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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Electric vehicle (EV) as one of the most promising solutions to reduce the greenhouse emission is developing faster than ever. 
With the increasing number of EVs, the additional load will cause technical issues on the existing distribution network. To cope 
with possible challenges, the reasonable prediction of EV load profile is fundamental to the evaluation of how the distribution 
network responds to the potential increasing EV penetration. This paper investigates the critical issues that EVs bring into the 
network at various penetration levels considering the uncertainties due to stochastic charging and discharging behaviour. To deal 
with these uncertainties, a Monte Carlo based simulation method is utilised to create EV charging and discharging profiles. Three 
scenarios are proposed and their impacts on a real UK distribution network are analysed by the simulation in OpenDSS and 
MATLAB. The simulation results imply that EV charging process has the negative effect in regard to thermal stress, voltage 
drop, system efficiency and power factor of the network. Conclusions are drawn to provide the guidance for the upgrading and 
reinforcement of the existing network assets. 
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1. Introduction 

 Personal vehicles are blamed for the emissions that cause air pollution in the urban areas. The transport sector is 
facing a serious challenge on its sustainable development path than ever. In the past few years, interests in electric 
vehicle (EV) has been motivated by the carbon emissions savings. The increasing number of EVs connected to the 
grid would bring both negative and positive impact on the existing energy systems. The rising power demand due to 
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the large penetration of EV could provide an effective approach to consume the electricity generated by the 
renewable energy sources (RESs) which will stimulate the large integration of renewable energy. Nevertheless, the 
localised distributed network will be more vulnerable in the front of large number of EVs as they are mainly 
connected to the local residential areas where the networks are sometimes heavily loaded.  

To cope with possible challenges and realise the optimal planning of distribution network with large penetration 
of EV, understanding their charging and discharging behaviour is the primary task. From the distribution planning 
perspective, EV can be characterized as a flexible and stochastic load that changes spatially and temporally across 
the power grid [1]. As the deployment of the EV is still in the early development stage, it is hard to obtain 
comprehensive historical data of electric vehicles, such as daily travel distance and the charging duration. Besides, 
EV charging demand is highly dependent on the owners’ habits and influenced by several random factors. 
Uncertainties should be dealt with carefully when establish the EV charging model.  

In this paper, a comprehensive probabilistic model considering the EV random impact factors is created. Three 
charging scenarios which cover the most typical scenarios, including peak charging, off-peak charging and V2G 
charging are proposed to predict the charging and discharging profiles. Then the case studies on a real UK 
distribution network will be carried out to assess the impact on the distribution network. Results can be used to 
provide the guidance for the future EV integration planning and optimisation. It should be noted although EV 
profiles in the paper are established on the basis of several assumptions, the method implemented and the analysis 
carried out below are applicable to other cases. 

2. Determination of Critical Impact Factors 

 For simplicity, all-electric vehicle，which is capable to complete a significant percentage of trips electrically 
and can be easily accepted by the market, is chosen as the electric vehicle type in this paper. EV is referred to all-
electric EV hereinafter. For owner’s convenience, home charging will be the most common charging venue in the 
future. Therefore, it is assumed that EV charging solely occurs in EV owner's residence. Only single-phase EV 
connection is considered in the paper. EV power factor is set to 0.98 inductive. 

2.1. EV battery type and capacity 

 Lithium-ion is selected as it has a much longer lifetime and is capable of more charging cycles, which has been 
mainly applied to EV battery currently [2]. Since the behavior of the all-electric vehicle is studied and it is assumed 
that charging solely occur in the user's home above, three representative all-electric vehicle models of city cars that 
are currently on sale in the market are chosen for the typical EV load profile creation. They are Peugeot ION 
(16.5kWh), Volkswagen GOLF (26.5kWh) and Nissan LEAF (25kWh). As it is hard to predict the market share of 
each model, the battery capacity is randomly selected within three values in each iteration of the simulation. 

 
2.2. EV charging rate and energy efficiency  

IEC 61581-1 standard defines three types of AC charging modes according to the rated charging voltage and 
current level. Slow charging mode is adopted in both domestic and public charging infrastructures, while both fast 
charging and rapid charging are only found in the public charging points which can provide much higher charging 
current [3]. Considering the real scenarios, it is more likely that the first users of EVs would be those who can 
charge at home or during the work with relatively longer charging time. Hence, slow charging mode is chosen to 
establish EV profiles. The average power demand of 3.5 kW, which is assigned to a typical EV power level in slow 
charging mode, is donated to the following model creation. Around 80% of the energy stored in the EV battery can 
be used to drive the wheels [4], which is the set value for charging efficiency in the following calculation. 

2.3. Daily driving distance  

To create a probabilistic model that reflects the most likely behaviour of the EV load profile, the general pattern 
related to the mobility behaviour of the normal vehicles which is extracted from long-term traffic habits is relatively 
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1. Introduction 

 Personal vehicles are blamed for the emissions that cause air pollution in the urban areas. The transport sector is 
facing a serious challenge on its sustainable development path than ever. In the past few years, interests in electric 
vehicle (EV) has been motivated by the carbon emissions savings. The increasing number of EVs connected to the 
grid would bring both negative and positive impact on the existing energy systems. The rising power demand due to 
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the large penetration of EV could provide an effective approach to consume the electricity generated by the 
renewable energy sources (RESs) which will stimulate the large integration of renewable energy. Nevertheless, the 
localised distributed network will be more vulnerable in the front of large number of EVs as they are mainly 
connected to the local residential areas where the networks are sometimes heavily loaded.  

To cope with possible challenges and realise the optimal planning of distribution network with large penetration 
of EV, understanding their charging and discharging behaviour is the primary task. From the distribution planning 
perspective, EV can be characterized as a flexible and stochastic load that changes spatially and temporally across 
the power grid [1]. As the deployment of the EV is still in the early development stage, it is hard to obtain 
comprehensive historical data of electric vehicles, such as daily travel distance and the charging duration. Besides, 
EV charging demand is highly dependent on the owners’ habits and influenced by several random factors. 
Uncertainties should be dealt with carefully when establish the EV charging model.  

In this paper, a comprehensive probabilistic model considering the EV random impact factors is created. Three 
charging scenarios which cover the most typical scenarios, including peak charging, off-peak charging and V2G 
charging are proposed to predict the charging and discharging profiles. Then the case studies on a real UK 
distribution network will be carried out to assess the impact on the distribution network. Results can be used to 
provide the guidance for the future EV integration planning and optimisation. It should be noted although EV 
profiles in the paper are established on the basis of several assumptions, the method implemented and the analysis 
carried out below are applicable to other cases. 

2. Determination of Critical Impact Factors 

 For simplicity, all-electric vehicle，which is capable to complete a significant percentage of trips electrically 
and can be easily accepted by the market, is chosen as the electric vehicle type in this paper. EV is referred to all-
electric EV hereinafter. For owner’s convenience, home charging will be the most common charging venue in the 
future. Therefore, it is assumed that EV charging solely occurs in EV owner's residence. Only single-phase EV 
connection is considered in the paper. EV power factor is set to 0.98 inductive. 

2.1. EV battery type and capacity 

 Lithium-ion is selected as it has a much longer lifetime and is capable of more charging cycles, which has been 
mainly applied to EV battery currently [2]. Since the behavior of the all-electric vehicle is studied and it is assumed 
that charging solely occur in the user's home above, three representative all-electric vehicle models of city cars that 
are currently on sale in the market are chosen for the typical EV load profile creation. They are Peugeot ION 
(16.5kWh), Volkswagen GOLF (26.5kWh) and Nissan LEAF (25kWh). As it is hard to predict the market share of 
each model, the battery capacity is randomly selected within three values in each iteration of the simulation. 

 
2.2. EV charging rate and energy efficiency  

IEC 61581-1 standard defines three types of AC charging modes according to the rated charging voltage and 
current level. Slow charging mode is adopted in both domestic and public charging infrastructures, while both fast 
charging and rapid charging are only found in the public charging points which can provide much higher charging 
current [3]. Considering the real scenarios, it is more likely that the first users of EVs would be those who can 
charge at home or during the work with relatively longer charging time. Hence, slow charging mode is chosen to 
establish EV profiles. The average power demand of 3.5 kW, which is assigned to a typical EV power level in slow 
charging mode, is donated to the following model creation. Around 80% of the energy stored in the EV battery can 
be used to drive the wheels [4], which is the set value for charging efficiency in the following calculation. 

2.3. Daily driving distance  

To create a probabilistic model that reflects the most likely behaviour of the EV load profile, the general pattern 
related to the mobility behaviour of the normal vehicles which is extracted from long-term traffic habits is relatively 
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more convincible [5]. A probability density function of daily driving distance generated from travel survey data in 
[6] is selected to use, as shown in equation (1), where μ=3.7, σ= 0.92. Figure 1 plots its probability distribution 
curve. 

                  2 2
(1 2 ) exp[ (ln ) 2 ]d d df       (1)                                                                                           (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4. State of charge (SoC) and required charge/discharge duration 

Initial and final SoC are important variables to describe the percentage of charge remaining in the EV battery 
before it is recharged and discharged respectively [7]. The linear relationship between SoC and travel distance is 
shown in equation (2), where d is the daily driving distance and R is the maximum driving duration when an EV is 
fully charged. To simplify the following analysis, R is assumed as 100km so that d≦80km based on 80% EV battery 
efficiency mentioned before. From equation (1) and (2), probability density function of SoC is derived as equation 
(3). Accordingly, probability distribution of SOC can be plotted which is shown in figure 2. Following it, SoC can 
be randomly sampled and then allocated to every single charging behaviour through Monte Carlo method. 
                      1 /SoC d R                                                                                                                                 (2) 
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Required charging energy for an EV is determined by initial SoC and battery capacity C (kWh). Considering the 
energy conversion efficiency 80% proposed previously, required charging duration Tcharge to refill the battery to the 
full capacity can be calculated by equation (4), where P is the charging power level.  
 arg arg (1 ) / (0.8 )/ch e ch eT E P C SoC P                                                                              (4)                             

Similarly, required charging duration Tdischarge is calculated by  

                       arg arg ) / ( 0.8 )/ (disch e disch eT E P C SoC P                                                                              (5)                               

3. Simulation Methodology  

Based on the content above, the flow chart of EV profile establishment approach via MATLAB is illustrated in 
figure 3. A pool with 1000 EV load profiles can be created by 1000 times iterations. OpenDSS is introduced to 
assess the EV impact on the distribution network. A flow chart mapping out the working interaction between 
OpenDSS and MATLAB is shown in figure 4. The procedure to carry out the impact assessment of the EV load 
profile consists following steps, where EV penetration level and the total number of customers are P% and N 
respectively, M=P*N is the number of customers who own an EV in the network: 
 M of EV profiles are randomly selected from the pool consisting 1000 EV load profiles in MATLAB.  
 Selected EV load profiles are added and randomly allocated to M customers in LOAD file in OpenDSS.  
 Driven by MATLAB, the time-series power flow with 1-min resolution is executed in OpenDSS.  
 The electrical quantities revealed in power flow results, including voltage, power consumption, power losses, 

Fig. 1. probability distribution of daily driving distance Fig. 2. probability distribution of state of charge 
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power factor and system efficiency are obtained in MATLAB for the impact assessment. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
In the following, three charging scenarios will be proposed. The starting charging time within a day has a notable 

effect on the resulting load demand profile. To simplify the analysis and meanwhile to cope with the uncertainties, 
the start charging time is randomly selected within a certain time scope in the simulation for each proposed scenario. 
The average profiles of 100 electric vehicles under three charging scenarios are illustrated in figure 5(a)-(c).  

Uncontrolled Charging: It is assumed the charging starts as soon as the drivers arrive home from work without 
consideration of the electricity tariff. Start charging time is regarded as vehicle arrival time (4 pm to 8 pm.) 

Fig. 3. Flow chart of EV profile creation in MATLAB 

Fig. 4. Workflow of OpenDSS and MATLAB 
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extracted from travel survey in [8]. This scenario represents the worst case where no incentive to motivate the EV 
owner to charge their cars in the off-peak time.  

Economy 7 Charging: Electricity price is one of the factors that determine when customers would charge their 
cars. Economy 7 is a differential electricity tariff scheme offering cheaper off-peak electricity for 7 hours during the 
night in the UK [9]. Therefore, a desirable charging strategy which could be encouraged by lower off-peak 
electricity prices is proposed based on this tariff. From the perspective of EV owner, the objective of off-peak 
charging is to minimize the charging cost. In the simulation, it is assumed that the charging starts at a certain time 
between 11 pm and 2 am and can be lasted for the whole night. Such charging strategy could favour an effective 
utilization of electricity as EVs can be charged during the night off-peak periods.  

V2G Discharging & Charging: With the development of V2G technology, it is possible that EV could flexibly 
play the role of energy storage source. Therefore, V2G discharging strategy is proposed to simulate an ideal case 
that under large EV penetration, the excess electrical energy in the EV battery can be resent to the grid to support the 
peak demand. Specifically, it is assumed that EV users could discharge their EVs to the grid during the evening peak 
between 5 pm to 8 pm so that the load peak can be clipped. As the main incentive, they can earn the payback from 
the electricity they sell. However, the battery degradation is a concern that must be considered in the real life.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To truly demonstrate the statistical distribution of EV charging and discharging data from 1000 times of 

simulations, boxplots are generated by MATLAB, which are shown in figure 6 (a)-(c). Each box represents a cluster 
of charging data in each hour within a day. Red lines in the boxes represent the median charging power demand in 
each time slot. Upper and lower whisker of each box reflect the minimum and maximum power in the specific hour. 
Wrong data in each slot are displayed as +. By comparing the histogram and boxplot under the same strategy, it is 
noticeable that they have a similar pattern. Therefore, it can verify that most of the data randomly generated by 
Monte Carlo simulation to create the average profiles fall in the reliable range. However, it should be noted the 
model created in this paper results relatively higher EV demand as it is assumed that all EV users charge their 
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extracted from travel survey in [8]. This scenario represents the worst case where no incentive to motivate the EV 
owner to charge their cars in the off-peak time.  

Economy 7 Charging: Electricity price is one of the factors that determine when customers would charge their 
cars. Economy 7 is a differential electricity tariff scheme offering cheaper off-peak electricity for 7 hours during the 
night in the UK [9]. Therefore, a desirable charging strategy which could be encouraged by lower off-peak 
electricity prices is proposed based on this tariff. From the perspective of EV owner, the objective of off-peak 
charging is to minimize the charging cost. In the simulation, it is assumed that the charging starts at a certain time 
between 11 pm and 2 am and can be lasted for the whole night. Such charging strategy could favour an effective 
utilization of electricity as EVs can be charged during the night off-peak periods.  

V2G Discharging & Charging: With the development of V2G technology, it is possible that EV could flexibly 
play the role of energy storage source. Therefore, V2G discharging strategy is proposed to simulate an ideal case 
that under large EV penetration, the excess electrical energy in the EV battery can be resent to the grid to support the 
peak demand. Specifically, it is assumed that EV users could discharge their EVs to the grid during the evening peak 
between 5 pm to 8 pm so that the load peak can be clipped. As the main incentive, they can earn the payback from 
the electricity they sell. However, the battery degradation is a concern that must be considered in the real life.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To truly demonstrate the statistical distribution of EV charging and discharging data from 1000 times of 

simulations, boxplots are generated by MATLAB, which are shown in figure 6 (a)-(c). Each box represents a cluster 
of charging data in each hour within a day. Red lines in the boxes represent the median charging power demand in 
each time slot. Upper and lower whisker of each box reflect the minimum and maximum power in the specific hour. 
Wrong data in each slot are displayed as +. By comparing the histogram and boxplot under the same strategy, it is 
noticeable that they have a similar pattern. Therefore, it can verify that most of the data randomly generated by 
Monte Carlo simulation to create the average profiles fall in the reliable range. However, it should be noted the 
model created in this paper results relatively higher EV demand as it is assumed that all EV users charge their 
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extracted from travel survey in [8]. This scenario represents the worst case where no incentive to motivate the EV 
owner to charge their cars in the off-peak time.  

Economy 7 Charging: Electricity price is one of the factors that determine when customers would charge their 
cars. Economy 7 is a differential electricity tariff scheme offering cheaper off-peak electricity for 7 hours during the 
night in the UK [9]. Therefore, a desirable charging strategy which could be encouraged by lower off-peak 
electricity prices is proposed based on this tariff. From the perspective of EV owner, the objective of off-peak 
charging is to minimize the charging cost. In the simulation, it is assumed that the charging starts at a certain time 
between 11 pm and 2 am and can be lasted for the whole night. Such charging strategy could favour an effective 
utilization of electricity as EVs can be charged during the night off-peak periods.  

V2G Discharging & Charging: With the development of V2G technology, it is possible that EV could flexibly 
play the role of energy storage source. Therefore, V2G discharging strategy is proposed to simulate an ideal case 
that under large EV penetration, the excess electrical energy in the EV battery can be resent to the grid to support the 
peak demand. Specifically, it is assumed that EV users could discharge their EVs to the grid during the evening peak 
between 5 pm to 8 pm so that the load peak can be clipped. As the main incentive, they can earn the payback from 
the electricity they sell. However, the battery degradation is a concern that must be considered in the real life.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To truly demonstrate the statistical distribution of EV charging and discharging data from 1000 times of 

simulations, boxplots are generated by MATLAB, which are shown in figure 6 (a)-(c). Each box represents a cluster 
of charging data in each hour within a day. Red lines in the boxes represent the median charging power demand in 
each time slot. Upper and lower whisker of each box reflect the minimum and maximum power in the specific hour. 
Wrong data in each slot are displayed as +. By comparing the histogram and boxplot under the same strategy, it is 
noticeable that they have a similar pattern. Therefore, it can verify that most of the data randomly generated by 
Monte Carlo simulation to create the average profiles fall in the reliable range. However, it should be noted the 
model created in this paper results relatively higher EV demand as it is assumed that all EV users charge their 
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vehicles simultaneously during the fixed period. However, in the real life EVs do not necessarily being charged 
every day and some users may charge EV more flexibly instead of strictly following the charging time proposed 
here. Therefore, the impact assessment conducted in the next session might slightly overestimate.   

4. Case Study - Impact Assessment on Real LV Network 

A real low voltage network Denton East in England, which is modelled in OpenDSS, is used as the test network 
to integrate the various penetrations of EV. The network with rated 500 kVA capacity is supplying 296 domestic 
customers. It is expected the phase connected with EV would experience the most severe voltage drop. Hence, the 
phase denoting the minimum voltage (i.e., the phase connected with EV) is investigated for the interest. The lower 
voltage limit is set to 0.94 p.u, which is the minimum UK legal requirement. Results in terms of minimum voltage 
and peak power demand are recorded in table 1. The values in red represent that the voltage lower limit or power 
capacity for normal operating is violated.  Power consumption profiles are shown in figure 7(a)-(c). 

Table 1 Minimum voltage and peak power consumption under three scenarios 
 EV Penetration 

level 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Uncontrolled Vmin (pu)  0.995 0.968 0.956 0.934 0.917 - - - - - 
Smax (kVA) 313.1 364.6 401.7 461.9 519.6 - - - - - 

Economy 7 Vmin (pu) 0.995 0.995 0.985 0.981 0.962 0.949 0.948 0.946 0.945 0.926 
Smax (kVA) 313.1 313.1 313.1 313.1 315.5 362.4 410.6 468 537 590.3 

V2G Vmin (pu)  0.995 0.991 0.988 0.986 0.96 0.946 0.937 0.929 0.919 0.903 
Smax(kVA) 313.1 273.6 242 267 307.2 377.8 419.6  489.5 533.2 591 

 
For uncontrolled charging, as there is no incentive to encourage EV owners to charge the cars at the off-peak 

time, the charging load overlaps with original peak load in the peak time, shown in figure 7(a). Only 20 % of 
customers can charge their EVs in the peak time simultaneously. For Economy 7 charging, 80% EV penetration 
level can be achieved. Peak power remains the same as the initial value until EV penetration level reaches to 40%. 
This is because the peak demand is still dominated by residential load under low EV penetration level. For V2G 
mode, figure 7(c) tells that power demand of the peak time is cut down due to the reversed power flowing into the 
network. Noticeably, the power curve is levelled off at 20% penetration so that a flat curve can be seen. The 
maximum penetration level is 50%.  

In addition, power factor and system efficiency of test network are also examined under three scenarios. The 
results show that power factor is decreased as EV can be regarded as the inductive load with power factor of 0.98 
when it’s connected to the grid for charging. The system efficiency is poorer with the larger number of EVs. 

 
 
 

The utilisation level is defined as the ratio of the maximum apparent power through the asset and the rated 
capacity of the asset [10]. It provides an insight how different penetration level of EV affects the asset loading and 
the adequacy (capacity to supply the demand) of LV networks, which is shown in figure 8. Under V2G mode, the 
utilisation level is decreased but only when penetration is less than 20%. It is found the benefit of discharging 
process in V2G to reduce the congestion is limited comparing with E7 charging. To maximize the lifespan of the 

Fig. 7(a). Power consumption under 
uncontrolled charging 

Fig. 7(b).  Power consumption under E7 charging Fig. 7(c).  Power consumption under V2G mode 
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extracted from travel survey in [8]. This scenario represents the worst case where no incentive to motivate the EV 
owner to charge their cars in the off-peak time.  

Economy 7 Charging: Electricity price is one of the factors that determine when customers would charge their 
cars. Economy 7 is a differential electricity tariff scheme offering cheaper off-peak electricity for 7 hours during the 
night in the UK [9]. Therefore, a desirable charging strategy which could be encouraged by lower off-peak 
electricity prices is proposed based on this tariff. From the perspective of EV owner, the objective of off-peak 
charging is to minimize the charging cost. In the simulation, it is assumed that the charging starts at a certain time 
between 11 pm and 2 am and can be lasted for the whole night. Such charging strategy could favour an effective 
utilization of electricity as EVs can be charged during the night off-peak periods.  

V2G Discharging & Charging: With the development of V2G technology, it is possible that EV could flexibly 
play the role of energy storage source. Therefore, V2G discharging strategy is proposed to simulate an ideal case 
that under large EV penetration, the excess electrical energy in the EV battery can be resent to the grid to support the 
peak demand. Specifically, it is assumed that EV users could discharge their EVs to the grid during the evening peak 
between 5 pm to 8 pm so that the load peak can be clipped. As the main incentive, they can earn the payback from 
the electricity they sell. However, the battery degradation is a concern that must be considered in the real life.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To truly demonstrate the statistical distribution of EV charging and discharging data from 1000 times of 

simulations, boxplots are generated by MATLAB, which are shown in figure 6 (a)-(c). Each box represents a cluster 
of charging data in each hour within a day. Red lines in the boxes represent the median charging power demand in 
each time slot. Upper and lower whisker of each box reflect the minimum and maximum power in the specific hour. 
Wrong data in each slot are displayed as +. By comparing the histogram and boxplot under the same strategy, it is 
noticeable that they have a similar pattern. Therefore, it can verify that most of the data randomly generated by 
Monte Carlo simulation to create the average profiles fall in the reliable range. However, it should be noted the 
model created in this paper results relatively higher EV demand as it is assumed that all EV users charge their 

Fig. 5(a). EV load profile under uncontrolled charging  

Fig. 6(a). Boxplot of EV load profile under 
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extracted from travel survey in [8]. This scenario represents the worst case where no incentive to motivate the EV 
owner to charge their cars in the off-peak time.  

Economy 7 Charging: Electricity price is one of the factors that determine when customers would charge their 
cars. Economy 7 is a differential electricity tariff scheme offering cheaper off-peak electricity for 7 hours during the 
night in the UK [9]. Therefore, a desirable charging strategy which could be encouraged by lower off-peak 
electricity prices is proposed based on this tariff. From the perspective of EV owner, the objective of off-peak 
charging is to minimize the charging cost. In the simulation, it is assumed that the charging starts at a certain time 
between 11 pm and 2 am and can be lasted for the whole night. Such charging strategy could favour an effective 
utilization of electricity as EVs can be charged during the night off-peak periods.  

V2G Discharging & Charging: With the development of V2G technology, it is possible that EV could flexibly 
play the role of energy storage source. Therefore, V2G discharging strategy is proposed to simulate an ideal case 
that under large EV penetration, the excess electrical energy in the EV battery can be resent to the grid to support the 
peak demand. Specifically, it is assumed that EV users could discharge their EVs to the grid during the evening peak 
between 5 pm to 8 pm so that the load peak can be clipped. As the main incentive, they can earn the payback from 
the electricity they sell. However, the battery degradation is a concern that must be considered in the real life.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To truly demonstrate the statistical distribution of EV charging and discharging data from 1000 times of 

simulations, boxplots are generated by MATLAB, which are shown in figure 6 (a)-(c). Each box represents a cluster 
of charging data in each hour within a day. Red lines in the boxes represent the median charging power demand in 
each time slot. Upper and lower whisker of each box reflect the minimum and maximum power in the specific hour. 
Wrong data in each slot are displayed as +. By comparing the histogram and boxplot under the same strategy, it is 
noticeable that they have a similar pattern. Therefore, it can verify that most of the data randomly generated by 
Monte Carlo simulation to create the average profiles fall in the reliable range. However, it should be noted the 
model created in this paper results relatively higher EV demand as it is assumed that all EV users charge their 
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vehicles simultaneously during the fixed period. However, in the real life EVs do not necessarily being charged 
every day and some users may charge EV more flexibly instead of strictly following the charging time proposed 
here. Therefore, the impact assessment conducted in the next session might slightly overestimate.   

4. Case Study - Impact Assessment on Real LV Network 

A real low voltage network Denton East in England, which is modelled in OpenDSS, is used as the test network 
to integrate the various penetrations of EV. The network with rated 500 kVA capacity is supplying 296 domestic 
customers. It is expected the phase connected with EV would experience the most severe voltage drop. Hence, the 
phase denoting the minimum voltage (i.e., the phase connected with EV) is investigated for the interest. The lower 
voltage limit is set to 0.94 p.u, which is the minimum UK legal requirement. Results in terms of minimum voltage 
and peak power demand are recorded in table 1. The values in red represent that the voltage lower limit or power 
capacity for normal operating is violated.  Power consumption profiles are shown in figure 7(a)-(c). 

Table 1 Minimum voltage and peak power consumption under three scenarios 
 EV Penetration 

level 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Uncontrolled Vmin (pu)  0.995 0.968 0.956 0.934 0.917 - - - - - 
Smax (kVA) 313.1 364.6 401.7 461.9 519.6 - - - - - 

Economy 7 Vmin (pu) 0.995 0.995 0.985 0.981 0.962 0.949 0.948 0.946 0.945 0.926 
Smax (kVA) 313.1 313.1 313.1 313.1 315.5 362.4 410.6 468 537 590.3 

V2G Vmin (pu)  0.995 0.991 0.988 0.986 0.96 0.946 0.937 0.929 0.919 0.903 
Smax(kVA) 313.1 273.6 242 267 307.2 377.8 419.6  489.5 533.2 591 

 
For uncontrolled charging, as there is no incentive to encourage EV owners to charge the cars at the off-peak 

time, the charging load overlaps with original peak load in the peak time, shown in figure 7(a). Only 20 % of 
customers can charge their EVs in the peak time simultaneously. For Economy 7 charging, 80% EV penetration 
level can be achieved. Peak power remains the same as the initial value until EV penetration level reaches to 40%. 
This is because the peak demand is still dominated by residential load under low EV penetration level. For V2G 
mode, figure 7(c) tells that power demand of the peak time is cut down due to the reversed power flowing into the 
network. Noticeably, the power curve is levelled off at 20% penetration so that a flat curve can be seen. The 
maximum penetration level is 50%.  

In addition, power factor and system efficiency of test network are also examined under three scenarios. The 
results show that power factor is decreased as EV can be regarded as the inductive load with power factor of 0.98 
when it’s connected to the grid for charging. The system efficiency is poorer with the larger number of EVs. 

 
 
 

The utilisation level is defined as the ratio of the maximum apparent power through the asset and the rated 
capacity of the asset [10]. It provides an insight how different penetration level of EV affects the asset loading and 
the adequacy (capacity to supply the demand) of LV networks, which is shown in figure 8. Under V2G mode, the 
utilisation level is decreased but only when penetration is less than 20%. It is found the benefit of discharging 
process in V2G to reduce the congestion is limited comparing with E7 charging. To maximize the lifespan of the 

Fig. 7(a). Power consumption under 
uncontrolled charging 

Fig. 7(b).  Power consumption under E7 charging Fig. 7(c).  Power consumption under V2G mode 
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asset in the system, the transformer should not be loaded to full capacity for long time. Therefore, the EV 
penetration level acquired here can be only taken as the reference. In real life, the number of EVs that can be 
connected to this distribution network will be less.  

Generally, real power losses are rising with the growing number of EVs. More power losses are generated under 
uncontrolled charging scenario at the same penetration level, which is shown in figure 9. If a network has a fixed 
total daily load, there would be fewer power losses of the network with a flatter the daily load curve [6]. In other 
words, much more power loss of the network will be produced if there is a larger difference between the peak and 
the valley power. As EV uncontrolled charging increases the gap between peak and valley, it results in more extra 
power losses. For V2G mode and E7 charging, the off-peak power valley is filled by EV charging demand so that 
the losses are reduced. Moreover, under V2G mode, the power curve is levelled off to a flatter curve when the 
penetration level is less than 30%. Therefore, slightly less power losses can be observed under V2G mode than E7 
when penetration is lower that 30%.  

 

 

 

 
 
 
 
 
 
Three potential solutions towards distribution network management are discussed according to the acquired 

results. Additional investments for asset reinforcements can be made by Distribution Network Operators (DNOs) to 
deal with the increasing penetration of EVs in the future. The straightforward solution is to install enough number of 
voltage regulators to maintain the voltage within the acceptable range, which is only applicable to the situation that 
EVs take account for a small proportion of the automotive sector. With the expanding number of EVs in the future, 
necessary smart actions are obliged to be taken by DNOs. From the simulation results, it has known electricity price 
could be a critical factor that influences the charging pattern of EV users and could reduce the potential peak stress 
significantly. Therefore, advanced metering infrastructure (AMI) systems for real-time pricing can be introduced 
[11]. By setting the real-time electricity structure, the load demand between peak time and off-peak time can be 
balanced dynamically to release the network congestion. Given that, EV charging loads within the household could 
be potentially controlled in a coordinated manner. Furthermore, aiming to control and predict the load patterns on 
the residential distribution networks, active demand side management should be developed. For example, the 
communication system between DNOs and EV drivers could be established. The individual battery charging process 
will be monitored and controlled to realize the optimization of the functioning of the distribution system. 

5. Conclusion and Future Work 

In this paper, the impact factors of EV charging behaviour are discussed comprehensively. By using Monte 
Carol simulation method, EV load profile for three charging strategies: uncontrolled charging, Economy 7 charging 
and V2G mode are created considering the uncertainties. Their impacts on a real LV network are analysed with 
respect to thermal and voltage issues in OpenDSS and MATLAB at various EV penetration levels. The results show 
EV charging demand is detrimental to voltage deviation, asset congestion, system efficiency and power factor. The 
test network can accommodate the substantial penetration levels of EVs if the charging is restricted at off-peak time 
by the incentive tariff scheme. It should be noted that the results acquired in the paper are network-dependent and 
can be different from the results from other studies. Nevertheless, the conclusions achieved are general and can be 
applied to different circumstances. 

In terms of EV load profile creation, three improvements could be further implemented to create more 
comprehensive demand scenarios. Firstly, in addition to the city car model used in the paper, more different types of 

Fig. 8.  Comparison of the utilisation level under three scenarios Fig. 9.  Comparison of maximum real power losses under three scenarios 
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vehicle models with a wider range of battery capacity should be considered, for example, vans and SUVs. Secondly, 
the behaviour of commercial charging can be potentially combined with the residential charging which is the study 
focus in this paper. Thirdly, fast charging and rapid charging mode can be discussed considering a more flexible 
charging demand of different EV users in the future. Besides, more networks with various load patterns and system 
configuration can be studied. 
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asset in the system, the transformer should not be loaded to full capacity for long time. Therefore, the EV 
penetration level acquired here can be only taken as the reference. In real life, the number of EVs that can be 
connected to this distribution network will be less.  

Generally, real power losses are rising with the growing number of EVs. More power losses are generated under 
uncontrolled charging scenario at the same penetration level, which is shown in figure 9. If a network has a fixed 
total daily load, there would be fewer power losses of the network with a flatter the daily load curve [6]. In other 
words, much more power loss of the network will be produced if there is a larger difference between the peak and 
the valley power. As EV uncontrolled charging increases the gap between peak and valley, it results in more extra 
power losses. For V2G mode and E7 charging, the off-peak power valley is filled by EV charging demand so that 
the losses are reduced. Moreover, under V2G mode, the power curve is levelled off to a flatter curve when the 
penetration level is less than 30%. Therefore, slightly less power losses can be observed under V2G mode than E7 
when penetration is lower that 30%.  

 

 

 

 
 
 
 
 
 
Three potential solutions towards distribution network management are discussed according to the acquired 

results. Additional investments for asset reinforcements can be made by Distribution Network Operators (DNOs) to 
deal with the increasing penetration of EVs in the future. The straightforward solution is to install enough number of 
voltage regulators to maintain the voltage within the acceptable range, which is only applicable to the situation that 
EVs take account for a small proportion of the automotive sector. With the expanding number of EVs in the future, 
necessary smart actions are obliged to be taken by DNOs. From the simulation results, it has known electricity price 
could be a critical factor that influences the charging pattern of EV users and could reduce the potential peak stress 
significantly. Therefore, advanced metering infrastructure (AMI) systems for real-time pricing can be introduced 
[11]. By setting the real-time electricity structure, the load demand between peak time and off-peak time can be 
balanced dynamically to release the network congestion. Given that, EV charging loads within the household could 
be potentially controlled in a coordinated manner. Furthermore, aiming to control and predict the load patterns on 
the residential distribution networks, active demand side management should be developed. For example, the 
communication system between DNOs and EV drivers could be established. The individual battery charging process 
will be monitored and controlled to realize the optimization of the functioning of the distribution system. 

5. Conclusion and Future Work 

In this paper, the impact factors of EV charging behaviour are discussed comprehensively. By using Monte 
Carol simulation method, EV load profile for three charging strategies: uncontrolled charging, Economy 7 charging 
and V2G mode are created considering the uncertainties. Their impacts on a real LV network are analysed with 
respect to thermal and voltage issues in OpenDSS and MATLAB at various EV penetration levels. The results show 
EV charging demand is detrimental to voltage deviation, asset congestion, system efficiency and power factor. The 
test network can accommodate the substantial penetration levels of EVs if the charging is restricted at off-peak time 
by the incentive tariff scheme. It should be noted that the results acquired in the paper are network-dependent and 
can be different from the results from other studies. Nevertheless, the conclusions achieved are general and can be 
applied to different circumstances. 

In terms of EV load profile creation, three improvements could be further implemented to create more 
comprehensive demand scenarios. Firstly, in addition to the city car model used in the paper, more different types of 

Fig. 8.  Comparison of the utilisation level under three scenarios Fig. 9.  Comparison of maximum real power losses under three scenarios 
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vehicle models with a wider range of battery capacity should be considered, for example, vans and SUVs. Secondly, 
the behaviour of commercial charging can be potentially combined with the residential charging which is the study 
focus in this paper. Thirdly, fast charging and rapid charging mode can be discussed considering a more flexible 
charging demand of different EV users in the future. Besides, more networks with various load patterns and system 
configuration can be studied. 
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