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ABSTRACT
We propose a novel two-party privacy-preserving classification solution called Collaborative
Classification Mechanism for Privacy-preserving (C2MP2) over horizontally partitioned data that
is inspired from the fact, that global and local learning canbe independently executed in twopar-
ties. This model collaboratively trains the decision boundary from two hyper-planes individually
constructedby its ownprivacy data andglobal data. C2MP2 can hide true data entries and ensure
the two-parties’ privacy. We describe its definition and provide an algorithm to predict future
data point based on Goethals’s Private Scalar Product Protocol. Moreover, we show that C2MP2

can be transformed into existing Minimax Probability Machine (MPM), Support Vector Machine
(SVM) and Maxi–Min Margin Machine (M4) model when privacy data satisfy certain conditions.
We also extend C2MP2 to a nonlinear classifier by exploiting kernel trick. Furthermore, we per-
form a series of evaluations on real-world benchmark data sets. Comparison with SVM from the
point of protecting privacy demonstrates the advantages of our newmodel.
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1. Introduction

Collecting training and predicting data are two neces-
sary steps in the pattern classification system. Those
data instances are generally distributed in different par-
ties. Traditional classifiers deal with the data under the
assumption that all parties’ data can be free accessed
and centralized at the data centre. Currently, privacy
concerns may prevent the parties from directly shar-
ing the data and some confidential information about
the data. It is well documented [1–4] that the unlim-
ited exposing of privacy through the Internet and other
media has reached a point where threats against privacy
are very common and deserve serious concern.

Generally, there are mainly two kinks of approaches
for privacy-preserving classification: the perturbation-
based approach [5] and the cryptography-based
approach [6]. The methods based on perturbation have
been widely used for datamining, however, when being
used for classification, those methods must have a
trade-off between privacy and accuracy. The meth-
ods based on cryptography can safely preserve privacy
without loss of accuracy, however, have high computing
and communication costs.

Each privacy-preserving classifier may face the two
scenarios: the vertically distributed data [7] and the
horizontally distributed data [6,8]. In the first scenario,
the features of one entry may be distributed in multi-
parties. In the second scenario, each entity holds all the

feature values for its own group of parties while other
entities hold similar data for other groups of parties.

Global and local learning is a recently emerging field,
to the best of our knowledge, the idea was firstly intro-
duced by Lanckriet et al. in the Minimax Probability
Machine (MPM) [9], this model utilizes a given mean
and covariance matrix of each class to render individ-
ual global data, and tries to minimize the probability
of misclassification of future data points in a worst-
case setting, as a result, an optimal linear discrimi-
nant is obtained with an explicit upper bound on the
probability of misclassification of future data. Follow-
ing this idea, Huang et al. presented a unified theory
of the Maxi–Min Margin Machine (M4) [10,11] that
collaboratively learns from local and global data and
its connections with SVM, MPM and LDA are estab-
lished. Furthermore, Deng et al. proposed a new clas-
sifier called Minimax-probability Based Fuzzy Hyper-
ellipsoid Machine (MP-FHM) [12] where global data
are represented by the centre and radius of hyper-
ellipsoid. Also, in recent research [13], a bridge between
theMinimumEnclosing Ball (MEB) [14] and the Fuzzy
Inference Systems (FIS) was established. Those stud-
ies demonstrated that collaborating on classification
with local data and global data gives advantages to a
classifier.

From the viewpoint of privacy-preserving, local
data can be considered as privacy data, and global
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data can be estimated from local data. In turn, when
some conditions are satisfied, local data cannot be
derived from global data and privacy information will
not be revealed from global data. Hence, global data
can be appropriately used to hide privacy informa-
tion in a classification scheme. A fact in the real
world is that one’s privacy should be shielded only
from others, and should be freely accessed by oneself.
Those findings motivate us to develop the proposed
model.

In this paper, we focus on a two-category classi-

fication task in which Alice holds X(A) = {x(A)
i }N

(A)
x

i=1
and Y(A) = {y(A)

j }
N(A)
y

j=1 , Bob holds X(B) = {x(B)
i }N

(B)
x

i=1 and

Y(B) = {y(B)
j }

N(B)
y

j=1 , where x(A)
i , x(B)

i ∈ R
n with positive

label and y(A)
j , y(B)

j ∈ R
n with negative label. The two

parties want to collaboratively learning a classifier from
those samples. By the traditional method, those data
may be centralized to train a classifier, however, for
privacy concerns, X(A) and Y(A) owned by Alice are
prohibited from being accessed by Bob, likewise X(B)

and Y(B) are shielded from Alice.
Our proposed Collaborative Classification Mecha-

nism for Privacy-Preserving (C2MP2) is different from
existing privacy-preserving classifiers for its collabo-
rative mechanism. Our approach bases on the fol-
lowing idea. Alice and Bob can individually get their
local classifiers by training their local data, and the
two local classifiers can be combined to get a jointed
decision. From the view point of global and local
learning, inaccuracy of local classifier can be compen-
sated by introducing global information to the local
classifiers.

As shown later, C2MP2 is closely related to the three
models, namely M4, MPM and SVM. Another impor-
tant feature of the C2MP2 is that no any third party
needs and its training and testing algorithm can be
executed only within two parties.

The third feature of our proposed model is that the
linear version of C2MP2 can be extended to more pow-
erful nonlinear classification approach by using kernel
trick.

The paper is organized as follows. In the next section,
we overview the related preliminaries and definitions.
In Section 3, we introduce the unkernelized linear ver-
sion of C2MP2 model in detail, including its definition,
collaborativemechanism, solvingmethod, secure train-
ing and testing algorithms. In this section, we will also
analyse its various connections with the existing M4,
MPM and SVM models. Following that, we demon-
strate the kernelized nonlinear version of C2MP2. We
then, in Section 5, evaluate the unkernelized linear ver-
sion and kernelized nonlinear version of C2MP2 on
real-world benchmark data sets. Finally, we summarize
the main results of the paper, give concluding remarks
and envision possible future work in Section 6.

2. Related preliminaries

Privacy Information.Most privacy concerns can be clas-
sified as either unwanted intrusions into an individual’s
private life, or the right to control the uses of per-
sonal information about oneself [15]. In this paper,
we assume that all raw data except label attribute can
be regarded as privacy, and should be shielded against
other parties, thus, local data equal to private data.

Global Data are those data, which summarize the
data and provide the practitioners with knowledge on
the structure of data [10]. In this paper, the mean value
and covariancematrix denoted as {x̄,�x} and {ȳ,�y} in
each category data represent global data respectively.

Secure Two-party Computation [16,17] deals with
computing any function on any input in a distributed
network. Each participant holds one of the inputs while
ensuring that no more information is revealed to a par-
ticipant in the computation that can be inferred from
the participant’s input and output.

Homomorphic Encryption Scheme (HES) [18,19] is
a public-key cryptosystem represented by a triple
(Gen,Enc,Dec), in which, Gen is the key genera-
tor, encryption algorithm Enc and its corresponding
decryption algorithm satisfy that, given any two cipher-
text Enc(A) and Enc(B), there exists a cipher-text
Enc(A ∗ B) such that Enc(A) ∗ Enc(B) = Enc(A ∗ B),
hereafter Dec(Enc(A ∗ B)) = (A ∗ B), where ∗ is an
algebraic operation in Group G. This property can be
used to construct a secure inner product when ∗ is
addition operation.

3. Privacy-preserving classification scheme

In the following, we first present the definition and for-
mulation of unkernelized linear version of C2MP2, then
introduce its collaborative idea and discuss its connec-
tions with other models includingM4,MPM and SVM.
In this section, we also present its training and testing
algorithms and analyse their security.

3.1. Linear version of C2MP2

Following previously described data distribution, let
N(A) = N(A)

x + N(A)
y and N(B) = N(B)

x + N(B)
y respec-

tively denote the number of data entries held by Alice
and Bob, let N = N(A) + N(B) denote the total num-
ber of data entries. Hereafter, we denote the covariance
matrix of positive class and that of negative class as �x
and �y.

We wish to determine a hyperplane f (z) = wTz +
b, where w ∈ R

n\{0} and b ∈ R, which separates the
above horizontally distributed two classes of data as
robustly as possible. Future data points z for which
f (z) ≥ 0 will be then classified as positive class; oth-
erwise, they will be classified as negative class. The
procedure of training and testing should guarantee
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that the private data entries in X(A) and Y(A) cannot
be disclosed to Bob, and Bob’s data entries should be
also shielded against Alice. Moreover, when testing the
future data z held by Tom, the privacy of z should not
be disclosed to any other party.

We construct the first classifier with the privacy data
of Alice and the global data, such that the privacy data
of Alice is shielded. This classifier can be reasonably
expressed as

max
wa �= 0,ba

ρa (1)

s.t.
(wa

Tx(A)
i + ba)√

waT�xwa
≥ ρa,

i = 1, 2, . . . ,N(A)
x , (2)

−(wa
Ty(A)

j + ba)√
waT�ywa

≥ ρa,

j = 1, 2, . . . ,N(A)
y . (3)

The second classifier is constructed likewise for
using only the privacy data of Bob, and can be also
reasonably expressed as

max
wb �= 0,bb

ρb (4)

s.t.
(wb

Tx(B)
i + bb)√

wbT�xwb
≥ ρb,

i = 1, 2, . . . ,N(B)
x , (5)

−(wb
Ty(B)

j + bb)√
wbT�ywb

≥ ρb,

j = 1, 2, . . . ,N(B)
y , (6)

where �x,�y ∈ R
n×n respectively denote the covari-

ance of positive class and negative class, both are sym-
metric and positive semi-definite.

The first classifier described by (1)–(3) tries to maxi-
mize the margin defined as the minimumMahalanobis
distance between the privacy training samples of Alice.
This classifier uses only the local data held by Alice and
the covariance matrices of the two classes, and can be
executed only beAlice, without disclosure of Alice’s pri-
vacy. The second classifier described by (4)–(6) works
likewise and can protect the privacy of Bob. Compared
to SVM and M4, C2MP2 divides the whole classifier
into two separated classifiers for protecting local pri-
vate data. We concede that due to the absence of the
opposite party’s local private data, individual classifiers
are biased and yield decision errors. However, we will
show in the following that the injection of bias will
be compensated by jointly combining the two decision
hyperplanes.

For dealing with the nonseparable case, we intro-
duce slack variables. Thus, the optimization of the first

classifier is changed into

max
wa �= 0,ba,ξk

ρa − Ca

N(A)∑
k=1

ξk (7)

s.t.
(wa

Tx(A)
i + ba)√

waT�xwa
≥ ρa − ξi, (8)

i = 1, 2, . . . ,N(A)
x ,

−(wa
Ty(A)

j + ba)√
waT�ywa

≥ ρa − ξ
(N(B)

x +j),

j = 1, 2, . . . ,N(A)
y . (9)

In a similar way, the second classifier described
by (4)–(6) can be rewritten as

max
wb �= 0,bb,εk

ρb − Ca

N(A)∑
k=1

εk (10)

s.t.
(wb

Tx(A)
i + bb)√

wbT�xwb
≥ ρb − εi, (11)

i = 1, 2, . . . ,N(B)
x ,

−(wb
Ty(A)

j + bb)√
wbT�ywb

≥ ρb − ε
(N(B)

x +j), (12)

j = 1, 2, . . . ,N(B)
y , (13)

where ξk and εk are nonnegative slack variables, which
can be considered as the degree how the local train-
ing data disobey the margin (ρa and ρb). Func-
tionally, Ca and Cb are positive penalty parameters,
thus, Ca

∑N(A)

k=1 ξk and Cb
∑N(B)

k=1 εk can be conceptu-
ally regarded as training errors or the empirical errors.
In other words, the two optimizations (7)–(9) and
(10)–(12) successfully maximize the minimum margin
while minimizing the total training errors respectively.

The above two classifiers in (7)–(9) and (10)–(12)
constitute the unkernelized linear version of C2MP2.
As can be clearly observed, the optimization (7)–(9)
is similar to M4 [11], i.e. this optimization can be
cast as a sequential Second Order Cone Programming
(SOCP) problem with the O(N(A)n3) time complexity.
The problem defined by (10)–(12) can be solved like-
wise. Thus the total time complexity for solving the
unkernelized linear version of C2MP2 isO(Nn3) which
is equal to M4.

By solving the above two sequential SOCP problems,
we can obtain their corresponding solutions {wa

∗, ba∗}
and {wb

∗, bb∗}, then a decision hyperplane protect-
ing privacy of Alice can be represented as fa(z) =
wa
∗Tz + ba∗ and another hyperplane protecting pri-

vacy of Bob as fb(z) = wb
∗Tz + bb∗.
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3.2. How collaborativemechanismworks

Several natural questions for the linear version of
C2MP2 are how to get �x and �y, why disclosure
of covariance will not disclose the privacy, and how
to achieve a final decision hyperplane from the sepa-
rated fx(z) and fy(z). In this section, we address those
problems.

The whole positive class data X are horizontally split
into X(A) and X(B), let Nx = N(A)

x + N(B)
x denote the

total number ofX, themean value ofX can be estimated
by

x̄ = 1
Nx

Nx∑
i=1

xi

= 1
Nx

(
N(A)
x × x̄(A) + N(B)

x × x̄(B)
)
.

(14)

The covariance of X can be estimated from

�x = 1
Nx

Nx∑
i=1

(xi − x̄)(xi − x̄)T

= 1
Nx

⎛
⎝N(A)

x∑
i=1

(
x(A)
i − x̄

)(
x(A)
i − x̄

)T⎞⎠

+ 1
Nx

⎛
⎝N(B)

x∑
j=1

(
x(B)
j − x̄

)(
x(B)
j − x̄

)T⎞⎠
= �(A)

x +�(B)
x . (15)

As observed form (14) and (15), for obtaining x̄, Alice
(resp. Bob) can firstly require N(B)

x and x̄(B) (resp. N(A)
x

and x̄(A)) from Bob (resp. Alice), then Alice and Bob
can respectively calculate �

(A)
x and �

(B)
x . Finally, com-

bining opponent’s component, �x can be shared by
both Alice and Bobwithout disclosure x(A)

i and x(B)
j .�y

can be calculated likewise.
Some researches have shown that disclosure of sta-

tistical values may lead to leakage of privacy [20], in
this paper, we focus on preventing opponent to deduce
raw data from the covariance matrix. Assuming that
Bob wants to deduce x(A)

i fromN(A)
x , x̄(A) and�

(A)
x that

are all information shared from Alice to Bob. From the
formula of x̄(A), Bob can build n linear equations with
n× N(A)

x variables. Generally, those equations are lin-
ear independent, thus the equations cannot be solved
and actual value of x(A)

i cannot be deduced. On the
other hands, deducing x(A)

i from �
(A)
x equals to solve

the quadratic multivariate(QM) equations with n(n+
1)/2 equations and n× N(A)

x variables, this problem is
known to be NP-hard over any field [21,22].

For achieving a joint decision from fa(z) and fb(z),
theoretically inspired from the schemes of combining
classifiers [23] and collaborative learning [24], we can
consider those points which locate in the margin area

and are equally far from fa(z) and fb(z) with Maha-
lanobis distance, a point set will thus be given by

|fa(z)|√
wa∗T�xwa∗

= |fb(z)|√
wb∗T�ywb∗

,

sign(fa(z)fb(z)) < 0.

(16)

The roots of (16) constitute a final hyperplane. If
we denote sa =

√
wa∗T�xwa∗, sb =

√
wb∗T�ywb∗, and

w = sywa
∗ + sawb

∗, b = sbbb∗ + sabb∗, then the final
decision hyperplane can be jointly expressed as

f (z)=(sbwa
∗ + sawb

∗)Tz + (sbba + sabb) = wTz + b.
(17)

For a future unlabelled point z, one can predict the label
of z by evaluating f (z): if f (z) > 0, assigns z as positive
label, if f (z) < 0, assigns z as negative label.

This collaborative mechanism can be considered as
a modified median rule of combining classifiers [23],
which uses average over Mahalanobis distance instead
of arithmetical average. Moreover, Mahalanobis dis-
tance takes into account the global information of
the data set, including compactness and orientation,
so, the final hyperplane combined by this mechanism
can achieve a more reasonable decision than individ-
ual classifier. Meanwhile, this collaborative strategy can
compensate the previously described bias introduced
by individual classifiers. Later experimental results on
real data sets also demonstrate its effectiveness.

3.3. Connections with othermodels

In this section, based on the above linear separable
version of C2MP2, we build the connections between
C2MP2 and other model.

3.3.1. Connection withM4

If one assumes wa = wb = w, ba = bb = b, ρa = ρb =
ρ, (1)–(3) and (4)–(6) can be combined into the
following

max
ρ,w �= 0,b

ρ (18)

s.t. (wTxi + b) ≥ ρ
√
wT�xw,

i = 1, 2, . . . ,Nx, (19)

−(wTyj + b) ≥ ρ

√
wT�yw,

j = 1, 2, . . . ,Ny, (20)

(18)–(20) is exactly the M4 optimization [10,11].
M4 uses both global and local private data, how-

ever, the local private data are directly shared with each
other, so, M4 is a centralized model without privacy-
preserving. In comparison, C2MP2 is a distributed
model which collaboratively deals with local private
data and combines two classifiers to achieve the goal of
privacy-preserving.
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3.3.2. Connection withMPM
Following the path fromC2MP2 toM4, adding up allNx
constraints in (19) together and average this sum, one
can immediately obtain the following:

(
wT∑Nx

i=1 xi + Nxb
)
≥ Nxρ

√
wT�xw

⇒ (wTx̄+ b) ≥ ρ
√
wT�xw.

(21)

Similarly, from the Ny constraints in (20), one can
obtain

− (wTȳ+ b) ≥ ρ

√
wT�yw. (22)

Adding up (21) and (22), then the two optimizations
can be combined into one optimization, i.e.

max
ρ,w �= 0

ρ

s.t. wT(x̄− ȳ) ≥ ρ(
√
wT�xw+

√
wT�yw).

(23)

Equation (23) is exactly the MPM optimization [9].
Note, the above derivation cannot be reversed, this

means that MPM is looser than C2MP2. From the
viewpoint of privacy-preserving, MPM is a centralized
model of C2MP2, the centralization takes effect when
setting wa = wb = w, ba = bb = b and ρa = ρb = ρ.
On the other hand, only global data are used and all
local private data are ignored in MPM, this inobser-
vance may cause inaccurate. Although of those discus-
sions, we must emphasize that the original goal of the
MPM is not for privacy-preserving but to provide guar-
antees with respect to classification accuracy, here, we
only explore this model freshly from the viewpoint of
privacy-preserving.

3.3.3. Connection with SVM
Under the same assumptions that wa = wb = w, ba =
bb = b, ρa = ρb = ρ and a additional assumption
�x = �y = �, one can combine (1)–(3) and (4)–(6)
together, one can obtain

max
ρ,w �= 0,b

ρ (24)

s.t. (wTxi + b) ≥ ρ
√
wT�w,

i = 1, 2, . . . ,Nx, (25)

−(wTyj + b) ≥ ρ
√
wT�w,

j = 1, 2, . . . ,Ny. (26)

Notice that magnitude of w will not influence the
optimization, one can set ρ

√
wT�w = 1 without loss

of generality. Additionally, if one assumes� = I, where

Table 1. Differences and connections between C2MP2, MPM,
SVM and M4.

Classifier

Capability of
privacy

preserving
Using

global data
Using local

data

Distributed
(Yes) or

Centralized
(No)

C2MP2 Yes Yes Yes Yes
MPM Yes Yes No No
SVM No No Yes No
M4 No Yes Yes No

I is the unit matrix, then (24)–(26) becomes

min
w �= 0,b

wTw (27)

s.t. (wTxi + b) ≥ 1, i = 1, 2, . . . ,Nx,
(28)

−(wTyj + b) ≥ 1, j = 1, 2, . . . ,Ny. (29)

Equations (27)–(29) exactly mean the standard SVM
model.

Assumingwa = wb = w, ba = bb = b, ρa = ρb = ρ

and �x = �y = �, means SVM is also a centralized
model of C2MP2. Assuming � = I means SVM dis-
cards orientation or shape information [11], and uses
only local private data. So, SVM can be considered as a
centralized model without privacy-preserving.

It is worth stressing that the goal of this paper is nei-
ther to beat M4, MPM or SVM from the point view of
classification accuracy nor to design a novel cryptosys-
tem, we only try to explore applicability of cooperating
global and local data for privacy-preserving based on
the M4 framework.

As the end of this section, we summarize those dif-
ferences and connections among the four models in
Table 1.

3.4. Secure training algorithm for linear version of
C2MP2

As previously, the theoretical analysis is on R, while
for modular operation in testing and computing Gram
matrix, all values should be in a bounded region before
employing the training algorithm. Usually, attributes
are presented with fixed precision floats, we can encode
them as integers by scaling each attribute to the range
[−M,M]. Of course, we have to use the same method
to scale testing data before testing.

We then introduce Algorithm 1 which states the
training procedure of the linear version of C2MP2 and
in which the communication between Alice and Bob is
considered.

After running Algorithm 1, both parties can com-
pute the final output from the received messages, mean
and covariance of both sides. Consequently, neither
of them can learn additional information besides the
mean, the covariance, and the decision function (17).
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Algorithm 1 Training algorithm for linear version of
C2MP2

Input: Alice with X(A), Y(A) and Bob with X(B), Y(B)

1. Alice sends {N(A)
x , x̄(A)} and {N(A)

y , ȳ(A)} to Bob
2. Bob sends {N(B)

x , x̄(B)} and {N(B)
y , ȳ(B)} to Alice

3. Alice and Bob independently calculate {x̄, ȳ} by
(14)

4. Alice and Bob independently calculate {�x,�y} by
(15)

5. Alice obtains {wb
∗, bb∗} by solving (10)-(12)

6. Bob obtains {wa
∗, ba∗} by solving (7)-(9)

7. Alice sends {wb
∗, bb∗} to Bob

8. Bob sends {wa
∗, ba∗} to Alice

9. Alice and Bob compute the final decision hyper-
plane (17)

3.5. Secure testing algorithm for linear version of
C2MP2

Once the final decision hyperplane (17) is securely con-
structed for each party, to predict a future point z held
by Tom using (17), we need to guarantee that z does not
be disclosed to any other party.

When z is held by either Alice or Bob, because (17) is
equally shared by them, testing can be computed only in
the partywhoholds z andno exchanging data is needed,
in this scenario, testing is naturally secure. However,
for commercial interests or protecting intellectual prop-
erty, (17) can be considered as classification knowledge
rule, so, Alice and Bob do not want to disclose this
rule to Tom. For example, an online anti-spam mail
provider does not open its classification rule to public,
while distinguishing between spam and normal email
for customer without revealing the personal privacy.

Based on the existing secure scalar product protocol
[18] and the Paillier homomorphic cryptosystem [19],
we propose Algorithm 2 to compute scalar production
w · z and then predict the label of z. Consider the equal-
ity on sharing (17) with Alice and Bob, we can assume
that the testing service is provided by Alice.

Algorithm 2 can be seen as a special case of Proto-
col3 proposed by Goethals et al.[18] on the condition
of Sb← 0. Goethals et al. [18] has given a formal secu-
rity proof in the semi-honest model. Here we apply this
protocol to executing our testing procedure.

After executing Algorithm 2, Alice obtains no more
knowledge than w · z and the predicted label of z, Tom
obtains no new knowledge than the predicted label
of z.

Our proposed Algorithm 2 as well as PP-SVM [25]
borrows the same idea from the scalar production
protocol [18]. However, a semi-honest third party is
avoided in ourmodel, while in PP-SVMmodel, it works
for both testing and training.

Algorithm 2 Testing algorithm for linear version of
C2MP2
Input: Service provider Alice holds w and secure

homomorphic encryption system keypair (sk, pk)
Input: Customer Tom holds a future point z
Output: Tom receives the predicted label of z
1. for k = 1 · · · n do
2. Alice generates a random nonce rk
3. Alice computes ck← Encpk(wk; rk) and sends ck

to Tom
4. end for
5. Tom computes C←∏n

k=1 ckzk
6. Tom sends C to Alice
7. Alice computes Decsk(C) = w · z
8. Alice computes sign(w · z + b) to predict the label

of z and sends the label to Tom

4. Kernelization

In order to handle nonlinear classification problems,
we seek to use the kernelization trick to map the n-
dimensional data points into a high-dimensional fea-
ture spaceR

f via a mapping function ϕ : Rn 	→ R
f , i.e.

xi 	→ ϕ(xi), yi 	→ ϕ(yi), i = 1, . . . ,Nx, j = 1, . . . ,Ny,
then, a linear hyperplane fk(z) = aTϕ(z)+ bk in space
R
f corresponds to a nonlinear hyperplane in the orig-

inal space R
n where a,ϕ(z) ∈ R

f , z ∈ R
n, b ∈ R. We

will demonstrate that, although C2MP2 possesses a sig-
nificantly different optimization from MPM, the ker-
nelization method used in [9] is still viable, provided
that suitable estimates for means and covariance matri-
ces are applied therein. This method has been also
extended to MEMPM [26] and M4 [11]. The similar
kernelization method for C2MP2 is described in the
following.

After being kernelized, (1)–(3) in the feature space
can be written as

max
α �= 0,ba

ρa (30)

s.t.
(αTϕ(x)(A)

i + ba)√
αT�

(A)
ϕ(x)α

≥ ρa,

i = 1, 2, . . . ,N(A)
x , (31)

−(αTϕ(y)(A)
j + ba)√

αT�
(A)
ϕ(y)α

≥ ρa,

j = 1, 2, . . . ,N(A)
y . (32)

Equations (4)–(6) can be also written as

max
β �= 0,bb

ρb (33)

s.t.
(βTϕ(x)(B)

i + bb)√
βT�

(B)
ϕ(x)β

≥ ρb,
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i = 1, 2, . . . ,N(B)
x , (34)

−(βTϕ(y)(B)
j + bb)√

βT�
(B)
ϕ(y)β

≥ ρb,

j = 1, 2, . . . ,N(B)
y , (35)

where �
(A)
ϕ(x) and �

(A)
ϕ(y) are the covariance matrices

of X(A) and Y(A) in the feature space. Likewise for
�

(B)
ϕ(x) and �

(B)
ϕ(y). To carry out the above two opti-

mizations, we need to reformulate them and their final
decision hyperplane in term of a given inner product
kernel functionK(xi, xj) = ϕ(xi)Tϕ(xj) satisfyingMer-
cer’s conditions. We now state Algorithm 4.1 similar to
Corollary 5 proposed by Lanckriet et al. [9] and Propo-
sition 1 proposed by Huang et al. [11] and prove its
validity in solving the kernelized C2MP2 model.

Corollary 4.1: In feature space R
f , on the side of Alice,

let {ϕ(xi)}N
(A)
x

i=1 and {ϕ(yj)}N
(A)
y

j=1 be the training data points
corresponding to positive class and negative class respec-
tively. If the estimates of means and covariance matrices
are given as

ϕ(x)(A) =
N(A)
x∑

i=1
λi ϕ(xi)(A),

ϕ(y)(A) =
N(A)
y∑
j=1

θj ϕ(yj)(A),

�
(A)
ϕ(x) = τxIf +

N(A)
x∑

i=1
�i

(
ϕ(xi)(A) − ϕ(x)(A)

)
(
ϕ(xi)(A) − ϕ(x)(A)

)T
,

�
(A)
ϕ(y) = τyIf +

N(A)
y∑
j=1


j

(
ϕ(yj)(A) − ϕ(y)(A)

)
(
ϕ(yj)(A) − ϕ(y)(A)

)T
,

where If is the identity matrix of dimension f, λi, θj,
�i and 
j are the normalized weights for data points

{ϕ(xi)(A)}N
(A)
x

i=1 and {ϕ(yj)(A)}N
(A)
y

j=1 respectively. The posi-
tive constants τx and τy can be regarded as the regular-
ization termof covariancematrices. Then, the optimalα∗
andβ∗ for (30)–(32) lie in the space spanned by the train-

ing points, i.e. α∗ ∈ span({ϕ(xi)(A)}N
(A)
x

i=1 , {ϕ(yj)(A)}N
(A)
y

j=1 ).

Proof: We write α = αd + αp, where αd is the projec-
tion ofα in the vector space spanned by all training data
points and αp is the orthogonal component to this span
space. We can then easily check that the denominator

of left part in (31) can be changed to

αT�
(A)
ϕ(x)α = αT

d

( N(A)
x∑
i=1

�i

(
ϕ(xi)(A) − ϕ(x)(A)

)
(
ϕ(xi)(A) − ϕ(x)(A)

)T + )αd

+ τx

(
αT
d αd + αT

p αp

)
.

(36)
For the orthogonality, there are αT

p ϕ(xi)(A) = 0 for i =
1, 2, . . . ,N(A)

x , αT
p ϕ(yj)(A) = 0 for j = 1, 2, . . . ,N(A)

y

and αT
d αp = 0. It is evident that an orthogonal com-

ponent αp of α will not affect the constraints (30)
and (32). Since the objective is to be maximized,
the denominators αT�

(A)
ϕ(x)α should be as small as

possible, this will lead to αp
∗ = 0, hence α∗ = αd

∗.
In other words, the optimal α∗ lies in the vector
space spanned by all the training points, i.e. α∗ ∈
span({ϕ(xi)(A)}N

(A)
x

i=1 , {ϕ(yj)(A)}N
(A)
y

j=1 ). �

According to Algorithm 4.1, α can be written as a
linear combinations form of training data points

α =
N(A)
x∑

i=1
μi ϕ(xi)(A) +

N(A)
y∑
j=1

νj ϕ(yi)(A),

where the coefficientsμi, νj ∈ R. Represented by vector
form

η(A) = [μ1,μ2, . . . ,μNx , ν1, ν2, . . . , νNy]
T .

For the purpose of clarity, let {zi}N(A)

i=1 denote all N(A)

training data points held by Alice, where

zi = xi, i = 1, 2, . . . ,N(A)
x ,

zj+N(A)
x
= yj, j = 1, 2, . . . ,N(A)

y .

Following aforementioned denotation, let Ki denote
the ith row vector, where Ki ∈ R

N(A)
and i = 1, 2, . . . ,

N(A), moreover, letKx andKy denote the firstN
(A)
x rows

and the last N(A)
y rows respectively:

K(A) := (Ki,j) =
(

Kx
Ky

)
.

If we use the plug-in estimates to approximate the
means and covariance matrices, we can write plug-in
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estimated covariance matrices as

�̂
(A)
ϕ(x) =

1

N(A)
x

N(A)
x∑

i=1

(
ϕ(xi)(A) − ϕ(x)(A)

)
(
ϕ(xi)(A) − ϕ(x)(A)

)T
,

�̂
(A)
ϕ(y) =

1

N(A)
y

N(A)
y∑
j=1

(
ϕ(yj)(A) − ϕ(y)(A)

)
(
ϕ(yj)(A) − ϕ(y)(A)

)T
.

In order to represent the covariance matrix into an
inner product form, we then defineM(A) as

M(A) :=
⎛
⎝
√
N(A)
x Mx√

N(A)
y My

⎞
⎠ =

(
Kx − 1N(A)

x
mT

x
Ky − 1N(A)

y
mT

y

)
,

wheremx,my ∈ R
N(A)

, whose elements are defined as

[mx]i : =
1

N(A)
x

N(A)
x∑

i=1
Ki, i = 1, 2, . . . ,N(A)

x ,

[
my
]
j : =

1

N(A)
y

N(A)∑
i=N(A)

x +1
Ki, j = 1, 2, . . . ,Ny.

Unit vectors 1N(A)
x
∈ R

N(A)
x , 1N(A)

y
∈ R

N(A)
y .

Consequently, covariance matrices can be represented
as

�̂
(A)
ϕ(x) = Mx

TMx, (37)

�̂
(A)
ϕ(y) = My

TMy. (38)

Notice that, in (36), if set τx = 0, the objective (30) and
the constraints (31) and (32) will not be affected. So, we
can set τx = 0 and τy = 0, and substitute (37) and (38)
into (31) and (32) respectively. Finally, the first classifier
of kernelized C2MP2 can be written as the following:

max
η(A) �= 0,ba

ρa (39)

s.t.
(η(A)TKi + ba)√

η(A)TMx
TMxη(A)

≥ ρa,

i = 1, 2, . . . ,N(A)
x , (40)

−(η(A)TKj + ba)√
η(A)TMy

TMyη(A)

≥ ρa,

j = 1, 2, . . . ,N(A)
y . (41)

To solve this problem, the optimal η(A)∗ and ba∗ can be
obtained. Similarly, the second classifier can be solved

Table 2. Data sets used in the experiments.

Data set Nx Ny n

ionosphere 225 126 34
glass 70 76 9
musk 207 209 167
parkinsons 48 147 22
pima 268 500 8
sonar 97 111 60
vote 168 267 16
yeast 463 429 6

with its optimal solution η(B)∗ and bb∗. The optimal
decision hyperplane can be represented as a linear form
in kernel space

fk(z) = η(A)∗TK(A)
z + η(B)∗TK(B)

z + ba∗ + bb∗, (42)

where [K(A)
z ]i = K(z(A)

i , z) for i = 1, 2, . . . ,N(A) and
[K(B)

z ]j = K(z(B)
j , z) for j = 1, 2, . . . ,N(B). This com-

bining operation can be considered as learning with
hyperkernels [27].

Computing Kij involves an inner product compu-
tation, consider the Gaussian kernel, Kij can be pre-
sented as K(xi, xj) = exp(−γ ‖xi − xj‖) = exp(−γ |xi ·
xi − 2xi · xj + xj · xj|), so the secure scalar product pro-
tocol [18] is still viable for testing future points in kernel
space.

5. Experiments

In this section, we evaluate C2MP2 and compare the
performance of C2MP2 with that of SVM on eight
benchmark data sets. The covariancematrices are given
by the plug-in estimates.

5.1. Evaluations on benchmark data sets

We next perform evaluation on eight benchmark data
sets obtained from theUniversity of California at Irvine
(UCI)machine learning repository [28]. To evaluate the
algorithms in the horizontally distributed scenario, we
need to construct a training set which are horizontally
split into two sides(Alice and Bob). To this end, for each
data set, 70 percent of the data examples are randomly
selected for training, and one random half held by Alice
and another half held by Bob. All the remaining data are
used for test. This simulates the situation that data set is
horizontally distributed in two parties. Further details
of these data sets are listed in Table 2.

We compared C2MP2 with SVM on unkernelized
linear version and kernelized version with Gaussian
kernel respectively. All parameters including penalty
parameters C and the width parameters γ in the Gaus-
sian kernel for all three models were tuned via grid
search [29] using the tenfold cross-validation, i.e. C =
2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23.

We randomly split each data set into training and
test sets with the above scheme. Then, the fivefold
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Table 3. Comparisons of classification accuracies on UCI data
sets between unkernelized linear versions of C2MP2 and SVM.

NO Kernelization

Data set C2MP2 SVM p-Value

ionosphere (%) 90.56±5.14 85.90±5.32 0.0339
glass (%) 76.85±2.04 72.00±7.24 0.0412
musk (%) 90.45±1.51 87.25±4.17 0.0195
parkinsons (%) 86.34±2.89 89.49±4.38 0.0385
pima (%) 80.31±1.32 77.68±3.33 0.0459
sonar (%) 79.88±1.79 76.00±4.46 0.0409
vote (%) 96.85±2.63 94.31±3.07 0.0380
yeast (%) 65.15±2.55 63.14±2.87 0.0305

Table 4. Comparisons of classification accuracies on UCI data
sets between kernelized versions of C2MP2 and SVM.

Gaussian kernel

Data set C2MP2 SVM p-Value

ionosphere (%) 90.86±3.88 95.19±4.20 0.0391
glass (%) 76.83±10.97 79.63±1.13 0.4436
musk (%) 95.84±1.93 93.29±3.01 0.0299
parkinsons (%) 97.29±3.05 94.38±2.25 0.0334
pima (%) 79.82±3.40 76.93±2.31 0.0447
sonar (%) 92.35±3.45 88.62±2.24 0.0212
vote (%) 97.15±1.90 94.52±3.19 0.0397
yeast (%) 64.03±3.70 66.04±6.92 0.4325

cross-validation is performed on the training set for
parameter selection. Using the tuned parameters, the
experiment is then repeated 10 times independently on
each data set, and the averages accuracy and standard
deviations are summarized in Tables 3 and 4. Fur-
thermore, the paired t-test on 0.05 significance level is
performed over the 10 accuracies of each data set and
the corresponding p-value are also listed.

For the purpose of clarity, we separately analyse the
results in unkernelized linear versions and in kernel-
ized nonlinear versions. As can be seen in Table 3, in
comparisonwith SVM,C2MP2 achieves the best overall
performance, it loses only on parkinsons, in which the
number of total positive class data is 48, after being hor-
izontally split into two parts by the above scheme, each
party only holds 16 training samples, to train a classifier
by those less samples may lead to inaccuracy.

In the kernelized version with Gaussian kernel, as
can be seen in Table 4, C2MP2 wins five out of eight, and
is significantly better on musk, parkinsons, pima, sonar
and vote. Although the linear C2MP2 wins on iono-
sphere, glass and yeast, the kernelized C2MP2 loses on
these data sets. Those differences may be caused by the
approximation errors introduced by plug-in estimates
of the covariance matrices in their kernelized feature
space, in which data points are very sparse, compared
with the huge dimensionality in the Gaussian kernel.

5.2. Computation and communication cost

The training linear C2MP2 has O(Nn3) time complex-
ities which is equal to that of M4. The communica-
tion cost of training linear C2MP2 is also quite low.

In Algorithm 1, step 1 transmits (n2 + 1) elements,
and step 7 transmits n elements, due to symmetry of
communication, the total number of communication
messages is 2(n2 + n+ 1) that is independent of the
number of samples.

Assuming the dimension of samples is n and themax
length of each sample is m bits, the communication
overhead of Algorithm 2 is (n+ 2)m bits. In execut-
ing this algorithm, Alice must perform n encryptions.
Bob has to perform n exponentiations, n multiplica-
tions and 1 decryption. The current hardware allows to
do approximately 106 multiplications per seconds and
thus the computational complexity of both Alice and
Bob is tolerable.

6. Conclusion

Wehave proposed a novel two-party privacy-preserving
classification solution called Collaborative Classifi-
cation Mechanism for Privacy-preserving (C2MP2)
which theoretically based on combing classifiers and
practically respected the fact that ones privacy should
be shielded only from others and free accessed by one-
self, and that sharing global data with others will not
disclose ones own privacy. Based on local and global
learning theory, two local classifiers are constructed
without revealing one’s privacy, then they are combined
to give a joint decision. From the viewpoint of privacy-
preserving, we have also established detailed connec-
tions among ourmodel and othermodels includingM4,
MPM and SVM. Moreover, we have designed a train-
ing algorithm and a testing algorithm to securely carry
out our model without disclosing ones privacy to any
others. In addition, we have extended our model to a
nonlinear classification approach by exploiting kernel
trick. Experimental results on benchmark data sets have
demonstrated the advantages of C2MP2 in privacy-
preserving. How to extend C2MP2 to multi-party clas-
sifications is also an important future topic.
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