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Integrating temporal and spatial control of
electronic transitions for bright multiphoton
upconversion
Tianying Sun1,2,9, Yuhua Li3,9, Wai Lok Ho3, Qi Zhu1,2, Xian Chen1,2, Limin Jin 4, Haomiao Zhu5,

Bolong Huang6, Jun Lin7, Brent E. Little8, Sai Tak Chu 3 & Feng Wang 1,2

The applications of lanthanide-doped upconversion nanomaterials are limited by unsa-

tisfactory brightness currently. Herein, a general strategy is proposed for boosting the

upconversion efficiency in Er3+ ions, based on combined use of a core−shell nanostructured

host and an integrated optical waveguide circuit excitation platform. A NaErF4@NaYF4 core

−shell nanoparticle is constructed to host the upconversion process for minimizing non-

radiative dissipation of excitation energy by surface quenchers. Furthermore, an integrated

optical microring resonator is designed to promote absorption of excitation light by the

nanoparticles, which alleviates quenching of excited states due to cross-relaxation and

phonon-assisted energy transfer. As a result, multiphoton upconversion emission with a large

anti-Stokes shift (greater than 1150 nm) and a high energy conversion efficiency (over 5.0%)

is achieved under excitation at 1550 nm. These advances in controlling photon upconversion

offer exciting opportunities for important photonics applications.
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Lanthanide-doped upconversion nanoparticles that convert
low energy excitation into higher-energy emissions are
important for applications in diverse fields ranging from life

science to information technology. By integrating upconversion
nanoparticles into various systems, localized visible and ultra-
violet (UV) emissions can be generated upon near-infrared (NIR)
excitation. The effect has enabled precise and remote control of
biochemical reactions as well as the creation of full-color 3D
displays1–7. Nevertheless, despite of the unique optical properties,
wider application of upconversion processes has been hindered by
limited emission intensity due to low concentration of optical
centers (or dopants) in most nanoparticles. When dopant con-
centration increases, interactions of optical centers become sig-
nificant as a result of reduced inter-dopant distance, causing
depopulation of excited states and thus attenuation in the
upconversion emission (Fig. 1).

Attempts have been made to alleviate concentration quenching
so that unusually high dopant concentrations can be used to
boost upconversion emission intensity. By promoting the exci-
tation process through the use of high excitation irradiance
(~106W cm−2) and dye sensitization, depopulations of excited
states are compensated and lead to elevated quenching con-
centrations of Tm3+, Er3+, and Nd3+ activators8–10. Core−shell
nanostructural engineering has also been exploited to mitigating
concentration quenching by eliminating dissipation of energy to
lattice and surface defects. Using this method, concentration
quenching in both sensitizer (Yb3+) and activator (Er3+) ions is
greatly suppressed11–17. Despite these research efforts, photon
upconversion at a high concentration of activators is usually
dominated by low-order processes featuring emission in the
spectral region of long wavelengths. Challenges remain for
achieving highly efficient multiphoton upconversion with emis-
sions in the short-wavelength regime by using low power exci-
tation. Particularly, there are no known effective approaches to
achieve efficient UV emission under excitation in the wavelength
range for optical communication, where many inexpensive and
high-performance lasers and optical components can be readily
acquired from the mature telecommunications industry.

Here, we present rational control of concentration quenching in
a stoichiometric Er3+ compound by combined use of a core−shell
nanostructured host and an integrated optical waveguide circuit
excitation platform. We show an experimental validation of
enhancing multiphoton UV upconversion under excitation at
1550 nm, corresponding to an anti-Stokes shift of over 1150 nm,
through collective control of intra-particle energy transfer and
excitation method. By taking advantage of the efficient 1550 nm-
to-UV upconversion, we further demonstrate a novel technique

for precise formation of polymer waveguides and periodic patterns
with the upconverted UV emission.

Results
Synthesis and characterization. We first investigated the beha-
viors of concentration quenching in different energy states of
Er3+, which has not been clearly delineated18. To this end, we
conduct a comparative investigation of a series of NaYF4:Er
(2−100%) nanoparticles with and without a protection layer of
NaYF4. The inert NaYF4 shell is able to selectively suppress
energy loss to lattice defects and surface quenching sites that
arises from energy migration through the dopant sublattice19.
Assessment of the core−shell nanoparticles thereby allows us to
probe the quenching mechanism. The nanoparticles were syn-
thesized by a layer-by-layer epitaxial growth protocol (Supple-
mentary Fig. 1)20. Figure 2a shows transmission electron
microscopy (TEM) images of the nanoparticles comprising dif-
ferent concentration of Er3+, revealing highly uniform size and
shape across the whole concentration series. High-angle annular
dark-field (HAADF) scanning TEM image of a representative
sample shows distinguished Z-contrast between the NaErF4 and
NaYF4 layers (Fig. 2b), clearly revealing the core−shell nature of
the nanoparticles. The X-ray powder diffraction (XRD) and high-
resolution TEM (Supplementary Figs. 1 and 2) measurements
further confirm high crystallinity of the nanoparticles with a
single hexagonal phase. The consistent structural feature qualifies
these nanoparticles as model platforms for investigating the
effects of dopant concentration on upconversion properties.

Concentration quenching effect. We studied the lifetimes of
several energy states of Er3+, which are all involved in the
upconversion process and may be subject to concentration
quenching (Fig. 2c and Supplementary Fig. 3). Because the decay
curves were found to display an appreciable dependence on
excitation power density due to intra-particle energy transfer
(Supplementary Fig. 4), the dopant concentration-induced
changes in lifetimes were examined under the same excitation
power density. Figure 2d shows the lifetimes for the major excited
states of Er3+ as a function of dopant concentration in the core
nanoparticles (see Supplementary Fig. 5 for the decay curves). In
accord with concentration-induced quenching, the lifetimes for
the excited states under study all drop quickly with increasing
Er3+ concentration, which is consistent with the steady-state
spectral measurement of the core nanoparticles. By contrast, the
NaYF4-coated core−shell counterparts showed much longer
lifetimes especially when Er3+ concentrations are high (Fig. 2e),
indicating largely alleviated quenching processes.

It is noted that the dependence of lifetime on Er3+

concentration is not uniform for different excited states (Fig. 2e).
Therefore, concentration quenching of individual excited state is
dominated by different processes (Fig. 3a). Lifetimes of the 4I11/2
and 4I13/2 states are mostly preserved as Er3+ concentration
increases, revealing a major role of energy migration to
quenching centers in depopulating these two states. Core−shell
nanostructures confine energy migration and prevent energy
trapping by quenching centers21,22. In comparison, decay rates of
the 4S3/2, 4F9/2, and 4I9/2 states are appreciably accelerated by
elevating Er3+ concentrations. The lifetime gradient was unlikely
to level off by enhancing surface protection through the use of
thicker shells (Supplementary Figs. 6−8). Thus, these three states
largely suffered from depopulation by cross-relaxation and
phonon-assisted energy transfer, which are localized processes
and remain active in nanostructured hosts.

The steady-state spectra agree with the time decay studies that
not all the excited states were equally protected in the core−shell

Energy loss

a b

Fig. 1 General processes of dopant interactions responsible for
depopulation of an excited state. a Cross-relaxation and phonon-assisted
energy transfer that depopulates an excited state locally. To counteract the
depopulation associated with the localized energy exchange interaction, a
high excitation power is needed to enhance the excitation process. b Long-
distance energy migration through the dopant sublattice that takes the
energy to lattice or surface defects. The energy migration-induced
depopulation can be alleviated by spatially confining the excitation energy
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nanoparticles (Fig. 3b and Supplementary Fig. 8b). In line with
effective suppression of depopulation in the 4I11/2 and 4I13/2
states, the emission originating from the 4F9/2 state (658 nm) was
considerably enhanced at high Er3+ concentrations. By contrast,
emissions at short wavelengths are only marginally intensified,
resulting in decreased relative intensity ratio of green to red
emissions at elevated Er3+ concentrations. The observations are
ascribed to quenching of the 4S3/2, 4F9/2, and 4I9/2 states by cross-
relaxation and phonon-assisted energy transfer (Fig. 3a). As these
intermediate states are critical for establishing the population in
the higher-lying 2H9/2 and 4G11/2 states, the blue and violet
emissions are extremely weak relative to the red emission.
Concentration quenching of the emitting states (2H9/2 and 4G11/2)
also accounts for the weak emissions at the short-wavelength end
(Supplementary Fig. 9).

To shed more light on the concentration quenching effect, we
calculated the relative oscillator strength (ROS) of each excited
state as a function of Er3+ concentration on the overall core−shell
model23. In general, the ROS grows near-linearly as Er3+

concentration increases to 50% (Fig. 3c), which is ascribed to
increasing number of optical centers in the nanoparticles. With
further increase of Er3+ concentration to 75%, abnormal increases
of the ROSs were noted for the 4F9/2, 4I9/2, 4I11/2, and 4I13/2 states.
The leap of the ROS corroborates de-excitation of the higher-lying
excited states due to concentration quenching, which accounts for
the elevated population in the low-lying ones. The drop of ROSs
for the 4I11/2 and 4I13/2 states at a substantially high Er3+

concentration (100%) is attributed to the enhancement of energy

transfer upconversion that depletes these two states (Supplemen-
tary Fig. 10)13.

The mechanistic investigation reveals that the use of core−shell
nanostructure alone is unable to alleviate concentration quench-
ing in all the energy states of Er3+. In order to achieve efficient
multiphoton upconversion luminescence, joint use of high
excitation power is also crucial to counteract the depopulation
of the high-lying intermediate states. In an upconversion process,
an intermediate state is depopulated by being excited to a higher-
lying state in addition to linear decay to lower-lying states. The
excitation process is pump power dependent and thus upconver-
sion emission dominates over luminescence quenching under
high excitation powers24.

Microring resonator-assisted excitation of upconversion. In
view of the small absorption cross-section of the lanthanide ions
(~10−21 cm2)25, conventional approaches for enhancing the
upconversion rates are focused on increasing the excitation
intensity and/or localizing the illumination field. Attempts have
been made to modulate excitation field around upconversion
nanoparticles by surface-plasmon coupling and photonic-crystal
engineering26,27. However, these methods need tedious proces-
sing of upconversion nanoparticles and the amplification of
optical field may prove to be limited. Here we propose a more
effective approach to enhance the upconversion by using an
optical microring resonator excitation platform (Fig. 4a). The
integrated waveguide circuit increases the interaction length
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Fig. 2 Comparative characterization of the NaYF4:Er and NaYF4:Er@NaYF4 nanocrystals. a TEM images of the NaYF4:Er (2−100%) core and the NaYF4:Er
(2−100%)@NaYF4 core−shell nanocrystals. Scale bars are 50 nm. b HAADF scanning TEM image of the NaErF4@NaYF4 nanoparticle highlighting the
core−shell structure. c Proposed energy diagram showing upconversion processes in Er3+ under 1532 nm excitation. The full, wavy, and colored arrows
represent excitation, multiphonon relaxation, and emission processes, respectively. d, e Lifetimes of various excited states of Er3+ as a function of the
dopant concentration in the NaYF4:Er (2−100%) core and the NaYF4:Er (2−100%)@NaYF4 core−shell nanoparticles, respectively. The excitation pulse
energy density was set at 1 mJ mm−2 for decay measurements
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between the excitation photons with the nanoparticles. When it is
on resonance, the excitation light circulates in the microring
resonator by a number of times proportional to its Q-factor. As
the circulating light cumulates, the optical field in the microring
resonator can also be enhanced by orders of magnitude28. Thus,
the chance for the photon to be absorbed by the nanoparticles will
be markedly increased.

The microring resonator used in this work is composed of
high-index doped silica glass that is semi-buried within a SiO2

29.
In this application, the surface of the chip is polished flat with the
surface of the core waveguide exposed (Supplementary Fig. 11).
Upconversion nanoparticles are applied on the surface of the
substrate and excited by evanescent fields of the waveguides. A
narrow linewidth tunable continuous-wave laser is used to tune
the input excitation on/off resonance of the resonator. While on
resonance, the input signal circulates within the resonator in
phase, thereby affording a much stronger electric field relative to
that in the straight waveguide (Fig. 4b). Importantly, due to high
wavelength-selectivity of the ring resonator (Supplementary
Fig. 12), circulation of incident light can be disabled by subtle
detuning of wavelength (<0.01 nm), which permits in situ
examination of the enhancement effect28–35.

Figure 4c depicts upconversion property of NaErF4@NaYF4
core−shell nanoparticles sitting on the waveguide structure. At a
constant input power of 20 mW, the microring resonator
provided a largely amplified excitation density with respect to
the straight bus waveguide (2300 versus 133 kW cm−2) (Supple-
mentary Fig. 13). Accordingly, upconversion luminescence,

especially emission in the short-wavelength region, was appreci-
ably enhanced when the resonance status was changed by tuning
the wavelength of incident light from 1550.00 nm (off-resonance)
to 1549.47 nm (on-resonance). Correspondingly, we recorded an
increase of energy conversion efficiency from 1.1 to 5.0%
(Supplementary Fig. 14). The results clearly support reduced
quenching in the intermediate states at a high excitation power
density. It is worth noting that the actual energy conversion
efficiency offered by the ring resonator is underestimated by the
current experimental setup, which inevitably suffers from
interference of the less efficient upconversion processes occurring
at the long bus waveguide (inset of Fig. 4c). Due to effective
alleviation of concentration quenching, UV lasing was achieved
from NaErF4@NaYF4 nanoparticles incorporated into a micro-
disk laser cavity (Supplementary Fig. 15)36.

The microring resonator circuit is versatile for providing
amplified excitation to upconversion particles, without the need
for controlling their assembly on the waveguide (Supplementary
Fig. 16). However, the magnitude of upconversion enhancement
was found to depend on nanoparticle composition and input
power (Supplementary Fig. 17). In general, the enhancement
effect weakens with increasing excitation power and Er3+

concentration due to saturation of upconversion emissions in
the high-power regime (Supplementary Fig. 17b). However, the
use of highly Er3+-doped nanoparticles is essential for achieving
bright multiphoton upconversion in the short-wavelength regime.
As Er3+ concentration decreases, both UV emission intensity and
UV-to-visible intensity ratio decrease rapidly at the same
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excitation power (Fig. 4d, e). The observations are ascribed to a
reduction in density of optical carriers, which diminish the
absorption of surplus excitation light. A low Er3+ content also
disfavors interionic interaction and thus inhibits the efficient
energy transfer upconversion process.

Micropatterning through upconversion. The availability of
intense UV emission from the surface of the waveguide structures
offers a great opportunity for microfabrication of fine structures
and patterns on them to modify their optical responses or to
form advanced devices when incorporated with functional poly-
mers37–44. As a proof of concept, we demonstrate the precise
fabrication of an SU-8 polymer waveguide on top of the
microring resonator (Fig. 5a). The procedure involves sequential
deposition of upconversion nanoparticles and SU-8 on the
resonator substrate by drop-casting and spin-coating, respectively
(Supplementary Fig. 18). Selective exposure of the SU-8 film is
achieved by the locally upconverted UV light in the region of the
ring resonator under on-resonance excitation (Fig. 5b). Our study
shows that curing of a 2 μm thick SU-8 waveguide can be
accomplished in <10 min by excitation of only 20 μW near 1550
nm. After developing, the SU-8 copies the ring structure well on
the substrate with a perfect alignment and a smooth surface
(Fig. 5d and Supplementary Fig. 19). Notably, this approach is
simple and fast for controllable curing of photoresists without the
need for a photomask or control of laser scanning, which pro-
vides a powerful addition to existing techniques for photo-
patterning of polymers45,46.

The same methodology can be adopted to fabricate periodic
structures on waveguides utilizing their own interference
patterns. By using a simple channel waveguide with core index
(n= 1.60) that is slightly higher than the SU-8 index (n= 1.57)
(Supplementary Fig. 20), strong intensity patterns from the
coupling between its odd and even modes were created and
modulated the solidification of the SU-8 (Fig. 5d–f). The observed
period at an SU-8 thickness of 0.5 μm is around 25 μm (Fig. 5f),
which is in consistence with the calculated beat period (Λ) by the
FEM method (Fig. 5g–i). In agreement with the beating between
the odd and even modes of the waveguide, we further achieved
tuning of the pattern period by controlling the thickness of the
SU-8 coating (Supplementary Fig. 21). These findings demon-
strate one promising approach for rapid fabrication of periodic
structures through photolithography.

Discussion
The investigation of photon upconversion in a core−shell
nanostructured NaErF4 crystal under an integrated optical
waveguide circuit excitation platform enables improved under-
standing and control of concentration quenching. The ability to
mitigate complex concentration quenching in a multitude of
lanthanide excited states consolidates the position of using high
dopant concentration as a versatile approach for enhancing
multiphoton upconversion. On a separate note, the realization of
efficient UV emission by excitation in the wavelength range for
optical communications would largely promote photonic appli-
cations of upconversion nanomaterials.
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Methods
Nanoparticle synthesis. We synthesized the NaYF4:Er@NaYF4 nanoparticles
using the method of ref. 20. Additional experimental details are provided in the
Supplementary Note 1.

Theoretical modelling. The oscillator strengths were derived from calculated
electric-dipole transitions by time-dependent density functional theory (TD-DFT).
To perform the excited state calculations, we chose the two-electron based Tamm-
Dancoff approximation imported from self-consistently corrected ground state
wavefunctions23. β-NaREF4 comprising different amount of Er3+ dopants
(12.5–100%) were examined by a series of TD-DFT calculations. The electrical field
in the microring resonator was simulated by three-dimensional finite-difference
time domain (3D-FDTD) method. Finite element method (FEM) was used to
calculate the modal propagation constants and field profiles of E-field.

Physical measurement. TEM and HAADF scanning TEM were carried out on a
JEM-2100F transmission electron microscope at an acceleration voltage of 200 kV.
The upconversion emission spectra were recorded with a Hitachi F-4600 spec-
trophotometer. The decay curves were measured by an Edinburgh
FLSP920 spectrometer. Optical micrographs were recorded with an advanced
research microscope (ECLIPSE Ni-U, Nikon). All measurements were performed
at room temperature.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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