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Abstract: Multi-channel modelocked lasers and their design have attracted much attention.
Here, we use the Swift-Hohenberg equation to study dual-channel simultaneous modelocking
(DSML) in a fiber laser. When a quartic filter is added to the laser cavity, the stable dual-channel
simultaneous modelocking can be obtained for a given filter bandwidth when frequency separation,
ωs, is less than a calculated threshold, ωth. When ωs > ωth, a multipulsing instability occurs.
We use a linear stability analysis to determine the limit that the multi-pulsing instability imposes
on DSML, and we propose a cavity design that avoids the multi-pulsing instability.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Modelocked fiber lasers have a wide range of applications in many fields including metrology [1],
biomedical imaging [2], and communications [3]. During the last three decades, single channel
modelocked fiber lasers have been studied intensively both theoretically and experimentally [4–8].
Modelocking in fiber lasers is achieved by the interaction between dispersion, self-phase
modulation, and saturable absorption. Saturable absorption can be obtained by using a nonlinear
polarization rotation device [9–11] or a semiconductor saturable absorbing mirror [12, 13],
among other approaches.
Recent advances in areas like fiber optic sensing and optical computing have led to growing

interest in multi-channel modelocked laser sources [14–19]. These light sources can generate
pulses that are synchronously modelocked with different central wavelengths [9,11,13–16,20–22].
Multi-channel modelocking was initially realized by inserting a dual-channel filter inside the
laser cavity [23, 24]. The dual-channel filter suppresses all but a few longitudinal modes that
are not attenuated by the two frequency channels of the filter. The light that propagates in these
two filter channels interacts via four wave mixing and eventually becomes phase-locked as a
stable modelocked state is achieved. In the time domain, the modelocked waveform has a rapid
amplitude oscillation. This rapidly oscillating waveform is a pulse train with a high repetition
rate [14].
Starting from noise, multi-channel modelocking can be initiated by generating modelocked

pulses in a single channel first, and then increasing the pump power [13]. However, it has been
reported that a multi-pulsing instability can occur when the pump power increases [11, 22]. This
multi-pulsing instability inhibits multi-channel modelocking in lasers with multi-channel filters.
In this manuscript, we will investigate the requirement to avoid a multi-pulsing instability as the
pump power increases.
There have been computational studies of the multichannel modelocked laser dynamics in

which the evolution equations are solved using evolutionary methods in which one starts from
an initial condition and the time is then stepped in small increments [25]. This approach is
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computationally inefficient and can be ambiguous because it is always debatable how long the
propagation time should be. The computation time approaches infinity when the system is
marginally stable. An alternative approach based on dynamical system theory is to find the
modelocked solution using root-finding methods as the laser parameters vary and to determine
its linear stability using spectral methods. This dynamical approach is computationally efficient
and unambiguous [26–28]. Thus, it can be a powerful tool for laser design and optimization.
During the last few decades, single-channel modelocking has been intensively studied using

the Haus modelocking equation and its extensions [29–32]. Models that use coupled equations
have been proposed to investigate their dynamics [15,16,33]. In these models, the laser cavity
is described using a set of partial differential equations in which each equation represents the
light evolution inside a single filter channel. These models work well, but they do not include
the effect of four-wave mixing, which is important to overcome the gain competition among the
channels if a homogeneous gain medium is used [15, 16, 33].
A simple model that describes multi-channel modelocking and includes four-wave mixing is

the Swift-Hohenberg equation (SHE) [25, 34]. The SHE is an extension of the well-known Haus
modelocking equation [25,27, 34–38], which is one of the oldest and most widely-used models
for modelocked lasers. In this article, we extend the analysis in [34]. We study dual-channel
modelocking based on the SHE using both the evolutionary approach and the dynamical approach.

The remainder of this manuscript is organized as follows: In Sec. 2, we will present the SHE.
In Sec. 3 we will then obtain the stationary solutions that correspond to the modelocked pulses
and study their stability. We will show that when the frequency separation of the modelocked
channels increases, the real part of some eigenvalues in the continuous spectrum become positive,
leading to the multi-pulsing instability. We computationally study the requirements to achieve the
dual-channel simultaneously modelocking state in a fiber laser while avoiding the multi-pulsing
instability.

2. The Swift-Hohenberg equation

The Swift-Hohenberg equation [25, 35] can be written as

∂q
∂z
= −iφq − D1

∂q
∂t
+
g(|q |)

2
q − l

2
q +

i
2
∂2q
∂t2 + (i + δ) |q |

2 q − σ |q |4 q + α2
∂2q
∂t2 + α4

∂4q
∂t4 ,

(1)
where z is normalized to the cavity length Lc. The complex envelope q and the delayed time t
are normalized using

q = A(γLc)1/2, t = τ(|β2 |Lc)−1/2, (2)

in which A is the slowly varying field envelope, γ is the Kerr nonlinearity coefficient, τ is
the delayed physical time, and β2 is the group-velocity dispersion. Here, we use normalized
parameters in Eq. (1), in which the coefficients of the group velocity dispersion term and the
Kerr nonlinearity term are normalized to 1. The coefficient φ is the phase rotation per roundtrip
and D1 is the coefficient of the first-order chromatic dispersion. The value of φ is commonly set
to zero since it has no effect on the pulse evolution except to induce on overall phase rotation.
The value of D1 is similarly often set to zero since it can be removed by using retarded time in
which the group velocity motion is subtracted.

Mathematically, adding φ and D1 to the model allows one to obtain strictly stationary solutions,
which is convenient for the stability analysis [27]. Physically, the phase shift φ corresponds to
the modelocked pulse’s phase change in one roundtrip relative to the carrier frequency’s linear
phase rotation. The quantity D1 corresponds to the modelocked pulse’s normalized time shift in
one roundtrip relative to the linear time shift due to the group velocity motion.

We are modeling a laser with fast saturable absorption and slow saturable gain. The parameters
δ and σ are the coeffecients for the cubic and quintic terms, respectively, or the fast saturable

                                                                                                  Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14174 



1

0

1/e

1

T
(ω
)

ω

−ωs/2 0 ωs/2

ωb ωb

Ch-RCh-L

ωs

Fig. 1. The filter profile in the Fourier domain and the filter parameters.

absorption [27]. The gain g(|q |) is saturated by the average energy inside the cavity, so that

g(|q |) = g0

1 +
∫ TR
0 |q |

2dt

Esat


−1

, (3)

where g0 is the unsaturated gain, Esat is the saturation energy and TR is the roundtrip time.
In this paper, we consider a dual-channel intra-cavity filter, and we show an illustration of

its frequency profile in Fig. 1. The dual-channel filter’s transmission function can be written
as [25, 35]

T(ω) = exp
{
α4

[
ω2 − (ωs/2)2

]2}
, (4)

where ω is the normalized angular frequency that has been shifted so that the maxima of T(ω)
are symmetric about ω = 0, and ωs is the frequency offset of the transmission maxima. The
parameter ωs and α4 define the profile of the filter. We set α4 < 0 so that the filter transmission
has two maxima at ω = ±ωs/2. Throughout the paper, we refer to the filter channel at −ωs/2
as “Ch-L” and the channel at ωs/2 as “Ch-R.” For each filter channel, we define the channel
bandwidth ωb to be the positions where the filter transmission decreases to 1/e of its maximum,
as illustrated in Fig. 1. In Eq. (1), we set

α2 = −α4ω
2
s /8, (5)

in order for Eq. (1) to be consistent with Eq. (4). Similarly, we set the linear loss coefficient l as

l = lcavity + α4ω
4
s /16, (6)

where lcavity represents the background loss of the laser cavity, excluding the intra-cavity dual-
channel filter. In physical units, the corresponding angular frequency separation between Ch-L
and Ch-R can be calculated using

Ωs = (|β2 |Lc)−1/2ωs/2. (7)

3. Results and discussion

Using Eq. (1), we can find both single- and dual-channel modelocked states when we change the
cavity gain and the filter parameters. In this section, we study the modelocked states of Eq. (1) to
provide a background for the cavity design of a dual-channel modelocked fiber laser.
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3.1. Modelocked states

In this section, we find solutions of the SHE by solving Eqs. (1) and (3) using the split-step
Fourier method [36]. We list the parameters that we use in our computation in Table. 1. We set
the filter bandwidth ωb = 0.3 and the channel separation ωs = 1.20. Using Eqs. (4) and (5), we
obtain the corresponding values of α2 and α4. According to our normalization, these parameters
correspond to a physical filter bandwidth of about 100 GHz when the cavity length lcavity is 10 m
and β2 is −20 ps2/km, which are typical values for fiber lasers. We use an initial condition of
white Gaussian noise for q with zero mean and a variance nearly equal to 10−6. When we set
Esat = 0.50, the system evolves to the modelocked state that exists in Ch-L, as shown in Figs. 2(a)
and 2(b). However, we have observed that the same modelocked solution can also appear in Ch-R
instead, depending on the initial noise realization.

Table 1. Values of Parameters We Use in Validating the Experimental Results

Parameter g0 l δ σ ωs α2 α4

Value 6.9 9.43 0.4 0.4 1.20 23.76 −32.92

Fig. 2. The temporal profiles and the normalized Fourier spectra of stable modelocked states
that we obtain by evolving Eq. (1) when (a)(b) Esat = 0.50, and (c)(d) Esat = 1.00. The
parameters are ωs = 1.20 and ωb = 0.30 (α2 = 23.76 and α4 = −32.92).

If we increase the pump power, the single-channel modelocked pulse can evolve to a dual-
channel modelocked state. The action of increasing the pump power in experiments can be
modeled by increasing the value of g0 and/or Esat in Eq. (3). In this paper, we set Esat = 1.00,
which increases the cavity gain compared to the case shown in Figs. 2(a) and 2(b). We show the
new modelocked state in Figs. 2(c) and 2(d). In this case, the optical signal exists in both Ch-L
and Ch-R, as shown in Fig. 2(d). The phase difference between the signals in these two channels
are locked via four-wave mixing, which leads to a visible oscillation in the pulse’s amplitude in
the time domain. This oscillation occurs because the signals in the two filter channels propagate
with the same group velocity, but have different frequencies that beat with each other. This result
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agrees with the experimentally observed profiles of multichannel modelocking [14]. We refer to
this modelocked state as the dual-channel modelocked state. These laser sources can be used to
generate a high-repetition rate pulse train (or pulse packet) and can potentially be deployed in
wavelength-division multiplexed systems [14, 20].

The modulation period that we show in Fig. 2(c), which is referred to as the repetition rate of
the train of sub-pulses in [14], increases as the separation of the central frequencies of the filters
grows [14]. However, dual-channel modelocking ceases to occur when the frequency separation
becomes sufficiently large. In Fig. 3, we show the appearance of multipulsing when the pump
power increases. In this case, we increased the channel separation by setting ωs = 1.60, and we
observed that a multi-pulse state appears when Esat increases. We obtained two modelocked
pulses that have the same peak intensity of 0.13 and a pulse duration of 57.67, which both exist in
Ch-L. The multi-pulsing instability prevents the formation of a dual-channel modelocked state.
From the observation in Figs. 2 and 3, we infer that there exists a competition between the

dual-channel modelocked state and the multi-pulse state when the cavity gain increases. In the
next section, we will use the dynamical approach to find the requirement to avoid the multi-pulsing
instability and obtain the dual-channel modelocked state when the gain increases.

Fig. 3. The temporal profiles and the normalized Fourier spectra of modelocked states
that we obtain by solving Eq. (1) when Esat = 2.50. We set ωs = 1.60 and ωb = 0.30
(α2 = 23.04, α4 = −17.98).

3.2. Stability of the modelocked states

Here, we briefly describe the dynamical approach,

1. We first find the stationary solution, q0, as well as φ0, by solving a root-finding problem
computationally [27],

∂q0(t)
∂z

= 0. (8)

2. We linearize the system equation—in this case, Eq. (1)—around the stationary solution
[q0, φ0] that we obtained and we evaluate the dynamical spectrum of the linearized
operator [27, 39]. The dynamical spectrum includes all eigenvalues of the linearized
system.

3. The stationary solution is stable when no eigenvalues have a positive real part.
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When linearizing a system in which the complex conjugate explicitly appears, as is the case
for Eq. (1), we must extend the linearized system, treating the complex conjugate equation
independently [40]. For computational convenience, we write both the stationary solution and
the system as a combination of their real parts and imaginary parts,

q0(t) = R0(t) + iI0(t),
R(t, z) = R0(t) + ∆R(t, z),
I(t, z) = I0(t) + ∆I(t, z),

(9)

where R0 and I0 are the real and imaginary components of the stationary solution q0, while ∆R
and ∆I are the perturbations to R0 and I0.
In simulations, the time t is discretized as t1, t2, · · · , tN with an identical spacing of ∆t. The

computational time window Tw is chosen large enough to avoid any visible impact on plotted
results. We have doubled Tw and N and did not observe a visible change in our results. As an
example, the vector q0(t) becomes q0 = [q0(t1), q0(t2), · · · , q0(tN )]T .

We substitute Eq. (9) into Eq. (1) and Eq. (3), and we obtain

d
dz

[
∆R
∆I

]
= J

[
∆R
∆I

]
=

[
L11 L12

L21 L22

] [
∆R
∆I

]
, (10)

where J ∈ R2N×2N is the Jacobian matrix whose entries are defined as

L11 = −D1Dt + α2D2
t + α4D4

t +
g − l

2
I + g1R0RT

0 + PR,

L12 = φ0I − 1
2

D2
t + g1R0IT0 + PI,

L21 = −φ0I +
1
2

D2
t + g1I0RT

0 + QR,

L22 = −D1Dt + α2D2
t + α4D4

t +
g − l

2
I + g1I0IT0 + QI .

(11)

The operator Dm
t is the m-th order differential matrix which we obtain by using a spectral

differentiation scheme [27]. The gain is given by g = g(|q0 |), and the coefficient g1 is given by

g1 = −
g0[

1 + ∆t
(
RT

0 R0 + IT
0 I0

)
/Esat

]2
∆t
Esat

. (12)

The matrices PR, PI , QI , and QR are diagonal and are given by:

PR, j j = −2RjIj + δ(3R2
j + I2

j ) − σ[(R2
j + I2

j )2 + 4R2
j (R2

j + I2
j )2],

PI, j j = −(R2
j + 3I2

j ) + 2δRjIj − 4σRjIj(R2
j + I2

j ),
QR, j j = −(I2

j + 3R2
j ) + 2δRjIj − 4σRjIj(R2

j + I2
j ),

QI, j j = 2RjIj + δ(3I2
j + R2

j ) − σ[(R2
j + I2

j )2 + 4R2
j (R2

j + I2
j )2].

(13)

In Fig. 4, we show the dynamical spectrum of the single channel modelocked solution in
Figs. 2(a) and 2(b). The dynamical spectrum includes branches of continuous eigenvalues and
multiple discrete eigenvalues. As shown in Fig. 4, no eigenvalues have a positive real part, and
hence the stationary solution is stable. We observe that a pair of complex conjugate eigenvalues,
λd and λ∗d, are visible near the imaginary axis.

When we increase Esat from 0.50 to 1.00, we find that the single-channel modelocked solution
continues to exist but becomes unstable, as indicated by the dynamical spectrum that we show
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Fig. 4. The dynamical spectrum of J when Esat = 0.5, α2 = 23.76, and α4 = −32.92,
corresponding to the single-channel modelocked solution that we show in Figs. 2(a) and
2(b).

Fig. 5. The dynamical spectrum of J (for the single-channel modelocked solution) when
Esat = 1.00, α2 = 23.76, and α4 = −32.92.

in Fig. 5. The real parts of the complex conjugate pair λd and λ∗d becomes positive, which
corresponds to a Hopf bifurcation [27, 41].
In Fig. 6, we show the evolution of the unstable single channel modelocked solution when

Esat = 1.00. As our initial condition, we use the single channel modelocked pulse when Esat = 0.5,
that we showed in Figs. 2(a) and 2(b). In the Fourier domain, we find that the optical energy
in Ch-R increases, and eventually a new modelocked pulse forms. In the time domain, we
observe a dual-channel modelocked state with a rapidly modulated amplitude. The dual-channel
modelocked state that ultimately appears in Fig. 6 is identical to the state that we showed in
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Fig. 2(c).

Fig. 6. Transients evolution from single pulse modelocking to dual-channel simultaneous
modelocking in (a) the time and (b) the frequency domains.

However, as we have shown in Figs. 3(a) and 3(b), the dual-channel modelocked state is
not observed when the channel separation, ωs, becomes sufficiently large. Here, we consider
the same set of parameters that are used in Fig. 3 (Esat = 2.5, α2 = 23.04, and α4 = −17.98),
corresponding to a filter channel separation of ωs = 1.60. By solving a root-finding problem, we
obtain a single-channel modelocked stationary solution for these parameters, and we show its
dynamical spectrum in Fig. 7. We observe that a portion of the continuous spectrum has positive
real parts, which indicates that the single-channel stationary solution that we find is unstable.

Fig. 7. The dynamical spectrum of the single channel modelocked pulse when Esat = 2.5.
The filter parameters are α2 = 23.04, α4 = −17.98. The continuous spectrum crosses
the imaginary axis, which indicates that a small perturbation that is separated from the
modelocked pulse experiences net gain.

The continuous spectrum represents the case where q(t) ≈ 0. We can write the Jacobian J in
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the Fourier domain as

J =


iD1ω − α2ω

2 + α4ω
4 +

g − l
2

φ +
ω2

2
−φ − ω

2

2
iD1ω − α2ω

2 + α4ω
4 +

g − l
2

 , (14)

so that the eigenvalue λ can be written as

λ(ω) = g − l
2
− α2ω

2 + α4ω
4 + iD1ω ± i

(
φ +

ω2

2

)
. (15)

The largest real parts of λ(ω) appears when ω = ±ωs/2. Hence, the stability condition is

max[Re(λ)] = max

[
g − lcavity

2
+ α4

(
ω2 − ω

2
s

4

)2]
=

g − lcavity

2
< 0 (16)

In order for the modelocked pulse to be stable, it follows that a small perturbation away from
the modelocked pulse must experiences net loss. This result is consistent with prior work on
multiple pulse modelocking dynamics [29,42–46]. Physically, the single channel modelocked
pulse experiences the loss from the filter. When the pump power increases, the peak power
of a modelocked pulse increases, and its Fourier spectrum is broadened due to the nonlinear
Kerr effect, which then leads to a higher loss from the filter. However, the small signal is not
affected by the filter and thus experiences an increased gain, which can grow up and become a
modelocked pulse. Alternatively, changing other parameters will also lead to multi-pulsing, for
example the group velocity dispersion [29], or saturable absorption [32], as they may lead to a
small signal gain that exceeds the loss. In Fig. 8, we use the evolution approach to show this
behavior in both the time domain and the frequency domain.

Fig. 8. Transition of a single-channel modelocked state to a multi-pulsing state (a) in the
time and (b) in the frequency domain. We set Esat = 2.5. In the time domain, a new pulse
appears, which leads to a rapid modulation in the frequency domain.

For a given filter channel bandwidth ωb, increasing the pump power can destablize the
single-channel modelocked state. The frequency separation of the filter channels, ωs, determines
whether the system evolves to a dual-channel modelocked state or a multi-pulsing state. When
ωs is sufficiently small, the single-channel modelocking can evolve to dual-channel modelocked
state. When ωs becomes sufficiently large and the cavity gain increases, the continuous spectrum
has positive real parts, and the multi-pulsing instability occurs. In our model, we find that the
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threshold that divides the two states is ωs = 1.54, which, in physical units, corresponds to a
threshold,

|Ωs | > 1.54(β2Lc)−0.5. (17)

For example, when the group-velocity dispersion is−20 ps2/km and the cavity length is Lc = 10m,
we can obtain a dual-channel simultaneous modelocked state when the separation of the two filter
channels is less than 548 GHz.

4. Conclusions

Using the Swift-Hohenberg equation with a dual-channel filter, we study how to obtain a dual-
channel modelocked state in a fiber laser. Depending on the cavity gain and the filter parameters,
we can find single-channel modelocked states, dual-channel modelocked states, and multi-pulsing
states. A single-channel modelocked state can evolve to a dual-channel modelocked state when
the pump power increases. We obtain either a dual-channel modelocked state or a multi-pulse
state, depending on the system parameters. Using the dynamical approach, we find that when
the frequency separation of the filter channels is above a calculated threshold, the continuous
eigenvalues become positive and lead to the multi-pulse instability. To obtain a dual-channel
modelocked state, the frequency separation of the filter channels must be below the calculated
threshold. The dynamical approach in this paper only applies to the Swift-Hohenberg equation.
However, we can use it to any system of equations.
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