotional communication of a virtual
human as produced by our software Silicon Coppélia in an
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AI-condition to a WOz-condition with an avatar in which
the emotional communication was produced by real humans
(having the same screen appearance). Female participants
were randomly assigned to a virtual human named Tom in
a speed-date session, either controlled by our software (AI
condition) or Tom controlled by human confederates (WOz
condition). Tom could give verbal as well as nonverbal cues.
Analysis of the results according to MANOVA and Bayes
showed that in our version of the Turing test, participants did
not detect differences but saw similarity between the two ver-
sions of Tom, supportingH1. Participants rated both versions
of Tom as similarly eager to meet them again, as exhibiting
similar ways to select a situation, and making similar affec-
tive decisions. Also, the emotions the participants perceived
in Tom during the speed-date session did not differ between
both conditions. Differences in emotion attributions could be
observed, but these were similar for the human-controlled-
Tom and software-controlled-Tom alike.

MANOVA and Bayesian analyses further showed that
participants did not detect differences but saw similarity in
the cognitive-affective structure between the two versions
of Tom, supporting H2. To exclude finding null difference
caused by a lack of power, we compared two statistical mod-
els, one under the assumption that theAI andWOz conditions
were equal, another under the assumption that the two would
be different. According to Bayes, the model assuming equal-
ity between human and AI explained the data better than the
model assuming difference. Thus, the participants attributed
a similar cognitive-affective structure to Tom, whether medi-
ated by a human confederate or being performed by our
software. In the following, the results, limitations, alterna-
tive explanations, and implications will be discussed in more
detail.

Figure 1 shows three possible ways of explaining the
results: 1) SiliconCoppélia simulatedhumanaffective behav-
ior as expected and passed the Turing test. 2) The interface
restricted human expressivity too much to outperform the
AI. 3) Despite young women supposedly being sensitive to
emotional cues, these participants perhaps had poor signal
detection.

The main argument in favor of (1) that Silicon Coppélia
passed the Turing test is that results occurred as predicted,
confirming H1 and H2. Particularly H2 is vulnerable to refu-
tation because it predicts a complex of relations that can
easily come out differently. For instance, our results showed
that if the participants believed that Tom perceived them as
morally good, or more relevant, they also thought he would
bemore involvedwith them. If participants believed Tomhad
positive expectations of them, they also thought hewould feel
more involved and more eager to meet them again [24].

An extra argument is the specificity of certain findings
that replicated results of earlier I-PEFiC research. We could
reproduce very specific findings reported in [51]. In that

study, male participants were more distant to a male virtual
agent if it were clumsy, even more so if the faces were made
similar through morphing. This effect was absent in female
participants. Apparently, men did not want to be associated
with clumsy partners, even if those partners were virtual or
non-existent. In the present study, the female (!) participants
seemed to have projected this preoccupation onto Tom (being
a male). When the participants believed that Tom held them
for clumsy, they thought they would be irrelevant to him,
which made him more distant toward them, so they thought.
This effect was strengthened when they assumed that Tom
perceived the participant as similar to him. These women
seemingly assumed they conversed with a real male part-
ner, who did not want to be like them if he thought they
were clumsy; even if we told them beforehand that the male
was a robot. Apparently, empirical findings this precise can
be reproduced in participants imagining how a virtual agent
equipped with our software perceived them!

Explanation (2) may be that now that the test was passable
for the computer, it became too hard for the human to out-
perform the AI, owing to the restricted interface. The limited
expressive possibilities (i.e. selected choice questions and
answers) would make it undetectable whether one deals with
a computer or not.

First, this may be true but at least we went beyond the
standard text-based interfaces and added expressive extras
such as voice, decision making, facial expressions, and emo-
tion in line with Barberi’s [4] recommendations. Kotlyar and
Ariely [25] found that nonverbal cues in an online dating set-
tingwere associatedwithmore favorable perceptions, greater
exchange of information and a stronger desire to pursue a
relationship. This also counted for the human confederates,
not for the AI alone.

Second, if we allow free interactions, we lose experi-
mental control, rendering our measurements uninterpretable.
Third, if cues to face-to-face contact are unavailable, peo-
ple seek out and interpret cues that serve as substitutes for
nonverbal communication [56]. With respect to gender dif-
ferences, women’s perceptions were especially positively
affected by the presence of moving images that accompa-
nied text messages, such as avatar movements, gestures, and
facial expressions [56]. Additionally, Lee et al. [28] suggest
that adding audio and video to text-only online dating profiles
increases social presence and engagement, which is what we
did. Fourth, rich communication is not necessarily dependent
on a richer medium [50]. A review by Derks et al. [9] even
concludes that there is no indication that computer-mediated
communication is a less emotional or less personally involv-
ing medium than face-to-face.

An alternative explanation related to (2) is that tenminutes
were too short for an adequate estimation of the cognitive-
affective structure of Tom (cf. [55]). People may well tell
human and computer apart when they have sufficient interac-
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tion possibilities and plenty of time to develop a relationship.
This also may continue for true but then the measurement
should be as long as it takes for someone to unmask the sys-
tem. Yet, in real life as well, we often do not invest much time
in our interaction partners and speed-dates are notoriously
quick and shallow [11], which means that our experiment
had quite some ecological validity for certain real life situa-
tions.

In future research (cf. bottom of Fig. 1), our study could be
repeatedwithmore interaction options (i.e. language-related)
and a longer period of interaction. Point is, how many more
interaction options should there be and how much longer
should a session take?

Alternative explanation (3) was that the female partici-
pants in our sample had poor stimulus discrimination. The
idea was that selecting young females allowed for a con-
servative test. Females make more sensitive diagnoses of
someone’s state of mind than men (e.g., [47]) and therefore
will detect differences between an artificial and a human dat-
ing partner better thanmales. If girls cannot tell the two Toms
apart, neither will boys.

It might be that the instruction that Tom was a computer-
controlled agent in both conditions influenced the partici-
pants’ evaluation of Tom. Discourse analysis of a text-based
structured conversation revealed differences in participants’
behavior when they believed they were talking to a person
versus when they believed they were talking to a computer
[42]. However, according to the Threshold Model of Social
Influence [12], the social influence of real persons who are
represented by avatarswill always be high (cf. human confed-
erates), whereas the influence of an artificial entity depends
on the realism of its behavior. Moreover, in a study by [53],
the participants’ belief in whether they were interacting with
an agent controlled by a computer, or an avatar controlled
by a human, barely resulted in differences with regard to
behavioral reactions or the evaluation of a virtual charac-
ter, whereas high behavioral realism of the virtual character
affected both [53]. This suggests that the instruction that Tom
was controlled by a computer in both conditions should not
have had a large effect on the participants’ evaluation of Tom.
It may even have increased the test sensitivity for measuring
the perceived realism of Tom’s behavior. In sum, the only
way to check alternative 3) is to repeat the study with women
who are sensitized and trained in detecting cues to human-
ness when interacting with a synthetic character versus an
untrained group (Fig. 1).

As an extra, the investigation of different personalities
and unexpected behaviors also may be something for future
research. In the speed-date, Tom never showed extreme
behaviors but then again, the human confederate did not do
so either. In the current study, we did not want the software to
show non-humanlike behaviors (on the contrary). It would be
yet worthwhile to investigate how ‘strange’ an AI is allowed

to act before people start recognizing this is not humanbehav-
ior any more.

The novelty and uniqueness of our approach is threefold.
We turned the original Turing test around in that participants
were asked how they thought Tom perceived them. Next to
asking how the participants experienced the virtual human,
participants were asked how they thought they were eval-
uated by their interaction partner Tom. This was the most
straightforward way of testing whether the I-PEFiC model
of perceiving virtual others, as implemented in Tom, would
result in similar human-like perception mechanisms. Given
the speed-date setting, these questions made sense. To the
best of our knowledge, no previous studies requested partic-
ipants to diagnose the perceptions of an artificial other.

Second, the use of both frequentist and Bayesian analysis
in robot studies is rare but quintessential if we want to tell
whether AI and human differ ((M)ANOVA) and if we want
to assess whether they perform similarly (Bayes). Third, we
created an AI, Silicon Coppélia, that apparently can simulate
human cognitive-affective behaviors so well that under lim-
ited conditions of interaction, humans cannot tell apart the
AI from actual human behavior (Fig. 1).

5 Conclusion

In having created a humanoid simulation of affect, our mod-
els are relevant to engineers as well as scholars: for the first
to empower their application development; for the second
to increase insights in human affective communication. On
all measured dimensions, participants did not experience any
significant difference between Tom’s communication as gen-
erated by a human and Tom’s communication as generated
by our software. This indicates that the theory and the formal-
ization that translates that theory into software may capture
human affective behavior.

Our computer model can be of help in many human—
machine interfaces such as (serious) digital games, virtual
stories, tutor and advice systems, telemedicine applications
[37], coaching or therapist systems (cf. [38]) but also in social
support groups (cf. [16]) and virtual patient communities (cf.
[29]).

Although we could demonstrate that software agents
and robots can closely simulate human emotions and the
cognitive-affective structure underlying them, reminiscent of
Searle’s [41] Chinese Room argument, we do not claim that a
computer can be called emotionally intelligent just because it
passed our variant of the Turing test. We do claim, however,
that we can simulate emotional intelligence so realistically
that young women cannot discern between the behavior pro-
ducedby aman (i.e., a humandatingpartner) and the behavior
produced by our robot through a computer model in a virtual
speed-date setting.
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