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Abstract

This work aims at studying a power penalty approach to the coupled system
of differential complementarity problems arising from the valuation of American
options under regime switching. We introduce a power penalty method to approx-
imate the differential complementarity problems, which results in a set of coupled
nonlinear partial differential equations. By virtue of variational inequality theory,
we establish the unique solvability of the system of differential complementarity
problems. Moreover, the convergence property of this power penalty method in an
appropriate infinite dimensional space is explored, where an exponential convergence
rate of the power penalty method is established and the monotonic convergence of
the penalty method with respect to the penalty parameter is shown. Finally, some
numerical experiments are presented to verify the convergence property of the power
penalty method.
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1 Introduction

Since the famous Black–Scholes model [1] was established in 1970’s, the study of option

pricing under the framework of partial differential equation (PDE) has attracted more and

more attention in mathematical finance. In the standard Black–Scholes model, under the

risk neutral measure the dynamics of the underlying asset S is assumed to follow a stan-

dard geometric Brownian motion, where an important assumption is that the volatility of

the underlying asset is constant. Nonetheless, this assumption is unrealistic in practical

applications, see numerous empirical studies in [2]. In fact, the volatility of the underlying

asset behaves randomly, especially when it is measured with high frequency data [3]. To

1

This is the Pre-Published Version.
Zhang, K., & Yang, X. (2018). Power penalty approach to American options pricing under regime switching. Journal of Optimization Theory and Applications, 
179(1), 311-331

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use 
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect 
post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10957-018-1299-0



remedy this defect, different stochastic volatility models [4] are proposed to the option

pricing problem. Among these models, the regime switching model [5, 6] is getting more

and more attractive due to its economic intuition and inexpensive computation. In fact,

by assuming that the market switches from time to time among different regimes, the

regime-switching framework allows one to account for certain periodic or cyclic patterns

caused by, for example, short-term political or economic uncertainty. Therefore, the in-

corporation of a regime switching component with the log-normal dynamics of stock price

can better fit the market dynamics.

A lot of works have been done to study the standard American option pricing mod-

els. In [7, 8, 9], variational inequality theory is employed to show the unique solvability

using the equivalence between the complementarity problem and variational inequalities.

Meanwhile, because of its well-behavior and fulfilled property [10], the penalty approach

is commonly used to characterize the solution behavior by showing the convergence prop-

erty of solutions of the penalized problem, cf. [7, 11, 12]. Compared with the standard

Black-Scholes pricing model, the American pricing problem under regime switching is

more complicated because of the existence of the coupled partial differential operators.

So, more care must be taken in studying the solvability and convergence property of the

American option pricing problem under regime switching.

In this paper, we focus on studying a power penalty penalty approach to American

option pricing model (1) under the regime switching. Within the framework of variational

inequality theory, we first transform the coupled system of differential complementarity

problems (DCPs) into a system of differential variational inequalities. We will then study

the properties of the resulting system of variational inequalities. Then, the unique solv-

ability is established under an appropriate Sobolev space. After that, we propose a power

penalty approach to the system of differential variational inequalities, which results in a

coupled system of nonlinear PDEs. For the penalized nonlinear system, we will study

its solvability and convergence behavior. To this end, we first use the nonlinear operator

theory to investigate the unique solvability of the system of nonlinear PDEs. To study

the convergence rate of solutions of penalized problems to that of the original problem

(1), an error bound estimation is given in an appropriate Sobolev space. With this error

bound, a convergence rate of the penalized problem will be established. Furthermore, the

monotonicity of convergence of the power penalty method with respect to the penalty

parameter λ is shown. Finally, we shall design some preliminary numerical experiments

to illustrate the convergence rate of the power penalty method.

The rest of this paper is arranged as follows. In Section 2, some definitions and

notations are first given. The differential variational inequalities reformulation of the

DCPs (1), arising from the American option under regime switching is then described.
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In Section 3, a power penalty approach to the complementarity problem is introduced.

The unique solvability of the penalized problem is also established. In Section 4, an error

bound estimation is established. A convergence rate of the power penalty approach is

eventually developed. The monotonicity of convergence of the power penalty method

is given as well in this section. Section 5 gives some numerical experiments for pricing

American put options under two regimes switching to show the convergence property of

the power penalty method.

2 Mathematical Formulation

2.1 Notations

Before proceeding, we give some standard notations which will be used for the theoretical

analysis in the paper. For an open set S =]S1, S2[⊂ R and 1 ≤ p ≤ ∞, let Lp(S) =
{
v : (

∫
S
|v(x)|dx)1/p < ∞

}
denote the space of all p-power integrable functions on S. We

use the ‖∙‖Lp(S) to denote the norm on Lp(S). The weighted Sobolev space H1
0,$(S) is

defined as

H1
0,$(S) =

{
v : v ∈ L2(S), S ∂v

∂S
∈ L2(S), and v(S2) = 0

}
,

with ‖v‖H1
0,$(S) = (

∫
S
(v2+S2( ∂v

∂S
)2)dS)1/2. It is easy to prove that the pair (H1

0,$(S), (∙, ∙)H1
0,$(S))

is a Hilbert space by defining a weighted inner product on H1
0,$(S) with (u, v)H1

0,$(S) =

(u, v)L2(S)+(S ∂u
∂S

, S ∂v
∂S

)L2(S). Finally, for any Hilbert space W (S), the norm of Lp(0, T ; W (S))

is denoted by ‖v‖Lp(0,T ;W (S)) = (
∫ T

0
‖v(∙, t)‖p

W (S) dt)1/p. From this definition, it is obvious

that Lp(0, T ; Lp(S)) = Lp(S×]0, T [).

For clarity, we will often simply write v(∙, t) as v(t) when we regard v(∙, t) as an element

of H1
0,$(S). From time to time, we will also suppress the independent time variable t when

it causes no confusion in doing so.

2.2 Formulation

Assuming the underlying economy switches among a finite number of states M = {1, . . . ,m},

which is modeled by a finite Markov chain αt with generator Q. To simplify the presen-

tation throughout the paper, we only consider the case that there are only two states.

Hence, in this case, m = 2, αt = 1, 2 and Q = ( −q1 q1
q2 −q2

), where q1 and q2 are posi-

tive constants. Let ri and σi, (i = 1, 2) be a set of discrete risk-free interest rates and

volatilities, respectively. Under the risk-neutral measure, the stochastic process for the

underlying asset S is
dS

S
= rαtdt + σαtdW,

where rαt and σαt can take different values depending on different regimes.
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Let Vi(S, t) be the value of an American put option with striking price K in regime

i, where the holder can receive a given payoff V ∗(S) at the expiry date T . The standard

no-arbitrage pricing method leads to the following coupled system of DCPs [13]: for

i = 1, 2 




LiV (S, t) ≥ 0,

Vi (S, t) − V ∗ ≥ 0,

LiV (S, t) ∙ (Vi (S, t) − V ∗) = 0,

(1)

a.e. in ]0, +∞[×]0, T [, where V (S, t) = (V1 (S, t) , V2 (S, t))> , and

L1V = −
∂V1

∂t
−

[
1

2
σ2

1S
2 ∂2V1

∂S2
+ r1S

∂V1

∂S
− r1V1 − q1V1 + q1V2

]

,

L2V = −
∂V2

∂t
−

[
1

2
σ2

2S
2 ∂2V2

∂S2
+ r2S

∂V2

∂S
− r2V2 − q2V2 + q2V1

]

,

are two coupled degenerate parabolic partial differential operators with the final conditions

Vi(S, T ) = V ∗ (S) , i = 1, 2,

and the following boundary conditions

Vi(0, t) = K, lim
S→+∞

Vi(S, t) = 0, i = 1, 2. (2)

For computational purpose, we restrict S in a region I = [0, X ] ∈ R, where X is

sufficiently large to ensure the accuracy of the solution ([4]). Thus, (2) becomes

Vi(0, t) = K, Vi(X, t) = 0, i = 1, 2. (3)

By introducing two new variables

ui(S, t) = eβt (V0(S) − Vi(S, t)) , β = max
i

{
σ2

i

}
+ max

i
{qi} , i = 1, 2 (4)

with V0(S) = (1 − S/X)K, we first transform (1) into the following equivalent standard

form satisfying homogeneous Dirichlet boundary conditions.

Problem 2.1. For i = 1, 2,





LiU(S, t) ≤ fi(S, t),
ui (S, t) − u∗(S, t) ≤ 0,
(LiU(S, t) − fi(S, t)) ∙ (ui(S, t) − u∗

i (S, t)) = 0,
(5)

a.e. in [0, X ]×]0, T [, where U (S, t) = (u1 (S, t) , u2 (S, t))>, and

L1U = −
∂u1

∂t
−

∂

∂S

[

a1S
2 ∂u1

∂S
+ b1u1S

]

+ c1u1 − q1u2,

L2U = −
∂u2

∂t
−

∂

∂S

[

a2S
2 ∂u2

∂S
+ b2u2S

]

+ c2u2 − q2u1,
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are the self-adjoint forms with

ai =
1

2
σ2

i , bi = ri − σ2
i , ci = ri + bi + qi + β, and fi(S, t) = eβtLiV0(S). (6)

The payoff function becomes

u∗(S, t)
.
= eβt (V0(S − V ∗(S)) , (7)

and the new final and boundary conditions are, for i = 1, 2,

ui(S, T ) = u∗(S, T ),

ui(0, t) = ui(X, t) = 0, t ∈]0, T [.

We will show the differential variational inequality problem corresponding to Problem

2.1 has a unique solution in L2(0, T ; H1
0,ω (I)) × L2(0, T ; H1

0,ω (I)).

It is a standard result that the system of DCPs (5) can be reformulated as the following

system of differential variational inequalities.

Problem 2.2. Find U = (u1 (t) , u2 (t))> ∈ K ×K, such that, for all v ∈ K,

(

−
∂u1

∂t
, v − u1

)

+ A1 (u1, v − u1; t) + B1 (u2, v − u1; t) ≥ (f1, v − u1) , (8)

(

−
∂u2

∂t
, v − u2

)

+ A2 (u2, v − u2; t) + B2 (u1, v − u2; t) ≥ (f2, v − u2) , (9)

a.e. in ]0, T [, where A1(∙, ∙; t), A2(∙, ∙; t), B1(∙, ∙; t) and B2(∙, ∙; t) are bilinear forms defined

on H1
0,$(I) × H1

0,$(I) by

A1 (u, v; t) =

(

a1S
2 ∂u

∂S
+ b1Su,

∂v

∂S

)

+ (c1u, v) , B1 (u, v; t) = − (q1u, v) ,

A2 (u, v; t) =

(

a2S
2 ∂u

∂S
+ b2Su,

∂v

∂S

)

+ (c2u, v) , B2 (u, v; t) = − (q2u, v) ,

and K = {v ∈ H1
0,$(I) : v ≤ u∗} is a convex and closed subset of H1

0,$(I).

For Problem 2.2, we establish the unique solvability result as follows:

Theorem 2.1. The system of variational inequalities (8) - (9) has a unique solution.

Proof For v1, v2, μ1, μ2 ∈ H1
0,$(I), define the following global bilinear operator

A (μ1, μ2; v1, v2) = A1 (μ1, v1) + A2 (μ2, v2) + B1 (μ2, v1) + B2 (μ1, v2) . (10)
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It is easy to see that

A1 (v1, v1) =

(

a1S
2 ∂v1

∂S
+ b1Sv1,

∂v1

∂S

)

+ (c1v1, v1)

≥ a1

(

S2 ∂v1

∂S
,
∂v1

∂S

)

+

(
3r1 − σ2

1

2
+ q1 + β

)

(v1, v1)

≥
σ2

1

2

∥
∥
∥
∥S

∂v1

∂S

∥
∥
∥
∥

2

+
1

2

(
3r1 + σ2

1 + 2q1 + 2q2

)
‖v1‖

2 .

In the same way, we also have

A2 (v2, v2) ≥
σ2

2

2

∥
∥
∥
∥S

∂v2

∂S

∥
∥
∥
∥

2

+
1

2

(
3r2 + σ2

2 + 2q2 + 2q1

)
‖v2‖

2 .

Moreover,

B1 (v2, v1) + B2 (v1, v2) = − (q1v2, v1) − (q2v1, v2) ≥ − (q1 + q2) ‖v1‖ ‖v2‖ .

Hence, using (4) and (6), we get

A (v1, v2; v1, v2)

=A1 (v1, v1) + A2 (v2, v2) + B1 (v2, v1) + B2 (v1, v2)

≥
σ2

1

2
‖v1‖

2
H1

0,ω
+

σ2
2

2
‖v2‖

2
H1

0,ω
+ (q1 + q2)

(
‖v1‖

2 + ‖v2‖
2 − ‖v1‖ ‖v2‖

)

≥
σ2

1

2
‖v1‖

2
H1

0,ω
+

σ2
2

2
‖v2‖

2
H1

0,ω
,

which shows that A is coercive. On the other hand, by virtue of the Cauchy-Schwartz

and Poincaré inequalities, it is easy to show that there exists a positive constant C such

that

A (μ1, μ2; v1, v2)

= |A1 (μ1, v1) + A2 (μ2, v2) + B1 (μ2, v1) + B2 (μ1, v2)|

≤ |A1 (μ1, v1)| + |A2 (μ2, v2)| + |B1 (μ2, v1)| + |B2 (μ1, v2)|

≤C
√
‖μ1‖

2
H1

0,ω
+ ‖μ2‖

2
H1

0,ω

√
‖v1‖

2
H1

0,ω
+ ‖v2‖

2
H1

0,ω
,

which shows that A is continuous. Hence, it follows from the Lions-Stampaccia Theorem

[14] that the existence and the uniqueness of (8) - (9) are guaranteed. 2

3 Power Penalty Approach

In this section, we propose a power penalty approach to the system of DCPs (5). To this

effect, we first consider the following set of nonlinear variational inequalities.
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Problem 3.1. Find Uλ =
(
uλ

1 , u
λ
2

)>
∈ H1

0,ω(I) × H1
0,ω(I), such that, for all v ∈ H1

0,ω(I),

(
LiU

λ(S, t), v − uλ
i

)
+
(
j(uλ

i ), v − uλ
i

)
≥
(
fi, v − uλ

i

)
, i = 1, 2,

a.e. in ]0, T [, where

j (v) =
λk

k + 1
[v − u∗]

k+1
k

+ , k > 0, λ > 1, (11)

and [∙]+ = max{0, ∙}.

Since the bilinear operator A is coercive and continuous, and the operator j is lower

semi-continuous, the unique solvability of Problem 3.1 is directly obtained (cf. [14]).

It follows from (11) that j(v) is differentiable. Thus, we can get the following equivalent

form of Problem 3.1.

Problem 3.2. Find Uλ =
(
uλ

1 , u
λ
2

)>
∈ H1

0,ω(I) × H1
0,ω(I), such that, for all v ∈ H1

0,ω(I),

(
LiU

λ(S, t),
)

+
(
j′(uλ

i ), v
)

= fi(S, t), i = 1, 2

or equivalently

(

−
∂uλ

1

∂t
, v

)

+ A1(u
λ
1 , v; t) + B1(u

λ
2 , v; t) +

(
j ′(uλ

1), v
)

= (f1, v) , (12)

(

−
∂uλ

2

∂t
, v

)

+ A2(u
λ
2 , v; t) + B2(u

λ
1 , v; t) +

(
j ′(uλ

2), v
)

= (f2, v) , (13)

a.e. in ]0, T [, where

j′(v) = λ[v − u∗]
1/k
+ ,

is the power penalty term, also called l1/k penalty term with the power 1/k.

It is worth noting that Problem 3.2 is a set of penalized variational equations corre-

sponding to Problem 2.2, cf. [14]. We can easily write the strong form of (12)–(13), which

defines the set of penalized system approximating Problem 2.1, as follows:

LiU
λ(S, t) + λ[uλ

i − u∗]
1/k
+ = fi(S, t), i = 1, 2, (14)

with the given boundary and final conditions

uλ
i (S, T ) = u∗(S, T ),

uλ
i (0, t) = uλ

i (X, t) = 0, t ∈]0, T [,
(15)

for i = 1, 2. By virtue of the variable changes in (4), (6) and (7), we can obtain the l1/k

penalty approach to the original complementarity problem (1) from (14) - (15), which is

given as follows:

LiV
λ + λ[V ∗ − V λ]

1/k
+ = 0, (16)
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with terminal and boundary conditions

V λ
i (S, T ) = V ∗(S, T ),

V λ
i (0, t) = K, V λ

i (X, t) = 0,
(17)

for i = 1, 2, where V λ is the power penalty approximation to V .

In the next section, we will investigate the convergence properties of uλ to u as λ → ∞

and establish a sharp convergence rate of the power penalty method with respect to the

penalty parameter λ.

4 Convergence Analysis

4.1 An Error Bound of the Power Penalization

We now show that, under the assumption that

uλ
i ,

∂uλ
i

∂t
∈ L2(0, T ; H1

0,ω(I)) ∩ L∞(0, T ; L2(I)),

for i = 1, 2, the solution to Problem 3.2 converges to that of Problem 2.1 in an appropriate

norm as λ → ∞. We start this discussion by the following Lemma. Let Uλ be the

solution to Problem 3.2. If Uλ ∈ Lp(0, T ; Lp(I)), then there exists a positive constant C,

independent of Uλ and λ, such that for i = 1, 2,

‖[uλ
i − u∗]+‖Lp(0,T ;Lp(I)) ≤

C

λk
, (18)

‖[uλ
i − u∗]+‖L∞(0,T ;L2(I)) + ‖[uλ

i − u∗]+‖L2(0,T ;H1
0,ω(I)) ≤

C

λk/2
, (19)

where 1/k is the power of the l1/k penalty term and p = 1 + 1/k. Proof Assume that

C is a generic positive constant, independent of Uλ and λ. To simply the notation, we

denote F = (f1, f2)
>, and

Φ = (φ1, φ2)
> = [Uλ − U∗]+ =

(
max

[
uλ

1 − u∗, 0
]
, max

[
uλ

2 − u∗, 0
])>

.

Clearly, φi =
[
uλ

i − u∗
]
+
∈ H1

0,ω(I), i = 1, 2 for almost all t ∈]0, T [. Now, setting v = φ1

in (12), it follows that
(

−
∂
(
uλ

1 − u∗
)

∂t
, φ1

)

+ A1(u
λ
1 − u∗, φ1; t) + B1(u

λ
2 − u∗, φ1; t) + λ

(
φ

1
k
1 , φ1

)

= (f1, φ1) − A1(u
∗, φ1; t) − B1(u

∗, φ1; t). (20)

In the same way, we have
(

−
∂
(
uλ

2 − u∗
)

∂t
, φ2

)

+ A2(u
λ
2 − u∗, φ2; t) + B2(u

λ
1 − u∗, φ2; t) + λ

(
φ

1
k
2 , φ2

)

= (f2, φ2) − A2(u
∗, φ2; t) − B2(u

∗, φ2; t). (21)
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Integrating both sides of (20) and (21) from τ to T and adding them up deduces that

1

2

2∑

i=1

(φi, φi) +

∫ T

τ

A
(
uλ

1 − u∗, uλ
2 − u∗; uλ

1 − u∗, uλ
2 − u∗; t

)
dt

+ λ

∫ T

τ

2∑

i=1

(
φ

1
k
i , φi

)
dt

=

∫ T

τ

2∑

i=1

(fi, φi) dτ −
∫ T

τ

A (u∗, u∗; φ1, φ2; t) dt.

Employing the definition of A in (10), u∗ in (7) and fi in (6) and Hölder’s inequality, it

follows that

1

2
(Φ, Φ) +

γ

2

∫ T

τ

‖Φ‖2
H1

0,ω(I) dt + λ

∫ T

τ

||Φ||pLp(I)dt

≤
∫ T

τ

(F, Φ) dt −
∫ T

τ

A (u∗, u∗; φ1, φ2; t) dt ≤ C

(∫ T

τ

||Φ||pLp(I)dt

)1/p

,

(22)

with γ = min{σ2
1, σ

2
2}. Here we used the coerciveness of the operator A. Moreover, (22)

implies that

λ

∫ T

τ

||Φ||pLp(I)dτ ≤ C

(∫ T

τ

||Φ||pLp(I)dt

)1/p

. (23)

From this and p = 1 + 1/k, we obtain

(∫ T

τ

||Φ||pLp(I)dt

)1/p

≤
C

λ1/(p−1)
, or ||Φ||Lp(I) ≤

C

λ1/(p−1)
=

C

λk
. (24)

Thus,

‖[uλ
i − u∗]+‖Lp(0,T ;Lp(I) ≤ ||Φ||Lp(0,T ;Lp(I) ≤

C

λk
, i = 1, 2,

because of ||Φ||pLp = ‖
∑2

i=1[u
λ
i − u∗]+‖

p
Lp and p > 0. This proves (18).

Now, from (22) and (23), we deduce

1

2
(Φ, Φ) +

∫ T

τ

‖Φ‖2
H1

0,ω(I) dt ≤

(∫ T

τ

||Φ||pLp(I)dt

)1/p

≤
C

λk
,

and hence

1

2
(Φ, Φ)

1
2 +

(∫ T

τ

‖Φ‖2
H1

0,ω(I) dt

) 1
2

≤
C

λk/2
.

Since for i = 1, 2

‖[uλ
i − u∗]+‖L∞(0,T ;L2(I)) + ‖[uλ

i − u∗]+‖L2(0,T ;H1
0,ω(I))

≤‖[Uλ − U∗]+‖L∞(0,T ;L2(I)) + ‖[Uλ − U∗]+‖L2(0,T ;H1
0,ω(I)),
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we finally obtain

‖[uλ
i − u∗]+‖L∞(0,T ;L2(I)) + ‖[uλ

i − u∗]+‖L2(0,T ;H1
0,ω(I)) ≤

C

λk/2
.

2

4.2 Rate of Convergence of the Power Penalization

On the basis of Lemma 4.1, we obtain the following convergence rate of the power penalty

approach. Let assumptions of Lemma 4.1 be fulfilled. If Uλ ∈ Lp(S×]0, T [) and ∂Uλ

∂t
∈

Lq(S×]0, T [), then there exists a positive constant C, independent of uλ and λ, such that

for i = 1, 2
∥
∥uλ

i − ui

∥
∥

L∞(0,T ;L2(I))
+
∥
∥uλ

i − ui

∥
∥

L2(0,T ;H1
0 (I))

≤
C

λk/2
, (25)

where 1/k is the power of the l1/k penalty term, and p = 1 + 1/k, 1/p + 1/q = 1. Proof

We still use the notation of Lemma 4.1. First, define

[
Uλ − U∗

]
−

=
(
−min

[
uλ

1 − u∗, 0
]
,−min

[
uλ

2 − u∗, 0
])>

,

then Uλ−U∗ =
[
Uλ − U∗

]
+
−
(
Uλ − U∗

)
−

= Φ−
(
Uλ − U∗

)
−

. Hence, we can decompose

U − Uλ =
(
u1 − uλ

1 , u2 − uλ
2

)>
as

U − Uλ = (U − U∗) −
(
Uλ − U∗

)
, Rλ − Φ,

where

Rλ =
(
rλ
1 , rλ

2

)>
= (U − U∗) +

[
Uλ − U∗

]
−

. (26)

Then, it follows from (19) that, in order to prove (25), it is sufficient to show that

||rλ
1 ||L∞(0,T ;L2(I))∩L2(0,T ;H1

0,ω(I)) ≤
C

λk/2
.

Set v = u1 − rλ
1 in (8) and v = rλ

1 in (12). Then, we have
(

−
∂u1

∂t
,−rλ

1

)

+ A1(u1,−rλ
1 ; t) + B1(u2,−rλ

1 ; t) ≥ (f1,−rλ
1 ),

(

−
∂uλ

1

∂t
, rλ

1

)

+ A1(u
λ
1 , r

λ
1 ; t) + B1(u

λ
2 ,−rλ

1 ; t) + λ([uλ
1 − u∗]

1/k
+ , rλ

1 ) = (f1, r
λ
1 ).

Combining the above two formulas gives
(

−
∂(uλ

1 − u1)

∂t
, rλ

1

)

+ A1(u
λ
1 − u1, r

λ
1 ; t) + B1(u

λ
2 − u2, r

λ
1 ; t) + λ(φ

1/k
1 , rλ

1 ) ≥ 0.

But, it follows from ui ≤ u∗ that

(φ
1/k
1 , rλ

1 ) = (φ
1/k
1 , u1 − u∗) + (φ

1/k
1 , [uλ

1 − u∗]−) = ([uλ
1 − u∗]

1/k
+ , u1 − uλ

1) ≤ 0,

10



since (φ
1/k
1 , u1 − u∗) = ([uλ

1 − u∗]
1/k
+ , u1 − u∗) ≡ 0. Thus,

(

−
∂(uλ

1 − u1)

∂t
, rλ

1

)

+ A1(u
λ
1 − u1, r

λ
1 ; t) + B1(u

λ
2 , r

λ
1 ; t) ≤ 0,

and hence
(

−
∂rλ

1

∂t
, rλ

1

)

+ A1(r
λ
1 , rλ

1 ; t) + B1(r
λ
2 , rλ

1 ; t)

≤

(

−
∂φ1

∂t
, rλ

1

)

+ A1(φ1, r
λ
1 ; t) + B1(φ2, r

λ
1 ; t).

(27)

In the same way, we also have
(

−
∂rλ

2

∂t
, rλ

2

)

+ A2(r
λ
2 , rλ

2 ; t) + B1(r
λ
1 , rλ

2 ; t)

≤

(

−
∂φ2

∂t
, rλ

2

)

+ A2(φ2, r
λ
2 ; t) + B2(φ1, r

λ
2 ; t).

(28)

Then integrating both sides of (27) and (28) from τ to T and adding them up arrives at

1

2

(
Rλ (t) , Rλ (t)

)
+

∫ T

τ

A
(
rλ
1 , rλ

2 ; rλ
1 , rλ

2 ; t
)
dt

≤

(

−
∂Φ

∂t
, Rλ(t)

)

+

∫ T

τ

A
(
φ1, φ2; r

λ
1 , rλ

2 ; t
)
dt.

It follows from Cauchy-Schwartz inequality that

1

2

(
Rλ (t) , Rλ (t)

)
+

∫ T

τ

A
(
rλ
1 , rλ

2 ; rλ
1 , rλ

2 ; t
)
dt

≤
(
Φ (t) , Rλ(t)

)
+

∫ T

τ

(

Φ,
∂Rλ

∂t

)

dt +

∫ T

τ

A
(
φ1, φ2; r

λ
1 , rλ

2 ; t
)
dt

≤||Rλ||L∞(0,T ;L2(I))||Φ||L∞(0,T ;L2(I)) + C||Rλ||L2(0,T ;H1
0.ω(I))||Φ||L2(0,T ;H1

0.ω(I))

+

∫ T

τ

(

Φ,
∂Rλ

∂t

)

dt. (29)

Noting that (Φ, [U − U∗]−) = 0 and employing (7), (26) and (24) reduces
∣
∣
∣
∣

∫ T

τ

(

Φ,
∂Rλ

∂t

)

dt

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫ T

τ

(

Φ,
∂U

∂t

)

dt

∣
∣
∣
∣+

∣
∣
∣
∣

∫ T

τ

(

Φ,
∂U ∗

∂t

)

dt

∣
∣
∣
∣

≤ C‖Φ‖Lp(0,T ;Lp(I))

∥
∥
∥
∥
∂U

∂t

∥
∥
∥
∥

Lq(0,T ;Lq(I))

≤
C

λk
.

Hence, using the coerciveness of A and (29) gives

||Rλ||2L∞(0,T ;L2(I)) + ||Rλ||2L2(0,T ;H1
0.ω(I))

≤(||Rλ||L∞(0,T ;L2(I))||Φ||L∞(0,T ;L2(I))

+ ||Rλ||L2(0,T ;H1
0.ω(I))||Φ||L2(0,T ;H1

0.ω(I)) +
C

λk
)

≤ C
λk/2 (|Rλ(t)| +

∫ T

t

||Rλ||
2
H1

0 (I)dτ) +
C

λk

11



with a generic constant C > 0, which infers to the following inequality

||Rλ||2L∞(0,T ;L2(I)) + ||Rλ||2L2(0,T ;H1
0.ω(I)) ≤

C

λk/2
.

Using the triangle inequality, the above inequality and (19), we obtain

||U − Uλ||2L∞(0,T ;L2(I)) + ||U − Uλ||2L2(0,T ;H1
0.ω(I)) ≤

C

λk/2
.

Since for i = 1, 2

‖ui − uλ
i ‖L∞(0,T ;L2(I)) + ‖ui − uλ

i ‖L2(0,T ;H1
0,ω(I))

≤||U − Uλ||2L∞(0,T ;L2(I)) + ||U − Uλ||2L2(0,T ;H1
0.ω(I)),

we immediately get the following inequality

∥
∥uλ

i − ui

∥
∥

L∞(0,T ;L2(I))
+
∥
∥uλ

i − ui

∥
∥

L2(0,T ;H1
0 (I))

≤
C

λk/2
, i = 1, 2,

which proves (25). 2

4.3 The Monotonic Convergence of the Penalization

In this subsection, we will show that, when the penalty parameter λ increases mono-

tonically, the solution to the penalized problem decreases monotonically. Moreover, the

solution of the penalized problem is bounded below by that of the original DCPs. The

monotonicity of the solution sequence obtained by the power penalization is stated in the

following theorem. Let 0 < λ1 ≤ λ2 be two different penalty parameters. Then,

ui ≤ uλ2
i ≤ uλ1

i , i = 1, 2,

where ui is the solution to Problem 2.2, uλ1
i and uλ2

i are the solutions to Problem 3.2 for

λ = λ1 and λ2, respectively. Proof In (12), we set v = [uλ2
1 − uλ1

1 ]+ and λ = λ1 and λ2,

respectively. Then, it follows that

(

−
∂uλ1

1

∂t
, [uλ2

1 − uλ1
1 ]+

)

+ A1(u
λ1
1 , [uλ2

1 − uλ1
1 ]+; t) + B1(u

λ1
2 , [uλ2

1 − uλ1
1 ]+; t)

+ λ1([u
λ1
1 − u∗]

1
k
+, [uλ2

1 − uλ1
1 ]+) = (f1, [u

λ2
1 − uλ1

1 ]+),

(

−
∂uλ2

1

∂t
, [uλ2

1 − uλ1
1 ]+

)

+ A1(u
λ2
1 , [uλ2

1 − uλ1
1 ]+; t) + B1(u

λ2
2 , [uλ2

1 − uλ1
1 ]+; t)

+ λ2([u
λ2
1 − u∗]

1
k
+, [uλ2

1 − uλ1
1 ]+) = (f1, [u

λ2
1 − uλ1

1 ]+),

12



and hence
(

−
∂(uλ2

1 − uλ1
1 )

∂t
, [uλ2

1 − uλ1
1 ]+

)

+ A1(u
λ2
1 − uλ1

1 , [uλ2
1 − uλ1

1 ]+; t)

+ B1(u
λ2
2 − uλ1

2 , [uλ2
1 − uλ1

1 ]+; t)

=λ1([u
λ1
1 − u∗]

1/k
+ , [uλ2

1 − uλ1
1 ]+) − λ2([u

λ2
1 − u∗]

1/k
+ , [uλ2

1 − uλ1
1 ]+)

=(λ1 − λ2)([u
λ1
1 − u∗]

1/k
+ , [uλ2

1 − uλ1
1 ]+)

+ λ2([u
λ1
1 − u∗]

1/k
+ − [uλ2

1 − u∗]
1/k
+ , [uλ2

1 − uλ1
1 ]+).

(30)

For the first term in (30), providing that λ1 ≤ λ2, obviously,

(λ1 − λ2)
(
[uλ1

1 − u∗]
1/k
+ , [uλ2

1 − uλ1
1 ]+

)

=(λ1 − λ2)

∫ X

0

[uλ1
1 − u∗]

1/k
+ [uλ2

1 − uλ1
1 ]+dx ≤ 0.

(31)

For the second term in (30), we shall also show that

λ2

(
[uλ1

1 − u∗]
1/k
+ − [uλ2

1 − u∗]
1/k
+ , [uλ2

1 − uλ1
1 ]+

)

=λ2

∫ X

0

(
[uλ1

1 − u∗]
1/k
+ − [uλ2

1 − u∗]
1/k
+

)
[uλ2

1 − uλ1
1 ]+dx ≤ 0.

In fact, [uλ2
1 − uλ1

1 ]+ = max{uλ2
1 − uλ1

1 , 0} = 0 when uλ2
1 ≤ uλ1

1 . To calculate

∫ X

0

(
[uλ1

1 − u∗]
1/k
+ − [uλ2

1 − u∗]
1/k
+

)
[uλ2

1 − uλ1
1 ]+dx

we only need to integrate uλ2
1 − uλ1

1 over the set for which uλ2
1 > uλ1

1 . On this set, by

virtue of the monotonicity of the operator [∙]1/k
+ = (max {∙, 0})1/k, we can infer that

λ2

(
[uλ1

1 − u∗]
1/k
+ − [uλ2

1 − u∗]
1/k
+ , [uλ2

1 − uλ1
1 ]+

)
≤ 0.

Consequently, on the whole set I = [0, X ], we have

λ2

(
[uλ1

1 − u∗]
1/k
+ − [uλ2

1 − u∗]
1/k
+ , [uλ2

1 − uλ1
1 ]+

)
≤ 0. (32)

It then follows form (30) - (32) that

(

−
∂(uλ2

1 − uλ1
1 )

∂t
, [uλ2

1 − uλ1
1 ]+

)

+ A1(u
λ2
1 − uλ1

1 , [uλ2
1 − uλ1

1 ]+; t)

+ B1(u
λ2
2 − uλ1

2 , [uλ2
1 − uλ1

1 ]+; t) ≤ 0.

(33)

In the same way, we obtain

(

−
∂(uλ2

2 − uλ1
2 )

∂t
, [uλ2

2 − uλ1
2 ]+

)

+ A2(u
λ2
2 − uλ1

2 , [uλ2
2 − uλ1

2 ]+; t)

+ B2(u
λ2
1 − uλ1

1 , [uλ2
2 − uλ1

2 ]+; t) ≤ 0.

(34)

13



By adding (33) and (34) and using the coerciveness of A, we have

1

2

∥
∥Uλ2 (t) − Uλ1 (t)]+

∥
∥2

L2(I)
+ γ

∫ T

t

||[Uλ2 − Uλ1 ]+||
2
H1

0,ω(I)dτ ≤ 0,

and hence

[Uλ2 − Uλ1 ]+ = 0 and Uλ1 ≥ Uλ2 .

Finally, passing to the limit as λ2 → ∞ (for a converging subsequence), we deduce that

Uλ1 ≥ Uλ2 ≥ U.

We complete the proof. 2

Using Lemma 4.1 and Theorem 4.3 and noting that the transformation ui(S, t) =

eβt (V0(S) − Vi(S, t)) in (4), we can see that the power penalized approach (16) solves the

following DCPs 




LiV
λ ≥ 0,

V λ
i − V ∗ ≤ C

λk ,
LiV

λ ∙
(
V λ

i − V ∗ − C
λk

)
= 0,

for i = 1, 2, which is an intuitive approximation of the original DCPs (1). We also have

the sequence {V λ} is monotonically increasing when the penalty parameter λ → ∞ and

bounded above by the solution V of the DCPs (1).

5 Numerical Experiments

From the previous analysis, we establish a desirable theoretical result that the power

penalty approach to the complementary system has a very sharp convergence rate with

respect to the penalty parameter λ. In this section, we numerically verify this convergence

rate via pricing an American option under two regimes switching. To this end, we first

give a full discretization scheme of the penalized equation (16) - (17).

5.1 The Discretization Method

For brevity, we will omit the superscript λ in the discussions given below. But keep in

mind that we refer V to as the solution to the penalized equation (16) - (17) rather than

to the original complementarity problem (1). We apply the fitted finite volume scheme

[15] to the space-discretization and a full implicit scheme in time-discretization. As the

discretization of (16) - (17) is almost identical to that in [16], except the power penalty

term, we omit the details and only give the final discrete form here.

We define a space partition of I = [0, X ] as ΔSi =]Si, Si+1[, i = 0, . . . N with S0 = 0

and SN+1 = X, and a time partition of ]0, T [ as a uniform mesh with mesh points

14



τn = nΔτ for n = 0, 1, ..., L, where Δτ = T/L. Also, we let Si−1/2 = (Si−1 + Si)/2

and Si+1/2 = (Si + Si+1)/2 for each i = 2, . . . , N . These intervals Ji =]Si−1/2, Si+1/2[,

i = 0, ...N , form a second partition of I = [0, X ] if we define S−1/2 = S0 and SN+1/2 = SN .

Let V n
1,i and V n

2,i denote the approximation of V1(Si, τn) and V2(Si, τn), respectively. The

fully implicit time-stepping scheme, coupled with the fitted finite volume discretization

on space partitions, yields a fully discrete coupled system as follows:

[I + θM ] V n+1 − λΔτ
[
Λ − V n+1

]1/k

+
= [I − (1 − θ) M ] V n + Rn, (35)

where [∙]1/k
+ is a Hadamard power, I denotes the (2N − 2) × (2N − 2) unit matrix and

M = Δτ

[
M1 q1I
q2I M2

]

, V n =

[
V n

1

V n
2

]

, Λ =

[
V ∗

V ∗

]

, Rn =

[
Rn

1

Rn
2

]

.

Here, M1 and M2 denote two (N − 1) × (N − 1) matrices given by

M1 =








γ1,1 β1,1

α1,2 γ1,2 β1,2

. . . . . . . . .

α1,N−1 γ1,N−1








, M2 =








γ2,1 β2,1

α2,2 γ2,2 β2,2

. . . . . . . . .

α2,N−1 γ2,N−1








,

and V n
i and Rn

i (i = 1, 2) denote vectors given by

V n
1 = [V n

1,1, ∙ ∙ ∙ , V n
1,N−1]

>, Rn
1 =

[
α1,1V

n
1,0, 0, ∙ ∙ ∙ 0, β1,N−1V

n
1,N

]>
,

V n
2 = [V n

2,1, ∙ ∙ ∙ , V n
2,N−1]

>, Rn
2 =

[
α2,1V

n
2,0, 0, ∙ ∙ ∙ 0, β2,N−1V

n
2,N

]>
.

In the above notations, we have for j = 1, 2

αj,1 =
S1

4l1
(aj − bj) , βj,1 =

bjS3/2S
ηj

2(
S

ηj

2 − S
ηj

1

)
l1

,

γj,1 = −
S1

4l1
(aj + bj) −

bjS3/2S
ηj

1

(Sη1

2 − Sη1

1 ) l1
− cj,

and for j = 1, 2 and i = 2, . . . , N − 1

αj,i =
bjSi−1/2S

ηj

i−1(
Sη1

i − Sη1

i−1

)
li

, βj,i =
bjSi+1/2S

ηj

i+1(
S

ηj

i+1 − S
ηj

i

)
li

,

γj,i = −
bjSi−1/2S

ηj

i(
S

ηj

i − S
ηj

i−1

)
li
−

bjSi+1/2S
ηj

i(
Sη1

i+1 − Sη1

i

)
li
− cj ,

where aj = σ2
j /2, bj = rj − σ2

j , cj = ri + bj + qj and ηj = bj/aj .

We comment that in (35) the Dirichlet boundary conditions (17) at S = 0 and X have

been incorporated. Also, the initial condition is incorporated as the payoff function.

After giving the discrete system (35), we now present an iterative method to solve

it numerically. Due to the power penalty term, (35) is nonlinear and nonsmooth, which
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make the classical Newton method inapplicable. To overcome this difficulty, we apply a

nonlinear Jocobi method developed in [17] for the solution of the discrete system (35).

Denoting by

A = [I + θM ] and f = [I − (1 − θ) M ] V n + Rn,

we give the following decomposition

A = D + B,

where D = diag (a11, a22, . . . , a2N−2,2N−2) is the diagonal matrix composed of the diagonal

elements of A. With these notations, the nonlinear Jacobi iteration method is stated as

the following algorithm.

Algorithm 1. (Nonlinear Jacobi Algorithm)

• Step 1: Let n = 0;

• Step 2: Set l = 0, V̂
0

= V n, where V̂
0

= (V̂ 0
1 , V̂ 0

2 )> with V̂ 0
1 = V n

1 , V̂ 0
2 = V n

2 ;

• Step 3: Solve the following system of n one-dimensional nonlinear equations

aiiV̂
l+1

− λΔt
[
Λi − V̂

l+1
]1/k

+
= f i −

(
BV̂

l
)

i
;

• Step 4: If max
1≤i≤2N−2

∣
∣
∣V̂

l+1
i −V̂

l
i

∣
∣
∣

max
(
1,
∣
∣
∣V̂

l+1
i

∣
∣
∣
) < tol, then stop. Otherwise, set l := l + 1 and go to

Step 3.

• Step 5: Set V n+1 = V̂
l
and n := n + 1 and go to Step 2.

5.2 Numerical Examples

In this subsection, we numerically solve an American put option under two regimes switch-

ing with parameters given in Table 1 by l1 and l1/2 penalty methods, respectively.

Table 1: Data used to value American options under regime switching
Regime 1 q1 = 6 r1 = 10% σ1 = 0.8
Regime 2 q2 = 9 r2 = 5% σ2 = 0.3

T = 1 K = 9

For the put option with the parameters in Table 1, we choose X = Smax = 50 to

ensure the desirable accuracy. We keep the grid at a fixed uniform partitions of the

solution domain [0, X ]×]0, T [ with M = 450, N = 1000. In Algorithm 1, the ‘tol’ is
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chosen to be 10−6. All the numerical experiments were carried out under Matlab 2016a

Environment on a Dual Core2 2.0GHz workstation.

To examine the convergence rate of Algorithm 1 with respect to the penalty parameter

λ, we choose an increasing sequence of penalty parameters in Algorithm 1 by successively

doubling the penalty parameters. As analytical solution is unavailable, we use the solution

computed by l1/2 penalty method with the largest penalty parameter λ = 256 as the

‘exact solution’. Then, we compute the following ratios of the numerical solutions of the

consecutive penalty parameters:

Rate = log2

Eλ

E2λ
,

where Eλ =
∑2

j=1(||V
λ
j −Vj||L∞(0,T ;L2(I)) + ||V λ

j −Vj||L2(0,T ;H1
0 (I)) denotes the discrete error

computed by the power penalty method with penalty parameter λ. All the computed

results are listed in Table 2.

Table 2: Computed results by power penalty methods with fully implicit scheme on a
uniform mesh with M = 450 and N = 1000.

l1/2 penalty method l1 penalty method
λ V1 (K,T ) V2 (K,T ) Eλ Rate V1 (K,T ) V2 (K,T ) Eλ Rate
22 1.965111 1.875751 0.126334 1.935924 1.848558 0.149213
23 1.969547 1.880041 0.061626 2.1 1.950162 1.861520 0.077461 1.9
24 1.970795 1.881259 0.029771 2.1 1.959700 1.870515 0.042007 1.8
25 1.971119 1.881577 0.013189 2.2 1.965186 1.875794 0.023980 1.7
26 1.971199 1.881656 0.006615 2.0 1.968135 1.878759 0.015128 1.6
27 1.971219 1.881675 0.003214 2.0 1.969667 1.880155 0.009752 1.5

In view of Table 2, we get several conclusions. First, the columns ‘V1(K,T )’ and

‘V2(K,T )’ in Table 2 indicates that both the l1 and l1/2 penalty methods converge mono-

tonically under the given tolerance, which is consistent with the theoretical results in

Theorem 4.3. Second, the columns ‘Error’ show that with the same penalty parameters

the l1/2 penalty method gives more accurate pricing results than l1 penalty method does.

Finally, the columns ‘Rate’ suggest that the errors of the l1 and l1/2 penalty methods

are approximately of order O(1/
√

λ) and O(1/λ) respectively, confirming the theoretical

findings in Theorem 4.2.

We also plot the option values and Greeks (Delta and Gamma) of the numerical

examples computed by l1/2 penalty method in Figures 1-3, respectively. The figures show

that numerical solutions computed by the the power penalty method is qualitatively very

good. This shows that the power penalty method works very well.
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Figure 1: Option values under regimes 1 and 2, computed by l1/2 penalty method with
penalty parameter λ = 256. The fully implicit scheme is used on a uniform mesh with
M = 450 and N = 1000.
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Figure 2: Deltas under regimes 1 and 2, computed by l1/2 penalty method with penalty
parameter λ = 256. The fully implicit scheme is used on a uniform mesh with M = 450
and N = 1000.
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Figure 3: Gammas under regimes 1 and 2, computed by l1/2 penalty method with penalty
parameter λ = 256. The fully implicit scheme is used on a uniform mesh with M = 450
and N = 1000.
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6 Conclusions

We have studied the convergence property of the power penalty method for pricing Amer-

ican options under regime switching. Using the equivalence of the system of DCPs and

differential variational inequalities, we have developed a power penalty method to approx-

imate the system of DCPs. The solvability of the power penalty problem and convergence

properties of the power penalty method were established as well. Specifically, We have

shown that the solution to the system of penalized nonlinear equations converges to that

of the original DCPs at an exponential convergence rate with respect to the penalty pa-

rameter. We have also demonstrated the monotonicity of convergence of the penalization.

Finally, numerical experiment showed that the numerical rate of convergence of the power

penalty method confirms the theoretical result.
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