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Abstract: Assessing the seismic vulnerability of large numbers of buildings is an expensive and
time-consuming task, requiring the collection of highly complex and multifaceted data on building
characteristics and the use of sophisticated computational models. This study reports on the
development of a data mining technique: Support Vector Machine (SVM) for resolving such
multi-dimensional data problems for assessing buildings’ seismic vulnerability at a regional scale.
Particularly, we developed an SVM model for rapid assessment of the macroscale seismic vulnerability
of buildings in terms of spectral yield and ultimate points of their capacity curves. Two case studies,
one with 11 building characteristics and the other with 20, were used to test the proposed SVM model.
The results show that when 20 building characteristics are included, an individual building’s seismic
vulnerability in term of its spectral yield and ultimate points can be predicted by the proposed SVM
model with an average 64% accuracy if the training dataset contains 400 samples, rising to 74% with
4400 training samples. Coupling the proposed technique with demand curves based on buildings’
locations will enable rapid and reliable seismic-risk assessment at a regional scale, requiring only
basic building characteristics rather than complex computational models.

Keywords: building seismic vulnerability; data mining; earthquake; seismic risk; Support Vector
Machine

1. Introduction

Earthquake risk to people and property is primarily conceptualized as a function of buildings’
seismic vulnerability [1]. Assessment of the seismic vulnerability of buildings at a city, regional, or
national scale has traditionally been expensive and time-consuming, requiring highly complex and
multifaceted data on building characteristics as well as sophisticated computational models. For the
assessment of buildings’ seismic risk at a regional scale, catastrophe risk modeling (CRM) has been
widely used. CRM typically consists of four modules—hazard, exposure, vulnerability, and loss—with
risk estimated as the impacts of a hazard that exploits the vulnerabilities of a system of interest
on its exposure to that hazard [2]. In the case of earthquakes, the hazard module determines the
characteristics of the potential seismic events that would affect the system and the exposure module
collects data on the geological and built environment. Then, based on the information collected in the
exposure module, the seismic vulnerabilities of buildings are determined in the vulnerability module.
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Finally, through the various loss-interpretation models included in the fourth module, building damage
can be translated into specific types of losses.

Gradual improvements have been made in hazard modules’ ability to estimate the locations and
return periods of seismic events, and exposure module by using advanced geographic information
system for data collection [3–5]. However, the vulnerability module has proved an impediment to the
effective use of CRM for seismic-risk assessment. Computational models for simulating a building’s
seismic vulnerability, such as static push-over or non-linear dynamic models, are costly in both time
and economic terms, requiring highly complex and multifaceted data on each building’s structural
configuration and material properties. Moreover, for these types of computational analysis to be
applied at a regional scale, they must be repeated thousands of times. Thus, based on a data-mining
(DM) technique (SVM algorithm) that focuses on the prediction of a building’s spectral yield and
ultimate acceleration-displacement points, the present study developed a methodology for rapid,
macroscale assessment of buildings’ seismic vulnerability using relatively small sets of basic building
characteristics. As well as addressing the inefficiency of current CRM vulnerability modules, it is
hoped that the present research will serve as a basis for further macroscale studies of the vulnerability
of constructed facilities facing a variety of natural hazards, and thus facilitate more accurate and rapid
risk assessment.

2. Review: Regional-Scale Assessment of Buildings’ Seismic Vulnerability

This section discusses prior research on methodologies for the assessment of buildings’ seismic
vulnerability at regional scales. Such approaches can be divided into the three major categories:
empirical, analytical, and semi-empirical.

2.1. Empirical Vulnerability Assessment

Vulnerability curves established by post-seismic observations of buildings by type can serve as
a simplified and cost-efficient means of vulnerability assessment, allowing reasonable estimations
of expected damage levels at given seismic intensities [6–8]. However, despite their great simplicity,
such empirical approaches have drawbacks in terms of both flexibility and accuracy. Firstly, since
vulnerability curves are determined based on post-event surveys of damaged buildings in an affected
area, they cannot be fairly applied to any building types that differ markedly from those already
affected by earthquakes or that have been affected but not surveyed systematically. As such, the
empirical approach is not suitable to areas of low to moderate seismic hazard or where no accurately
recorded historical damage data exists. Secondly, a measurement of ground-motion intensity, such
as peak ground acceleration (PGA), is commonly used as the explanatory variable in regression
models that have building damage as the dependent variable, without taking into consideration the
relationship between the frequency content of the ground motion and the fundamental period of
vibration of buildings. Specifically, PGA is the maximum ground response of an earthquake, not the
maximum response of a structure; such use of PGA can therefore lead researchers to ignore the possible
effects of resonance between the frequency of an earthquake and a structure and thereby decrease the
accuracy of vulnerability curves. For example, a high-rise building will have a greater response to a
low-frequency earthquake than to a high-frequency one with the same PGA.

2.2. Analytical Vulnerability Assessment

Amid improvements in advanced earthquake engineering as well as computer science,
computational structural modeling has served as a powerful tool for assessing buildings’ response
to ground shaking. Static pushover analysis, for example, provides a practical means for evaluating
inelastic structures’ displacement responses to earthquakes of given intensities [9–12]. This type
of analysis generates capacity curves, which express seismic capacity in terms of the horizontal
displacement of a building under increasing lateral load [13]. The seismic-demand spectrum, on the
other hand, is generated based on the geotechnical and seismicity characteristics of the building’s
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location. A building’s performance point, found at the intersection of its capacity curve with the
seismic-demand curve of its site, refers to the maximum displacement it can withstand under the given
seismic-demand curve. Once its performance point is known, the failure mechanism of the building’s
structure can be closely investigated, based on the ductility capacity of all structural elements under
the calculated maximum displacement. Therefore, a building’s capacity curve is critically important to
the representation of its seismic vulnerability.

2.3. Semi-Empirical Vulnerability Assessment

Ideally, to achieve a holistic seismic-risk assessment for an urban area, every single building’s
behavior during ground shaking should be investigated via computational modeling. However,
because effective computational models require complex, detailed information on the structures and
materials of every building, it is not practical to apply them at the urban scale. Thus, to ensure that
vulnerability assessment remains at an acceptable accuracy level, while avoiding time-consuming
processes of large-scale data collection, the semi-empirical approach evaluates vulnerability based on a
smaller range of selected building attributes, selected with the aid of experts and historical data. Since
the aim of any large-scale vulnerability assessment is to estimate “average” performance among a
group of buildings, the principle of the semi-empirical approach is to group buildings with similar
seismic-vulnerability characteristics into a set of predefined building classes, each identified by a
reasonable number of building characteristics.

Data collection for the selected building characteristics can be performed rapidly through visual
screening [14], which has been widely in semi-empirical approaches to urban risk assessment [15,16].
Rather than seeking detailed information on structural designs or materials, visual screening involves
the recording of a predefined number of visible structural parameters (usually no more than 15)
observed during a sidewalk survey [17]. Vulnerability classifications or scores are then determined
based on the collected building information, in combination with experts’ judgments and historical
earthquake-damage data. For example, Taiwan’s National Center for Research on Earthquake
Engineering (NCREE) [18] created an index of seismic resistance (ISR) from 0 to 100 based on the
cumulative scores of 20 structural parameters, including soft-story effect, short-column effect, elevation
and plan irregularity, state of maintenance, redundancy, and so on, and used it to investigate the
vulnerabilities of 5400 school buildings. The ISR threshold was set at 80, based on empirical data
including experiments and information on historical damage, and 1851 buildings that scored below 80
were classified as high vulnerability.

Semi-empirical approaches have been criticized for sacrificing too much accuracy in exchange
for time savings in the data-collection phase. Nevertheless, their reasonably effective use of a limited
number of essential parameters in the estimation of buildings’ vulnerability has paved the way for
the application of machine-learning techniques to urban and regional-scale building-vulnerability
assessment problems.

2.4. Machine Learning in Disaster-Risk Assessment

DM has been seen as a powerful alternative to conventional statistical methods when dealing
with multi-dimensional big data problems, insofar as they require no assumptions to be made
about data distributions [19]. An urban natural-hazard risk assessment can be conceived of as an
immensely complex multi-dimensional problem whose hazard, exposure, and vulnerability modules
require masses of quantitative and qualitative data. As such, SVM—a DM technique derived from
statistical-learning theory—has been widely and effectively used to solve natural-hazard risk problems
involving landslides [20], typhoon-related floods [21], droughts [22], and climate change [23], by taking
into account thousands and millions of multi-dimensional datasets relating to the natural, social, and
economic aspects of an affected urban area. In contrast to many other natural hazards, which are
connected to build environments via mechanisms that remain largely unknown, seismic risk has
been assessed using CRM with relatively high degrees of success, thanks in part to advancements
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in structural computational modeling. Accordingly, several studies have utilized SVM to map the
underlying relationships between buildings’ vulnerability and a range of their characteristics, such as
number of stories, building length, and total ground areas [18,24–26]. The results have demonstrated
SVM’s powerful ability to estimate buildings’ seismic vulnerability efficiently on a large geographic
scale, as well as its merit as an accurate, convenient tool for both the computational and semi-empirical
methods described above.

However, the outputs of the aforementioned SVM models of buildings’ seismic vulnerability
have been devoted to one particular type of seismic-resistant capacity, which reflects the capability
of a building to withstand collapse during an earthquake [21,22], such as maximum story drift ratio,
as if that type alone applied to an entire building. In addition, such maximum story drift ratio,
for example, defined as the maximum ratio of the difference in lateral displacements in between
two consecutive floors to the story height under a fixed seismic intensity [27], cannot be applied
to the estimation for the same building’s response in different seismic demand. For this reason,
micro-level outputs—like building-capacity curves, which can be used to evaluate different levels of
damage to individual components, as well as building’s different response coupled with different
seismic-demand curves—should be estimated to facilitate more detailed and flexible assessment of
buildings’ seismic vulnerability.

3. Methodology

3.1. Development of the Support Vector Machine Model

3.1.1. Support Vector Machine

The SVM, which is supervised machine-learning algorithms, combine the Vapnik-Chervonenkis
Dimension from statistics with Structure Risk Minimization Theory [28]. It has been widely used for
DM decision-making and predictions and to determine optimal hyper-planes in high-dimensional
space that can be utilized to solve regression problems using division, thus minimizing the regression
error rate [29]. The optimal high-dimensional hyper-plane can be represented by a linear regression
function f (x) = θ·Φ(x) + b mapping the input vector x into a higher-dimensional feature space f (x),
where θ and b are the weightings and biases of the regression function, respectively. If there is a
number of data x and y, the objective function for the minimum values of θ can be defined using
Equation (1):

minJ(θ) = min
1
2

θTθ (1)

subject to
∀i : |yi − ( f (xi)| ≤ ε

where ε is a tolerable bandwidth, as shown in Figure 1.
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However, it is possible that no one linear regression function f (x) will satisfy the objective function
in Equation (1) for all data x and y. Thus, the slack variables ξi and ξ∗i are introduced for xi and yi,
respectively; this allows regression errors to exist up to the value of ξi and ξ∗i , but the objective function
to remain satisfied, as shown in Figure 2. The slack variables ξi and ξ∗i are defined by Equations (2)
and (3):

ξi =

{
0 0 < (y− f (x)) ≤ ε

(y− f (x))− ε otherwise
(2)

ξ∗i =

{
0 0 < ( f (x)− y) ≤ ε

( f (x)− y)− ε otherwise
(3)

Therefore, the objective function Equation (1) can be transformed to Equation (4), taking account
of Equations (2) and (3):

min J(θ) = min
1
2

θTθ+ C ∑n
i=1(ξi + ξ∗i ) (4)

and subject to
∀i : yi − (θΦ(xi) + b) ≤ ε + ξ∗i

∀i : (θΦ(xi) + b)− yi ≤ ε + ξi

∀i : ξi ≥ 0, ξ∗i ≥ 0

where the constant C is a positive numerical value used to control the penalty for the observation
Φ(xi) lying outside the tolerable bandwidth, to prevent over-fitting. The value of C determines the
trade-off between the complexity of f (x) and the amount up to which deviations larger than ε are
tolerated. A Lagrange function is then determined by introducing non-negative multipliers αi and α′i
for each observation Φ(xi) as shown in Equation (5):

min
α
L(α) = 1

2 ∑n
i=1 ∑n

j=1
(
αi − α′i

)(
αj − α′j

)
Φ(xi)

TΦ
(
xj
)
+ ε ∑n

i=1
(
αi + α′i

)
−∑n

i=1 yi
(
αi − α′i

)
= 1

2 ∑n
i=1 ∑n

j=1
(
αi − α′i

)(
αj − α′j

)
K
(
xi, xj

)
+ ε ∑n

i=1
(
αi + α′i

)
−∑n

i=1 yi
(
αi − α′i

) (5)

subject to

∑n
i=1

(
αi − α′i

)
= 0

∀i : 0 ≤ αi ≤ C, 0 ≤ α′i ≤ C

where Φ(xi)
TΦ
(

xj
)

is also known as the kernel function K
(
xi, xj

)
, which can be represented as

polynomials, sigmoid kernels, radial basis function (RBF), and so on. The present study’s model
adopted the RBF kernel, as shown in Equation (6). The RBF kernel maps samples nonlinearly from
low-dimensional space into a higher-dimensional space. Therefore, it can deal with situations in which
the relationships between input and output variables are nonlinear.

K
(

xi, xj
)
= exp

(
−‖xi − xj‖2

)
(6)

Obtaining the optimal solutions for Equation (5) requires using the three constraints shown
in Equation (7), which indicates that all observations Φ(xi) that are strictly within the tolerable
bandwidth have Lagrange multipliers of αi = 0 and α ∗i = 0. Observations Φ(xi) with non-zero
Lagrange multipliers are called support vectors.

∀i : αi(ε + ξi − yi + f (xi)) = 0

∀i : α′i(ε + ξ∗i + yi − f (xi)) = 0

∀i : ξi(C− αi) = 0, ξ∗i
(
C− α′i

)
= 0

(7)
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3.1.2. Model Training and Testing

For the proposed SVM model, a total dataset N includes a training-sample dataset Ntr and a
testing dataset Nte. The former is used to construct the SVM prediction model and the latter to be
tested to evaluate the accuracy of the prediction model. The effectiveness of the SVM model depends
not only on its creator’s chosen learning algorithm but also on the required size of Ntr. Traditionally, N
is divided into Ntr and Nte randomly, due to a lack of rigorous standards for such division. However,
random division has some drawbacks: for example, Ntr and Nte must be resampled until limitations
on model-prediction accuracy are satisfied, in case the model-prediction error obtained by testing
Nte is excessive. This process of random resampling can be time-consuming. Accordingly, several
cross-validation approaches to model-error evaluation have been introduced to help determine the
optimal division of N into Ntr and Nte datasets. These include re-substitution validation, hold-out
validation, leave-one-out cross-validation, and K-fold cross-validation (KFCV) [30]. The present study
adopted KFCV, which divides N equally into K subsets (K < N), and each K subset into one K-1 training
dataset and one validation dataset, as shown in Figure 2. K experiments are then conducted, and the
accuracy A of any one such experiment is calculated using Equation (8):

A = 1− 1
n ∑n

i=1

∣∣∣∣yp − yi

yi

∣∣∣∣ (8)

where yp is the predicted value; yi is the target value; n is the number of data in a validation subset,

which is equal to N
K , as shown in Figure 2; and 1

n ∑n
i=1

∣∣∣ yp−yi
yi

∣∣∣ is the mean absolute percent error (MAPE).
Proposed by Lewis [31], MAPE has been widely used in the field of DM as a criterion to assess the
performance of a model’s prediction-capability [32–34]. The predictions corresponding to different
values of A are listed in Table 1. In the case of A ≥ 0.9, 0.8 ≤ A < 0.9, 0.5 ≤ A < 0.8, and A < 0.5,
the prediction-capability of the model is defined as precise, good, reasonable and poor prediction,
respectively. The experiment with the highest A is set as the optimal model for further testing of
new data.

Table 1. Accuracy assessment criteria.

Accuracy Meaning

1.0–0.9 Precise prediction
0.8–0.9 Good prediction
0.5–0.8 Reasonable prediction
0.0–0.5 Poor prediction
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3.2. Development of Capacity Curves of Buildings

3.2.1. Pushover Analysis and the Capacity Spectrum Method

ATC-40 [35] recommends that buildings’ capacity curves be obtained by conducting pushover
analysis, and defines seven damage states of structural elements, as shown in Figure 3. These are:
B (yield point), IO (immediate occupancy), LS (life safety), CP (collapse prevention), C (ultimate
strength), D (residual stress point), and E (final failure point), as shown in Figure 3b. In the present
study, an ideal capacity curve of a building is conceptualized as an equivalent bilinear curve that
covers an equal area as calculated up to the point of the first 20% drop in strength along the ideal
pushover curve [36]. As such, an equivalent capacity curve can be depicted using points: yield and
ultimate strengths and the force-displacement relation connecting these points are then converted
into a spectral acceleration-displacement relation [35], PY(Sdy, Say) and PU(Sdu, Sau), as shown in
Figure 3c, to facilitate direct comparison with the seismic-demand spectrum curve. As noted above,
the intersection of the equivalent capacity curve and the seismic-demand curve marks a building’s
performance point, i.e., the maximum displacement it can withstand under the seismic-demand
curve in question. As such, the damage states of each structural element of the building can be
determined. As shown in Figure 3a, for example, the finite element model of a building is built in
SAP2000 and then the static pushover analysis is carried out to generate the building’s capacity curve.
At the performance point, there are 341 structural elements are subjected to elastic deformation (A-B);
149 elements subjected to B-IO; 144 elements subjected to IO-LS, and so on.
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Figure 3. (a) Damage states of structural components at the ultimate point PU ; (b) Deformation-load
relation of a structural component; (c) Capacity curve.

3.2.2. Selection of Building Characteristics

FEMA154 [14] sets forth three principles to guide the selection of building characteristics
appropriate for use in evaluations of the vulnerability of existing buildings. These are: simplicity/
manageable numbers; visual accessibility by surveyors; and representativeness of vulnerability. In light
of these principles, the present methodology adopted 20 building characteristics (Table 2) that were
previously identified as relevant to seismic vulnerability [18,25,37]. For example, building stories can
reflect the building’s functional frequency; built years can represent the quality of materials with the
assumption that the same building materials were used in the same built year; the total section area
of vertical elements can reflect the lateral stiffness of a building; factor 15 to factor 18 are structural
defects which can increase building’s seismic vulnerability [25].

FEMA154 [14] suggests that it should be possible to complete a survey of 20 such characteristics
of one building within 30 min. Moreover, some characteristics—such as a building’s height, year
built, or structural system—may also be easily obtainable from public census statistics databases or
tax documents.
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Table 2. Building characteristics.

Factors Description

1. Structural system

(1) Reinforced concrete (RC) frame without masonry infill wall (CF);
(2) RC wall building (CSW);
(3) RC frame building with structural wall (CFSW);
(4) RC frame building with masonry infill wall (CFIW);
(5) RC building with transfer plate (CT);
(6) Masonry building (M);
(7) Steel frame building (S);
(8) Precast building (P)

2. Building height (stories)
(1) Low-rise (1–3),
(2) Mid-rise (4–7),
(3) High-rise (8+)

3. Seismic design standard

(1) High-code,
(2) Medium-code,
(3) Low-code,
(4) Pre-code

4. Built year

5. Total section area of columns in classrooms at ground level

6. Total section area of columns in partitions at ground level

7. Total section area of columns in corridors at ground level

8. Total section area of brick walls at ground level

9. Total section area of reinforced-concrete walls at ground level

10. Total section area of three-sided reinforced-concrete walls at ground level

11. Total section area of four-sided reinforced-concrete walls at ground level

12. Number of columns in classrooms at ground level

13. Number of columns in partitions at ground level

14. Number of columns in corridors at ground level

15. soft story N/A (1), 2/3 wall inter. (0.9), 1/3 wall inter. (0.8)

16. short column N/A (1), 50% col./beam < 2 (0.9)

17. plan irregularity N/A (1), >15% dimension (0.95)

18. vertical irregularity N/A (1), >15% dimension (0.95)

19. deterioration Severe (0.9), Moderate (0.95), Slight (1)

20. retrofitting intervention Yes (1.2), No (1)

4. Model Verification

As briefly noted above, our first and second case studies that were conducted to illustrate the
application of proposed SVM models utilized different, overlapping sets of building characteristics,
numbering 11 and 20, respectively, for the assessment of buildings’ capacity curves. The 11 characteristics,
from factor 1 to factor 11, are selected from the 20 factors mainly for two reasons. First, either factor 1 to
factor 3 or factor 12 to factor 14 can reflect the contribution of columns to a building’s lateral stiffness;
therefore, only factor 1 to factor 3 are used in the case with 11 characteristics. Second, the data of
factor 1 to factor 11 are easy to be collected without special requirement on surveyors’ expertise,
while the data collection of factor 15 to factor 20 largely relies on the expertise of surveyors regarding
structural engineering.

The buildings in question were drawn from the previously mentioned NCREE database of more
than 5400 Taiwanese schools, which for each building includes all 20 of the characteristics noted
in Table 2, and a capacity curve (PY(Sdy, Say) and PU(Sdu, Sau)). For verification of the proposed
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SVM models, we used our sets of 11 and 20 building characteristics as the inputs, and spectral-yield
displacement Sdy, spectral-yield acceleration Say, spectral ultimate displacement Sdu, and spectral
ultimate acceleration Sau as the four outputs. The proposed model set and tested 11 training datasets
ranging in size from 400 to 4,400 samples, in intervals of 400. The tests are performed on an Intel®

CoreTM i7-6700 CPU@ 3.4GHz with 24 GB RAM in the environment of Microsoft Windows 10.
The computational time for each experiment is shown in Table 3. The total computational time is

4077 s (68 min). The computational time increases slightly as the number of building characteristics
increases, while it increases significantly as the number of training data increases. In the first case study,
for example, as the number of training data increased by 10 times, from 400 to 4400, the computational
time increased by 88 times, from 5 s to 445 s.

Table 3. The computational time for each experiment(s).

Number of Building
Characteristics

Number of Training Data

400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

11 5 13 26 61 93 139 187 242 303 372 445
20 6 21 41 72 109 168 215 277 348 423 512

The present study adopted 10-fold cross validation (K = 10) as recommended by Chen et al.’s
study [18] for all 11 sizes of training dataset. Table 3 presents the average validation accuracies of each
experiment A obtained via Equation (8) and 10-fold cross-validation for the proposed model with a
training dataset of 4400 samples. Specifically, with 11 building characteristics as the inputs for Sdy
and Say, these average validation accuracies were 0.666 and 0.648, respectively; and with 20 building
characteristics as the inputs for Sdy and Say, they were 0.709 and 0.695, respectively. As noted in Table 1,
such validation accuracies indicate that both the 11-characteristic and 20-characteristic models are
reasonably accurate at predicting Sdy and Say when 4400 training samples are used. The experiment
with the highest validation accuracies out of all 10 experiments, which are those ones with the
maximum values in validation accuracies in Table 4, was selected as the optimal model for further
model testing. Finally, for the sake of maximum predictive accuracy, as recommended by Riedel et
al.’s study [26], the present study adopted a proportion of 5:1 between the sizes of the training dataset
and the testing dataset.

Table 4. Accuracy of 10-fold cross validation (training sample size of 4400).

Experiment

11 Building Characteristics 20 Building Characteristics

Spectral-Yield
Displacement, Sdy

Spectral-Yield
Acceleration, Say

Spectral-Yield
Displacement, Sdy

Spectral-Yield
Acceleration, Say

Training Validating Training Validating Training Validating Training Validating

1 0.689 0.557 0.675 0.537 0.761 0.712 0.764 0.698
2 0.686 0.697 0.671 0.691 0.764 0.747 0.763 0.697
3 0.681 0.649 0.690 0.715 0.765 0.659 0.759 0.712
4 0.677 0.651 0.695 0.717 0.773 0.643 0.764 0.706
5 0.681 0.622 0.674 0.671 0.766 0.698 0.751 0.694
6 0.704 0.762 0.691 0.624 0.762 0.768 0.770 0.678
7 0.678 0.626 0.686 0.553 0.764 0.688 0.760 0.634
8 0.690 0.669 0.685 0.625 0.759 0.753 0.756 0.674
9 0.693 0.739 0.692 0.593 0.778 0.653 0.759 0.721

10 0.680 0.692 0.695 0.753 0.758 0.769 0.754 0.732

Maximum 0.704 0.762 0.695 0.753 0.778 0.769 0.770 0.732
Minimum 0.677 0.557 0.671 0.537 0.758 0.643 0.751 0.634
Average 0.686 0.666 0.684 0.648 0.765 0.709 0.760 0.695
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In the first case study, the first 11 building characteristics in Table 2 were used as the model inputs,
and PY(Sdy, Say) and PU(Sdu, Sau) as outputs. First, we tested the influence of all 11 sizes of training
dataset on the model’s prediction accuracy (Table 4), with 30 trials run for each training size using
samples randomly selected from among the NCREE’s 5400 buildings. The resulting accuracies A of the
output Sdy are presented in Figure 4 and Table 5, which show that such accuracies increased slightly
as the size of the training dataset increased: from 0.51 with a training dataset of 400 samples, to 0.54
at 4400 samples. This implies that when only 11 building characteristics were used as model inputs,
the proposed SVM model could only achieve an accuracy of 0.52 in the prediction of Sdy, even when
its training sample was as large as 4400; and that improvements in accuracy based solely on further
increases in the size of the training dataset (as opposed to the number of building characteristics) are
unlikely to be dramatic.Appl. Sci. 2019, 9, x 10 of 16 
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Figure 4. Model accuracy for spectral-yield displacement Sdy with 11 building characteristics.

Table 5. Model accuracy with testing 11 building characteristics for spectral-yield displacement Sdy.

Size of Training Dataset

400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

Max. 0.61 0.63 0.64 0.59 0.63 0.63 0.61 0.61 0.62 0.58 0.62
Min. 0.26 0.23 0.34 0.31 0.35 0.41 0.34 0.38 0.39 0.46 0.42

Average 0.51 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.54
SD 0.08 0.10 0.07 0.06 0.07 0.06 0.07 0.05 0.05 0.04 0.04

We also observed that the standard deviation (SD) of our SVM models’ prediction accuracy over
30 trials decreased as the size of the training dataset increased: from 0.12 with a training dataset size of
400 is 0.12, to 0.04 at a size of 4400 samples, with a maximum value of 0.63 and a minimum of 0.03
(Table 5). These results indicate that the reliability of the proposed model can be increased by enlarging
the training dataset, at least up to a point. As can be seen from Figure 5, which shows the relationship
between the predicted and target values of Sdy in the 11-building-characteristic case with a sample size
of 4400. From Table 6 and Figures 6 and 7, all the above discussions regarding the results of output Sdy
apply broadly to Say, Sdu, and Sau.
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Figure 5. Test results of 4400 training samples for spectral-yield displacement Sdy with 11
building characteristics.
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Figure 6. Model accuracy for spectral-yield displacement Say with 11 building characteristics.
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Figure 7. Test results of 4400 training samples for spectral-yield displacement Say with
11 building characteristics.

In the second case study, which used all 20 of the building characteristics in Table 2 as model
inputs, we also tested the influence of all 11 training-dataset sizes on prediction accuracy, again
running 30 trials for each training-dataset size using samples randomly selected from the NCREE’s
buildings. The Sdy output results are shown in Table 7 and Figure 8, where we can observe that the
average values of model accuracy A increase along with the size of the training dataset: from 0.64 at
400 samples, to 0.74 at 4400. In other words, when our selected 20 building characteristics are used
as the inputs, our SVM model can achieve an average accuracy of 64% in the prediction of buildings’
seismic vulnerability Sdy using a relatively small training dataset of 400, but its average accuracy
increased to 74% if the training-dataset size is increased to 4400: i.e., a 42% improvement over the
11-building-characteristic model with a dataset of the same (largest) size.
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Figure 8. Model accuracy for spectral-yield displacement Sdy with 20 building characteristics.
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Table 7. Model accuracy with testing 20 building characteristics for spectral-yield displacement Sdy.

Size of Training Dataset

400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

Max. 0.73 0.71 0.70 0.72 0.74 0.74 0.75 0.75 0.76 0.77 0.78
Min. 0.53 0.54 0.58 0.62 0.62 0.62 0.67 0.66 0.69 0.69 0.71

Average 0.64 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.74
SD 0.04 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

We again observed that the SD of model accuracy across the 30 trials decreased along with the size
of the training dataset: from 0.04 at 400 to 0.02 at 4400, as shown in Table 6. In contrast to the results
of the first case study, where the SDs for accuracy at sample sizes of 400 and 4400 were 0.12 and 0.04,
respectively, such SDs in the second case study were limited in range to between 0.04 and 0.02, and
converged at 0.02 if the size of the training dataset was greater than 1600 or more. These results indicate
that the proposed SVM model can achieve high reliability of accuracy if all 20 building characteristics
are used as its inputs, even using a relatively small training dataset of 400. Figure 9 illustrates the
relationship between the predicted and target results of Sdy in the 20-building-characteristic case with
a training dataset of 4400 and a model accuracy of 0.74. As compared with the equivalent figure for
the first case study (Figure 5), we can observe less dispersion of the predicted values, with more falling
within the tolerable bandwidth of the proposed model. All of our previous comments regarding the
results for output Sdy can also be applied to Say (as shown in Table 8 and Figures 10 and 11), as well as
to Sdu and Sau.
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Max. 0.70 0.67 0.70 0.69 0.70 0.72 0.71 0.73 0.73 0.72 0.73
Min. 0.39 0.53 0.57 0.59 0.60 0.61 0.62 0.64 0.64 0.64 0.66

Average 0.60 0.62 0.64 0.65 0.67 0.68 0.68 0.69 0.69 0.70 0.70
SD 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
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5. Discussion and Conclusions

The negative impact of an earthquake on a building is primarily conceptualized as a function of its
seismic vulnerability. This vulnerability is generally analyzed via computational simulation models of
seismic response, such as push-over analysis. Although push-over analysis can provide sophisticated
information about a building’s seismic vulnerability in terms of a capacity curve, it is time-consuming,
requiring an immense quantity and high quality of data on building characteristics; and precisely
because of this extraordinary level of detail, it must be repeated on a building-by-building basis
thousands of times when such computational analysis is applied at a regional scale. It was primarily
for this reason that the present study developed an SVM model for rapidly assessing buildings’ seismic
vulnerability at the macroscale, in terms of spectral yield and ultimate points of their capacity curves,
PY(Sdy, Say) and PU(Sdu, Sau).

In each of our two case studies, one with 11 and the other with 20 building characteristics,
11 different sizes of training dataset ranging from 400 to 4400 samples were tested. In the first case,
the results for output Sdy indicate that, with only 11 building characteristics as inputs, the proposed
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SVM model could only achieve 52% prediction accuracy, even at the largest size of training dataset.
In the second case study, taking the output Sdy as an example, model accuracy reached 64% with
a training-dataset size of just 400, and improved to 74% at a size of 4400; and parallel results were
obtained for Say, Sdu and Sau. Importantly, our results imply that high reliability of prediction accuracy
of the proposed model can be achieved if all 20 building characteristics are used as model inputs,
regardless the size of training dataset, at least within the 400–4400 range that we studied. Additionally,
comparing the first case study with the second case study, increasing training data can only slightly
improve the prediction accuracy of models in the first case study, while increasing training data can
significantly increase the prediction accuracy of models in the second case study, and such increasing
trend seems to be continuous as the training dataset becomes larger. Such results indicate that the SVM
model in the first case study could be underfitting, which means the number of building characteristics
are too less to obtain high prediction accuracy even with a large training dataset. On the other hand,
with more building characteristics, the prediction accuracy of the models in the second case study is
expected to be improved with more training data.

In short, the above case studies, and particularly the second one, confirm the effectiveness and
reliability of our proposed new data-mining technique (SVM) for rapid, regional-scale assessment
of buildings’ seismic vulnerability in terms of their capacity curves. Coupled with seismic-demand
curves, a seismic risk assessment of the buildings at a regional scale can also be done rapidly by
determining their performance points using their capacity curves obtained by our proposed SVM
model. As well as obviating the need to construct far more complex computational models for the
same purpose, our technique could readily be extended to regional-scale estimation of other natural
disaster risks to buildings, such as high winds and floods.
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