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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

This study proposes a conceptual framework for the real-time monitoring and diagnostic system for the optimal operation of 
smart building, focusing on the energy-efficient, occupant-oriented, and comfortable indoor environment. The proposed 
framework aims to improve the energy efficiency in a room of building while achieving the healthy and comfortable indoor 
environmental quality and occupants’ satisfaction. The proposed framework consists of a three-phase cyclic process (i.e. 
monitoring, diagnostic, and intervention), and it can be simply replicated and extensively applied to the different levels of 
physical entities (spatial scalability) in the different time resolutions in the whole life cycle processes (temporal scalability). To 
elaborate the feasibility of the proposed framework, the Hotel ICON in Hong Kong are chosen as a case study. For three rooms in 
the Hotel ICON, several sensors are installed for monitoring the energy efficiency and indoor environmental quality in real time. 
With the collected dataset, it is planned to carry out the diagnostic process (e.g. anomaly detection, time-series analysis, and 
occupancy schedule pattern analysis) and the intervention process (e.g. automatic control, occupant behaviour change, and 
optimal operation). The conceptual framework provides a standardized and systematic research approach toward a big picture of 
an intelligent building systems for the energy-efficient, occupant-oriented, and comfortable indoor environment. 
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1. Introduction 

As an imperative issue to be settled, a global warming has been the major target in the United Nations Framework 
Convention on Climate Change (UNFCCC). The Chinese government has proposed that the CO2 emission per unit 
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of gross domestic product (GDP) in 2030 will be reduced by 60-65% from that in 2005 [1]. Since the building 
energy consumption makes up a proportion of 30% of the global energy consumption [2], there exists the large 
amount of energy conservation potential in the building sector. The Hong Kong Green Building Council (HKGBC) 
has launched the "HK3030" campaign so as to reduce the absolute building electricity consumption in 2030 by 30% 
from that in 2005. Meanwhile, occupants spend 80–90% of their time inside buildings [3]; and thus, the indoor 
environmental quality (IEQ) plays a vital role on occupants’ health, satisfaction and working productivity. In this 
regard, it is a tough mission to maintain the satisfied IEQ while reducing energy consumption in buildings [4].  

The innovative technologies such as nonintrusive monitoring (NILM) technique, information and communication 
technologies (ICTs), and computing technologies have been rapidly developed. Even if many studies tried to 
improve energy efficiency, IEQ and occupant satisfaction by implementing the real-time sensor network [5-17], they 
have focused on one-side aspect and have lack of generality. Therefore, it is necessary to develop the novel approach 
to simultaneously take into account energy efficiency, IEQ and occupant satisfaction, in which the logical process of 
identification-analysis-solution should be proposed. 

To overcome these challenges, this study aims to develop a conceptual framework for the real-time monitoring 
and diagnostic system for the optimal operation of smart building, focusing on the energy-efficient, occupant-
oriented, and comfortable indoor environment. The proposed framework includes a modularized research unit that 
can be applied to the different levels of physical entities (spatial scalability) in the different time resolutions in the 
whole life cycle processes (temporal scalability). The Hotel ICON in Hong Kong are chosen as a case study in order 
to elaborate the feasibility of the proposed framework. 

2. Conceptual framework for the real-time monitoring and diagnostic system for the optimal operation of 
smart building 

According to the Intelligent Planning Unit (IPU) theory [18-19], the proposed framework is expected to achieve 
the goal of energy saving, IEQ improvement and occupant satisfaction in a strategic manner (i.e. spatial-temporal 
scalability). As shown in Figure 1, the proposed framework can be explained in two parts: (i) research unit and (ii) 
research process (i.e. three-phase cyclic process; monitoring-diagnostic-intervention). 

2.1. Research unit 

As mentioned above, it is required to consider the energy efficiency, IEQ improvement, and occupant satisfaction 
within the same context. Using real-time sensors, it is possible to collect the real-time bigdata for energy efficiency 
and IEQ, which can be centralized to the cloud server via the Internet of Things (IoT) technology. The bigdata can 
be analyzed via data mining techniques (i.e. artificial intelligence (AI) and machine learning). Occupant satisfaction 
can be measured by subjective judgment (i.e. questionnaire survey). As for the virtual reality (VR) and augmented 
reality (AR) techniques, they can be used for the investigation on influential factors of occupant satisfaction. 

2.2. Three-phase cyclic process 

With the concept of the "dynamic approach" [20], the three-phase cyclic process (i.e. monitoring-diagnostic-
intervention, refer to Figure 2) can be applied to the energy efficiency, IEQ improvement and occupant satisfaction. 

First, in the monitoring phase, the real-time sensor network (i.e. objective field measurement) can be used to 
collect the information on the building performance (i.e. energy efficiency and IEQ improvement). In addition, the 
questionnaire survey (i.e. subjective approach) can be used to collect the information on the occupant satisfaction. 
Based on the collected bigdata, the potential problems in buildings can be intuitively and systematically identified, 
and they can be used in the following phases of diagnostic and intervention. 

Second, in the diagnostic phase, the problems identified in the monitoring phase will be analyzed in detail via 
data mining techniques (e.g. case-based reasoning, artificial neural network, support vector machine) and statistical 
analysis (e.g. time-series analysis, regression analysis). After diagnosing the "disease" included in buildings that 
could be obstacles to achieve the energy efficiency, IEQ improvement, and occupant satisfaction, the proper 
"remedy" can be applied in the intervention phase. The research items can be explained in details as follows. 
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Figure 1. The conceptual framework of the real-time monitoring and diagnostic system for the optimal operation of smart building 

 Anomaly Detection. It can be used to detect the inconsistent operational mode of electric appliances or indoor 
environmental indicators (i.e. out of the prescribed range in guidance note [21]), which can occur by deteriorating 
appliance and occupant behavior error. Pattern recognition techniques (e.g., K-means clustering algorithm), 
machine learning techniques (e.g., artificial neural network algorithm), and outlier detection method (e.g., 
generalized extreme studentized deviate algorithm) can be used to detect anomalous condition. 

 Time-Series Analysis. It can be used to estimate the future energy consumption and indoor environmental 
indicators. This can be conducted with a certain time period of dataset, including energy consumption, indoor 
environmental indicators, and the influential factors (e.g., indoor air temperature and outdoor air temperature). 
Significance test (e.g., t-test and Analysis of Variance (ANOVA)), linear prediction model (e.g., Autoregressive 
Integrated Moving Average Model (ARIMA)), and nonlinear prediction model (e.g., advanced case-based 
reasoning) can be used, or hybrid model (e.g. ARIMA and advanced case-based reasoning) can be developed. 

 Occupant Schedule Pattern Analysis. Some behavior patterns can be identified by taking into account of proxy 
indicators. For example, the variation of indoor temperature and CO2 concentration can be used to determine the 
on/off condition of HVAC system and occupancy condition of a room, respectively. For the confidential issue, it 
is not allowed to monitor the occupant behavior directly by cameras or motion sensors on a large scale and for a 
long time. Under such circumstances, indirect indicators (e.g. CO2 concentration) that correlate with occupant 
motions [9, 10] can be used to predict behavior patterns by pattern analysis and machine learning techniques. 
Third, in the intervention phase, the optimal control strategy can be developed and validated by agent-based 

modelling, machine learning and optimization techniques. The potential research items are as follows. 
 Automatic Control. On the one hand, the operational schedule of electric appliances to shift peak load can be 

determined by Active Demand-Side Management (ADSM) system rather than occupants’ direct control. On the 
other hand, depending on the practical requirement level or the minimum satisfaction level for IEQ indicators, the 
automatic controllers (e.g. thermostat and humidistat) can be implemented to adjust the indoor environment 
quality in real time, which can save the unconscious amount of energy consumption. 

 Occupant Behavior Change. The optimal operations of electric appliances can be managed by machine learning 
algorithm and optimization algorithm (e.g. genetic algorithm) to shift the peak load. With the intuitive index (e.g. 
operational rating) set in the previous two stages (i.e., monitoring and diagnostic), the logical feedback process 
can be used to help occupants to change their behavior in an easier and more efficient way. 

3. Spatial-Temporal Scalability 

The proposed conceptual framework is expected to be extensively used for the specific purpose and functions on 
its own unit or by cooperating with other similar units. In addition, it can be simply replicated at the different levels 
of physical entities (spatial scalability) in the different time resolutions in the whole life cycle processes (temporal 
scalability), namely spatial-temporal scalability. 
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Figure 2. Three-phase cyclic process of the proposed framework 

For the spatial scalability (refer to Figure 3), a research unit can be scaled up from room-scale to world-scale, in 
order to save energy while improve indoor environmental quality for occupant satisfaction. In this process, the 
emerging techniques like IOT can contribute to acquiring the sufficient measurement and the relevant 
comprehensive knowledge from a holistic view. 

For the temporal scalability, the real-time data can be collected and aggregated within a certain interval (e.g. 1 
minute and 15 minutes). However, it is not always true that the more accurate and useful results can be obtained 
with the higher time resolution because of the outliers and overfitting problem. In this regard, the time resolution 
needs to be considered in accordance with the project characteristics. 

4. Case study 

To illustrate the feasibility of the proposed framework, Hotel ICON in Hong Kong was selected as a case study, 
of which three tomorrow guestrooms were used for the real-time data collection (i.e. energy and environment). 

4.1. Real-time data collection 

The real-time data on electricity consumption and indoor environmental indicators were collected from April 
through May in 2018. The electricity consumption was measured by EnerTalk sensors in 15-minute interval. Apart 
from the overall electricity consumption of each room, the electricity consumption from individual appliances (i.e., 
television, refrigerator, fan-coil unit (FCU), guest room lighting, bathroom lighting and emergency lighting) were 
also measured. The indoor environmental indicators, including temperature, relative humidity, CO2 concentration, 
chemical concentration, and dust concentration, were measured by Awair sensors in 15-minute interval. Considering 
that the real-time data were collected from a single guestroom, each of guestrooms can be defined as a research unit. 
In this regard, the following sections also focused on a single guestroom, and a room 1014 was used as an example. 

 
Figure 3. The spatial scalability of the proposed framework 
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Figure 4. The clustering performance evaluation of different number of clusters by DBI 

4.2. Operation pattern analysis for FCU 

The component of power consumption in FCU is fan. The amount of energy in FCU depends on the different fan 
speeds. In general, FCU is operated in four levels of fan speeds (i.e. high, middle, low and stop), and it can be 
controlled both automatically and manually: (i) it can be controlled centrally by the building energy management 
system (BEMS); and (ii) it can be controlled via control panel in each room by occupant’s preference. Considering 
the privacy issue, it is hard to directly obtain the operation pattern of FCU (i.e. fan speed of FCU). Thus, the 
unsupervised learning method was applied to estimate the operation pattern of FCU. 

The k-means clustering method, which is one of the widely used unsupervised learning methods [22-24], was 
conducted to classify the 15-minute energy consumption patterns of FCU in room 1014 so that the operation pattern 
of FCU could be estimated. The Davies-Bouldin Index (DBI) was used to evaluate the clustering performance, in 
which the lower DBI value represented the better clustering performance. In this regard, the number of clusters was 
determined by identifying the lowest value of the DBI. For the clustering and DBI calculation, this study used 
RapidMiner Studio Version 8.2. Figure 4 shows the DBI with different number of clusters, and the lowest value of 
the DBI corresponded to the number of clusters (i.e. four clusters). 

As a result, the 15-minute energy consumption patterns of FCU in room 1014 were divided into four clusters, and 
the detailed values of each cluster are shown in Table 1. The four clusters were considerably matched to the general 
operation status of FCU (i.e. high, middle, low and stop), and these four clusters were quite evenly distributed. It 
indicated that the guests or BEMS in 1014 were likely to control the fan speed of FCU in four levels. 

Meanwhile, it can be said that the FCUs in other rooms have been properly operated in four normal status. 
Instead, it is possible that the FCUs in other rooms have been only operated in part of speed levels due to the 
individual preference of guests or the malfunction of FCU and BEMS. In this regard, the operation pattern analysis 
for FCU needs to be conducted to other two rooms (i.e. room 1015 and 1016) so as to check the working conditions. 

Table 1. Clustering results in room 1014 

Status 15-minute energy consumption Number Ratio (%) 

Stop 0.74 1576 37.31 

Low 7.06 776 18.37 

Middle 16.55 951 22.51 

High 22.4 921 21.80 

5. Conclusion 

This study aims to develop a conceptual framework for the real-time monitoring and diagnostic system for the 
optimal operation of smart building, in which the three-phase cyclic process are well defined with the concept of the 
spatial-temporal scalability. In the spatial aspect, it can cooperate with other units in the identical structure and it can 
be extended to the broader level. In the temporal aspect, it can be applied in the whole life cycle processes with the 
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appropriate time resolution. The conceptual framework is applied to the Hotel ICON in Hong Kong to show its 
feasibility (operation pattern analysis for FCU anomaly detection). The proposed framework is a well-defined 
concept that can realize a big picture of an intelligent building systems for the energy-efficient, occupant-oriented, 
and comfortable indoor environment. 
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