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ABSTRACT
Silver nano particles have antimicrobial property which makes them appropriate for disinfection.
Due to their antimicrobial feature, these particles are applicable for root canal irrigation. Fluid flow
inside root canal and its appropriate circulation results in more efficient removal of microorganisms.
Due to the very small dimensions of a root canal, performing experimental research is very difficult to
identify the phenomena occurring in the root canal; therefore, numerical investigation will be very
helpful to gain appropriate insight into the flow features of a root canal during irrigation for dis-
infection. Computation Fluid Dynamic (CFD) can be employed to numerically simulate the flow of
irrigants inside the root canal. In the present study, the flow of Ag/water nanofluid in the root canal
is numerically modeled. In order to evaluate the impact of height of injection and nanofluid con-
centration, two heights and concentrations are considered and compared. According to the results,
lower injection height is more favorable due to better circulation of an irrigant in the root canal.
Moreover, increase in the concentration of the nanofluid leads to reduction in maximum velocity of
the fluid; which is attributed to higher increase in dynamic viscosity in comparison with the density.
Velocity and wall shear stress contours in various cases are represented to gain better insight into
the irrigant motion inside the canal. According to the results of simulation, wall shear stress of the
root canal increases by increment in the concentration of the nanofluid and volumetric flow rate of
the irrigants.
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Nomenclature

g Gravitational acceleration (m/s2)
V Velocity
Sm Mass source or sink
μ Dynamic viscosity
ρ Density

Subscript

nf Nanofluid
f Fluid
p particle

1. Introduction

Disinfecting a root canal is an important stage in
endodontic treatment. In order to have an appropri-
ate removal of microorganisms, it is crucial to employ
effective antimicrobial agents. Several irrigants have been
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tested in endodontic treatment to find their advantages
and disadvantages (Akbarianrad,Mohammadian, Alhuyi
Nazari, & Rahbani Nobar, 2018; Chan, Zhang, &Cheung,
2015). Silver nano particles have antimicrobial features
and can be applied as an irrigant during endodontic treat-
ment. As an example, Luna et al. (González-Luna et al.,
2016) employed silver nano particles as final irrigant
in endodontic. The case studies in their research were
divided into four subgroups. Dispersed silver nano par-
ticles were used as the irrigant in the first group. In the
second group, sodium hypochlorite (NaOCl) in 2.25%
concentration was used as the irrigant. Combination of
dispersed nano particles and ethylenediaminetetraacetic
acid (EDTA) was applied in the third group, while saline
water was used as the irrigant for the last group. Accord-
ing to the observations, both dispersed nano particles
and NaOCl were appropriate for elimination of Entero-
coccus faecalis.Moghadas et al. (Moghadas, Narimani, &
Shahmoradi, 2012) evaluated the performance of silver
nano particles against Staphylococcus aureus and E. fae-
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calis and compared it with 5.25% NaOCl as an irrigant.
The results of the research revealed that the nano-based
irrigant was as favorable as NaOCl in preventing the
growth of bacteria in the root canal.

In addition to the type of irrigant, the irrigant flow
inside the root canal affects the quality of disinfection.
Better circulation of the irrigant is necessary to achieve
more effective removal of microorganisms. According to
the principles of fluid dynamics, the flow of an irrigant
inside the root canal depends on several factors including
the density, dynamic viscosity and mass flow rate. Com-
putational Fluid Dynamic (CFD) is a powerful approach
to obtain fluid flow and heat transfer in various geome-
tries and systems (Alizadeh et al., 2018; Ramezanizadeh,
Alhuyi Nazari, Ahmadi, & Chau, 2019). Up to now, most
of the CFD-based studies have focused on its applications
in engineering systems (Ezhilsabareesh, Rhee, & Samad,
2018; Villalpando, Reggio, & Ilinca, 2012); however, there
are some studies which employed CFD in medical sci-
ences (Borse, Bhushan, Walters, & Burgreen, 2018). For
instance, Inthavong et al. (Inthavong, Wen, Tu, & Tian,
2009) employed CFD to investigate the influence of mor-
phology of nasal cavities on heat transfer and flow of
inhaled air (Inthavong et al., 2009).

In these cases experimental research are difficult,
applying mathematical approaches, including analytical
and numerical (Chau & Jiang, 2002; Ghahremannezhad
& Vafai, 2018; Mou, He, Zhao, & Chau, 2017), is very
helpful to overcome the related issues (Faizollahzadeh
Ardabili et al., 2018; Wu & Chau, 2006). As mentioned
earlier, CFD is applicable formodeling various fluid flows
(Akbarian et al., 2018). As an example, Li (Li, 2009)
applied CFD in order to analyze fluid flow in a 1-stage
centrifugal fan. Comparison of experimental data and
numerical results revealed the applicability of CFD in
accurate flow modeling. Nakkina et al. (Rao Nakkina,
Arul Prakash, & Saravana Kumar, 2016) used CFD for
modeling the flow of fluid in spiral casing with various
configurations. Zhang et al. (Zhang, Ma, Hong, Yang, &
Fang, 2017) used CFD for modeling the flow of axial
piston pump. The numerical results showed good agree-
ment with the experimental data. Due to acceptable per-
formance of CFD-based approaches in modeling fluid
flows in different geometries, it can be useful to simulate
irrigants flow inside a root canal.

The small size of a root canal and difficulties related to
the experimental research, necessitate numerical investi-
gation of fluid flow inside the root canal. Moreover, the
impact of using antimicrobial nanofluid, as a novel irri-
gant, must be evaluated to obtain insight into its advan-
tages and disadvantages. In this article, CFD is employed
to model silver/water nanofluid as an irrigant in a root
canal. The influences of injection height, concentration of

the nanofluid and volumetric flow rate of the irrigant are
investigated and discussed. More details on themodeling
procedure and required assumptions such as boundary
conditions are represented in the following sections.

2. Methodology

The first step in root canal irrigationmodeling procedure
is defining the geometry of both canal and the needle
used for the irrigant injection. The dimensions and shape
of the canal are considered similar to ref. (Kocharian,
n.d.). The length of the canal is equal to 18mm while
the diameters at the apical pint and orifice are 0.45 and
1.57mm, respectively. The internal and external diam-
eters of the needle are assumed to be equal to 196 µm
and 320 µm, respectively. The length of the needle is
equal to 31mm. The height of injection assumed in the
present research is 3mm from the bottom of the canal.
The schematic of the model is shown in Figure 1.

The geometry of the domains are meshed to solve
the equations. In the current study, structured mesh are
used for the modeling. After evaluating the grid inde-
pendency, the optimal number of mesh is selected. The
meshed domain is shown in Figure 2. The total number
of elements in optimal condition is equal to 276209.

In order to determine the velocity field and fluid
flow inside the canal, both mass and momentum con-
servations are numerically solved. Themass conservation
equation is represented in Eq. 1 (Alizadeh, Ghasempour,
Razi Astaraei, & Alhuyi Nazari, 2016).

∂ρ

∂t
+ ∇ .(ρ�v) = Sm (1)

Figure 1. Schematic of the model.
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Figure 2. Domain with structured mesh.

Where Sm, ρ, and �v stand for mass sink or source in
the domain of flow, density of the irrigant and the vec-
tor of velocity, respectively. The utilized equation for
momentum conservation is:

∂(ρ�v)

∂t
+ ∇ .(ρ�v.�v) = −∇p + ∇ .τ̄ + ρ�g + �F (2)

Where ρ, p, and ρ�g are the fluid’s density, pressure
field and the body force due to gravitional acceleration,
respectively.Moreover, �F and τ̄ refer to external force and
the tensor of stress, respectively. The stress tensor can be
obtained as:

τ̄ = μ[(∇ .�v + ∇ .�vT) − 2
3
∇ .�v.I] (3)

Where μ and I are dynamic viscosity and the unit ten-
sor, respectively. The applied model for turbulence is k-ε.
Details of this model is represented in Ref (Raisee, Nour-
sadeghi, Hejazi, Khodaparast, & Besharati, 2007). It is
assumed that the flow inside the root canal is incompress-
ible and steady. The utilized boundary conditions for the
wall of the canal is no slip. The inlet and outlet condi-
tion for the fluid flow in the needle are volumetric flow
rate and pressure outlet. ANSYS CFX 17.0 is employed
for solving the equations and numerical calculations. The
defined criterion for convergence was residual lower than
10−5 for the applied equations.

Thermophysical features of nanofluids such as den-
sity and dynamic viscosity depend on the concentra-
tion and temperatures (M. H. Ahmadi et al., 2018;
Mohammad Hossein Ahmadi, Ahmadi, Nazari, Mahian,
& Ghasempour, 2018; Mohammad Hossein Ahmadi,
Mirlohi, Alhuyi Nazari, & Ghasempour, 2018; Baghban,
Jalali, Shafiee, Ahmadi, & Chau, 2019; Ramezanizadeh,
Ahmadi, Ahmadi, & Alhuyi Nazari, 2018). In this study,
it is assumed that the fluid flow is single phase, isothermal
and the ambient temperature is 20°C. According to the
literature review, the density of nanofluids can be deter-
mined as (Hemmat Esfe, Saedodin, Biglari, & Rostamian,

Table 1. Properties of the base fluid and nano particles (Hemmat
Esfe et al., 2016).

Nano particle density (g/cm3) 10.5

Water density (g/cm3) 0.998
Shape of nano particles Spherical
Color of particles Black
Water viscosity (cP) 0.89

2016):

ρnf = ϕρp + (1 − ϕ)ρf (4)

In the above relationship, ρnf , ρp, and ρf are density of
nanofluid, solid particles and the pure fluid, respectively.
ϕ refers to the volumetric concentration of nano-sized
solid particles in the base fluid. The data used for dynamic
viscosity for the nanofluid are obtained from the study
performed byEsfe et al. (Hemmat Esfe et al., 2016). In this
study, the size of the particles is approximately 30-50 nm.
The values of density for the base fluid and properties of
the nano particles are shown in Table 1.

3. Results and Discussion

In this section, the results of the numerical simulation are
represented and discussed. Two concentrations, includ-
ing 0.01 and 0.0025 are considered in simulation and the
obtained results are comparedwith purewater.Moreover,
the influence of volumetric flow rate on the contour of
velocity is investigated. First of all, the obtained results in
the case of using water for irrigation is represented. As
shown in Figure 1 Schematic of the model

Figure 3, when the volumetric flow rate is equal to
0.15 mL/s, the maximum velocity of the irrigant is equal
to 5.865 m/s, while by increase in the flow rate to 0.25
mL/s, the highest velocity reaches 9.923m/s. The highest
velocity of irrigant exist in the needle; while itsmaximum
value in the canal obtained at the outlet of the needle as
it was anticipated. Since no slip boundary condition is
assumed at thewall of the canal, increase in flow rate leads
to higher velocity gradient which means improvement in
wall shear stress.
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a)

b)

Figure 3. Velocity contours for water with volumetric flow rate of (a) 0.15mL/s, (b) 0.25mL/s

In addition to the velocity contours, the wall shear
stress is another factor which influences on the qual-
ity of disinfection. Measurement of shear stress on the

wall of the canal is very difficult due to its very small
size and dimensions; therefore, CFD can be very useful
for obtaining its values at different locations (Kocharian,



258 M. GHALANDARI ET AL.

a)

b)

Figure 4. wall shear stress for water as irrigant in (a) 0.15mL/s, and (b) 0.25mL/s

n.d.). Shear stress at the wall of a root canal act as a force
in tangential direction which has influence on debride-
ment of the wall (Kocharian, n.d.). Lack of force in
tangential direction means inappropriate debridement.
Increase in thewall shear stressmeans better disinfection.
In order to evaluate the impact of flow rate on the wall

shear stress, the related contours are obtained for both
cases as shown in Figure 4. As it is illustrated, increase
in volumetric flow rate from 0.15mL/s to 0.25mL/s
results in increment in maximum wall shear stress from
approximately 65 Pa to 168 Pa. Since higher shear stress
indicates improved disinfection, increase in flow rate is
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a)

b)

Figure 5. Velocity contours for nanofluid with volumetric flow rate of 0.15mL/s and concentration of (a) 0.0025, (b) 0.01.

recommended to enhance the quality of microorganism
removal.

In order to evaluate the influence of adding nano par-
ticles into the water on fluid flow, the velocity contours
for the nanofluids in two concentrations, 0.0025 and
0.01, are obtained. In the case of 0.15mL/s volumetric
flow rate, as illustrated in Figure 5, the highest veloc-
ities of the nanofluids inside the canal are 5.861 and
5.848 m/s for 0.0025 and 0.01 volumetric concentrations,

respectively. As shown in Figure 6, when the volumet-
ric flow rate is 0.25mL/s, the maximum velocities for
the nanofluids with 0.0025 and 0.01 volumetric concen-
trations are 9.917 and 9.896 m/s, respectively. Higher
velocity of the nanofluid with lower concentration can be
attributed to its lower dynamic viscosity. Since the act-
ing forces on the irrigant are gravitional and friction, and
the increased ratio in the dynamic viscosity is higher than
density, the maximum velocity of the nanofluid with 0.01
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a)

b)

Figure 6. Velocity contours for nanofluid with volumetric flow rate of 0.25mL/s and concentration of (a) 0.0025, (b) 0.01.

concentration is lower than the concentration of 0.0025
(since no slip boundary condition is assumed at the wall
of the needle).

Similar to the case of using water, the wall shear stress
contours are determined for the nanofluids as irrigants as
shown in Figure 7 and Figure 8. In the cases of 0.15mL/s
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a)

b)

Figure 7. Wall shear stress contours for nanofluid with volumetric flow rate of 0.15mL/s and concentration of (a) 0.0025, (b) 0.01.

volumetric flow rate of the nanofluid, the maximum wall
shear stress for 0.0025 and 0.01 volumetric concentra-
tions are 66.91 and 72.49 Pa, respectively. These values

are higher than the corresponded value of water as irri-
gant which is 65.13 Pa. In Figure 8, the wall shear stress
for the nanofluids is illustrated. The volumetric flow rate



262 M. GHALANDARI ET AL.

a)

b)

Figure 8. Wall shear stress contours for nanofluid with volumetric flow rate of 0.25mL/s and concentration of (a) 0.0025, (b) 0.01.

in this case is equal to 0.25mL/s. As shown in Figure 8,
increase in dynamic viscosity results in improved wall
shear stress in both concentrations in comparison with

pure water as irrigant. Increased wall shear stress is
attributed to enhanced dynamic viscosity. Therefore, it
can be concluded that higher concentration of nanofluids
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can be more appropriate on the basis of increment in
antimicrobial phase and wall shear stress.

4. Conclusion

In this article, fluid flow inside root canal was inves-
tigated. Applied irrigants were pure water, Ag/water
nanofluid, which is an antimicrobial agent, in 0.01 and
0.0025 volume concentrations. Two volumetric flow rates
including 0.15 and 0.25mL/s were considered to assess
its effect on velocity and wall shear stress. The results
of numerical simulation indicated increase in concentra-
tion of the nanofluid led to reduction in velocity which
was attributed to dynamic viscosity increase and no
slip boundary condition. However, the wall shear stress
increased by volumetric concentration mainly due to
improved dynamic viscosity. According to the obtained
data, increase in flow rate is recommended for root canal
disinfection due to better circulation of irrigant inside
the root canal and enhanced wall shear stress which
means better removal of microorganisms. According to
the simulation results, increment in the concentration
of the nanofluids led to higher wall shear stress which
is mainly due to increased dynamic viscosity of the
nanofluid. Although the features of fluid flow inside the
root canal are obtained successfully, experimental results
are required to more accurately evaluate the utilized
model. Future studies should focus on various shape and
geometry of root canals and needles. Moreover, investi-
gating the influence of injection height can be very useful
to obtain insight into its impact in order to achieve more
efficient disinfection.
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