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Abstract

Expulsion refers to the widespread behavior of expelling intruders from the owners’ territories, which
has not been considered in current models on the evolutionary dynamics of cooperation so far. In the
context of prisoner’s dilemma, we present a simple game-theoretical model of expulsion in which
punishing cooperators (i.e. expellers) are able to banish defectors from their own neighborhoods. In
the mean-field limit, our theoretical analysis of prisoner’s dilemma with expellers shows that the
increment of either vacant sites ratio or time scale parameter between pairwise interaction process and
strategy updating process can slow down evolutionary speed though defection is the only stable fixed
point anyway. In more realistic spatial settings, we provide both analytical and numerical results for
the limiting case where pairwise interaction dynamics proceeds much faster than strategy updating
dynamics. Using the extended pair approximation methods and Monte Carlo simulations, we show
that the introduction of expellers not only promotes coevolution of expulsion and cooperation by
means of both direct and indirect domain competition but also opens the gate to rich dynamical
behaviors even if expulsion is costly. Phase diagrams reveal the occurrence of frozen as well as
dynamical stationary states, between which continuous or discontinuous phase transition may
happen. For intermediate ranges, we investigate numerically the coupled interplay between pairwise
interaction dynamics and strategy updating dynamics, and show that the validity of main results for
the limiting case can be extended to this general case. Interestingly, there exists an optimal value of
time scale parameter that results in the maximum fraction of altruistic players, which resembles the
coherence resonance phenomenon in dynamical systems. Our results may provide insights into
understanding coevolutionary dynamics of expulsive and cooperative behavior in social dilemma
situations.

1. Introduction

In pairwise social dilemma games, two players have to simultaneously choose between two strategies, i.e.
cooperation (C) and defection (D). Mutual cooperation leads to a reward R, whereas mutual defection results in
a punishment value P for each individual (R > P).If one player cooperates and the other one defects, then the
cooperator obtains a payoff S, i.e. the sucker’s payoff, whereas the defector gets a payoff T, which is often
described as the temptation to defect (T > S). In the presence of social dilemmas, mutual cooperation should be
preferred over unilateral cooperation (i.e. R > S) and over an equal probability of unilateral cooperation and
defection (i.e.2R > T + S).IfT > R > P > Sis further satisfied, we obtain the famous prisoner’s dilemma [1],
which is the most challenging pairwise social dilemma game for the evolution of cooperation [2]. Obviously,

itis best for a rational individual to defect regardless of the coplayer’s decision when facing such a dilemma.
Indeed, defection is the only strict Nash equilibrium [3], and also the evolutionarily stable strategy [2, 4, 5] in
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the one-short prisoner’s dilemma. However, if both players choose defection then their individual income is
lower than that obtained for mutual cooperation when maximum overall payoff is shared equally. Meanwhile,
we observe that cooperation is ubiquitous in nature as well as human society [6-8]. The evolutionary puzzle here
arising is how natural selection can lead to cooperation [9].

Until now, five fundamental rules, i.e. kin selection [10, 11], direct reciprocity [12], indirect reciprocity [13],
network reciprocity [14—16] and group selection [17, 18], are reported to be able to enforce the evolution of
cooperation in different contexts [19]. Of the five mechanisms for the evolution of cooperation, considerable
attention from physics community has been paid to network reciprocity [20—-22]. In evolutionary games on
graphs, players occupy the vertices of a graph. The edges determine who interacts and competes with whom.
Following the pioneering work of Nowak and May [14], evolutionary prisoner’s dilemma has been explored on
various spatial networks [23-25] and different social graphs [26—-33]. Nowak and May show that spatial
prisoner’s dilemma with best-take-over rule (deterministic evolutionary rule) and synchronous updating
pattern (discrete-time evolution) can generate chaotically changing patterns by which cooperators are able to
coexist with defectors indefinitely [14]. Szab6 and T6ke subsequently extend spatial prisoner’s dilemma with
Fermi-function-style rule (stochastic evolutionary rule) and asynchronous updating pattern (continuous-time
evolution) [23], and observe that such stochasticity just simplifies the evolutionary dynamics, but does not alter
the basic finding that cooperators and defectors can persist permanently in spatial networks. Masuda and Aihara
find that small-world topology realizes rapid convergence to the equilibrium with slightly suboptimal level of
cooperation in comparison with spatial networks [27]. Moreover, Santos and Pacheco reveal that scale-free
networks provide the most favorable conditions for the evolution of cooperation [28]. Recently, Gémez-
Gardenies et al show that multiplex networks enlarge the coexistence regions of cooperators and defectors:
Cooperation is promoted in parameter regions where it cannot survive in the monoplex scenario at the expense
of amoderate decrease of cooperation in those where it can dominate [31]. On the whole, the survival or
prevalence of cooperators on graphs is mainly due to the formation of network clusters by which cooperators are
able to protect themselves against invasion of defectors. Meanwhile, a large amount of works dedicate to
studying cooperation dynamics by the interplay between network reciprocity and other additional mechanisms
[34—45]. For instance, Perc et al discuss how the annealed [34] and quenched [35] randomness of payoff affects
the evolution of cooperation in spatial prisoner’s dilemma. They find that the annealed randomness of payoft
can be beneficial for the evolution of cooperation in a way similar to coherence resonance within the framework
of noise-driven dynamical systems [46], while the quenched one promotes the evolution of cooperation owing
to social diversity: high-ranking wealthy players can form robust cooperative clusters with low-ranking obedient
neighbors. Szolnoki and Perc investigate the spatiotemporal dynamics of cooperation in spatial networks with
multiple populations, and find the sustenance of cooperation under adverse conditions that could never be
bridged by network reciprocity alone as well as the spontaneous emergence of cyclic dominance, where defectors
of one population become prey of cooperators in another population, and vice versa [45]. In recent years, there
has also been a growing interest in evolutionary games on dynamic networks [47-52]. In this framework,
individuals are able to not only change their strategies but also adjust their social ties in response to game
outcomes. The main finding from these studies is that the coevolutionary dynamics of individual strategies and
network structures can lead to robust cooperation in social networks. Besides the five fundamental mechanisms,
voluntary participation [53, 54], costly punishment [55, 56] and destruction effects [57] are also reported to
support the evolution of cooperation in different situations.

On the other hand, expulsion behavior is frequently observed in amphibians, reptiles and mammals mainly
for the purpose of resource occupation [58]. For example, the red-backed salamanders, Plethodon cinereus, use
pheromonal markers, visual aggressive displays, and bites in expulsion of intruders from areas in which the
residents occur [59-61]. The mountain spiny lizards, Sceloporus jarrovi, use aggression to defend their territories
from conspecifics by expressing a series of behaviors with increasing intensity: pushups, fullshows, shudders,
approaches, face-offs and charges which are usually accompanied by bites [62—64]. The Mongolian gerbils
(Meriones unguiculatus) trigger the expulsion of their family members with the highest reproductive capacity to
compete for reproduction within the groups [65, 66]. Other examples include parasite expulsion (e.g. the
nematode Trichinella spiralis are expelled from gastrointestinal tract by immune system due to the contribution
of both mucosal mast and goblet cells, and the mediators they produce [67]), social ostracism (e.g. three-spined
sticklebacks prevent other sticklebacks if those individuals emit cues, which indicates that they have been
infested by parasites, from joining their social groups [68]), and so on. In fact, expulsion behavior is common in
not only nonhuman animal groups but also human society [69-76].

Despite the availability of such abundant empirical data of expulsion behavior, we are still unclear its
evolutionary origin as well as its significance for the cooperation among individuals in the presence of social
dilemmas. In the following, we construct a simple evolutionary game theoretical model of prisoner’s dilemma
with expellers. The expellers not only cooperate with coplayers in the game, but also ‘punish’ defectors by
excluding them from future reciprocal relationships. This is motivated by the observation that individuals prefer
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neighborhoods with better quality, and are often willing to expel cheaters who accept benefits but do not
reciprocate in order to avoid exploitation. Remarkably, it is found that expulsion and cooperation can coevolve
in the spatial prisoner’s dilemma with expellers as long as population has a sparse structure, though defection is
the only evolutionarily stable strategy in the mean-field prisoner’s dilemma with expellers.

The paper is organized as follows. Section 2 describes the evolutionary game theoretical model of prisoner’s
dilemma with expellers in detail. Section 3 presents the main results, including analysis of mean-field dynamics
(section 3.1) as well as spatial dynamics (section 3.2). Section 4 gives summarizations and discussions on our
findings.

2. Prisoner’s dilemma with expellers

Consider a population of size N structured by an undirected and unweighted graph G (V, E) where the set of
vertices V represents the sites, and the set of edges E denotes the possible pairwise symmetric interactions
between individuals. The vertex v; represents the ith site which can be either occupied by an individual or just
empty, while the edge e;; denotes the possible pairwise partnership between the individual at site v;and that
at site v;.

Initially, a fraction p,, (0 < p; < 1) of sites are set to be vacant, and the remaining sties are occupied by either
an expeller (E, denoted by a three-dimensional unit vector s = [1, 0, 0]7)oracooperator (C, s = [0, 1, 0]")
oradefector (D, s = [0, 0, 1]7).Ineach time step (e.g. £), pairwise interaction dynamics happens with
probability 1 —w, whereas strategy updating dynamics occurs with probability w.

2.1. Pairwise interaction dynamics
A pair of sites linked by an edge, e.g. e;;, is randomly picked up from the graph. If both sites are occupied by
individuals, they play the one-shot prisoner’s dilemma with each other; otherwise, the current time step ends.
The payoft P;; of the individual at site v; and the payoff P;; of the individual at site v; resulted from such an
interaction can be respectively expressed as
Pl“ = SiTMS‘,
{ ij j )

P; = 5" Ms;,

where the3 x 3 payoff matrix M is given by

| E C D
E 1—r 1—1r —r
C |[l—r 1—r —1
D 1 1 0
which represents the donor-recipient version of prisoner’s dilemma with a single rescaled parameter: the cost-
to-benefitratior (0 < r < 1). Here the cost-to-benefit ratio r measures the strength of dilemma confronted by
individuals [77, 78]. Note that, in our model, expellers act as cooperators to play the prisoner’s dilemma with
their coplayers. But different from cooperators, we assume that expellers will unilaterally exclude defectors ata
cost ¢ from their current sites into any other vacant sites in the population after they are exploited by defectors in
the prisoner’s dilemma.

The payoff of each individual, e.g. the payoff P; of the individual at site v;, is accumulated during the pairwise
interaction process. Because of the randomness in selecting pairs of individuals, the rounds that each individual
participates in vary from each other. To decouple the effect of this heterogeneity, the accumulative payoff of each
individual, e.g. the one at site v;, is finally normalized according to

P P /zifz> 0,
0ifz=0,

M= )

i = 3
where z represents the frequency with which the individual at site v; is chosen for interaction with other ones
during the pairwise interaction process.

2.2. Strategy updating dynamics
Individuals experience strategy updating phase in a synchronous manner. Specifically, each individual at site v;
imitates a randomly selected neighbor at site v}, if any, with probability given by the Fermi function [20]:

1

= B = =6, — KT

(C))

where the noise K is the measure of stochastic uncertainties allowing irrational choices. Otherwise, the player at
site v;does not change its strategy.




10P Publishing

J. Phys. Commun. 3 (2019) 015011 X Wanget al

T
o
=]
=]

T
N
o
=]
=)

(b)

1200 -

m

]

s
ime

900 |

600 -

300

mean fixation t
[+2]
S

mean fixation t

0..0 Oj2 0j4 0:6 0:8 1.‘0 6 é 1.1 é é 1b
ratio of vacant sites, P, noise, K

Figure 1. Mean time to achieve absorption state (i.e. the pure D state) 7 = Z?;JZ?;&’ Lorhi / [T(T + 1)]asafunction of (a) ratio
of vacant sites p, when noise K = 0.1 and (b) noise K when ratio of vacant sites p; = 0.5. The time to reach stable fixed point Tt

is determined by equations (5) and (A.5) the initial condition of which is given by pé‘j 0) =i / T, pci’j 0)=j / T and p[i;j 0 =1-

(i + j)/T wheretheintegeri€ [0, T — 1]andj€ [0, T — i — 1]. Parameter settings: cost-to-benefit ratio r = 0.5, cost of expulsion
¢=0.5and T = 100.

Obviously, the parameter w controls time scale between pairwise interaction process and strategy updating
process: When w — 0, pairwise interaction dynamics proceeds much faster than strategy updating dynamics.
Therefore, the equilibrium of pairwise interaction dynamics determines the local configurations as well as the
average payoffs of individuals on a graph (see an analytical method for regular graphs in appendix B). This means
that the consequent strategy evolution proceeds as on a graph with no mobility of individuals induced by
expulsion events (see a theoretical method for regular graphs in supplementary material available online at
stacks.iop.org/JPCO/3/015011/mmedia); when w — 1, one can expect neutral evolution on a graph depending
on the initial strategy configuration; whenever 0 < w < 1, evolution is driven by a detailed interplay between
these two dynamical processes.

3. Results

3.1. Mean-field dynamics

Now let us consider the deterministic dynamics of prisoner’s dilemma with expellers in the mean-field
setting, where the state is characterized by density p of players (i.e. pg of expellers, pc of cooperators and
Pp = 1 — pg — pc — pgofdefectors) (see appendix A). In the limit w — 0, the expected values Ex (*) of
average payoffs Py (X € E, C, D) for expellers, cooperators and defectors are respectively given by

Ex(Pg) = (1 — NPy + o) — (r + Opp>
Ex(Po) = (1 — n)(pp + pe) — 1Pp> ©)]
Ex(Pp) = pp + pc.

According to the replicator-like equation set describing motion for the concentration of each type of players
(equation (A.5)), prand pctend to zero for arbitrary value of pyand K as Ex(Pp) > Ex(Pc) > Ex(Pg). The
increment of p; or K merely leads to the slowdown of evolutionary speed (figure 1), but cannot change
evolutionary direction of the population as Ex(Pp) > Ex(Pc) > Ex(Pg) for any composition of the population
(equation (5)). In short, expellers and cooperators become extinct in the mean-field limit forw — 0
(figure 2(a)). In the opposite limit w — 1, pairwise interaction dynamics almost never occurs. In this case, one
can obtain Ex(Pg) = Ex(P;) = Ex(Pp) = 0. Then natural selection will not change the composition of the
population. Any mixture of expellers, cooperators and defectors in the simplex S5 is an unstable equilibrium
(figure 2(b)).

In the general case of 0 < w < 1, we cannot give analytical predictions on the evolutionary outcome of the
population since the expressions of Ex(Py), Ex(P-) and Ex (Pp) cannot be further simplified (equations (A.1)—
(A.3)). Nevertheless, in the mean-field limit, the prisoner’s dilemma with expellers can be described by the
following transformed 3 x 3 payoff matrix M’:

| E _C D

E (1-rl—-7r —c—r

M = ) 6
C |1=-r1l—-r —r ©
D 1 1 0

according to equations (A.1)—(A.3) From the above payoff matrix, we can see that the strategy D is completely
dominant over Cand E, and has a basin of attraction extended to the whole domain of the system. Based on this
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Figure 2. Deterministic dynamics of the mean-field system with expellers, cooperators and defectors in the simplex S5 (equations (5)
and (A.5)). The arrows indicate the direction of deterministic flows in the simplex, while solid (hollow) points denote stable (unstable)
fixed points. Red corresponds to fast dynamics and blue to slow dynamics close to the fixed points of the system. (a) For w — 0, there
is only one stable fixed point in the defector corner, and any state alone the line ECin the simplex is an unstable fixed point. (b) For

w — 1, there is no stable fixed point, and any state of the dynamical system is an unstable fixed point. Parameter settings: cost-to-
benefit ratio r = 0.5, ratio of vacant sites p,, = 0, cost of expulsion ¢ = 0.5 and noise K = 0.1.
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Figure 3. Phase portraits and stability diagram of prisoner’s dilemma with expellers for (a) w = 0.2, (b) w = 0.4, (c)w = 0.6 and
(d)w = 0.8 (equations (A.1)—(A.3) and (A.5)). The arrows indicate the direction of deterministic flows in the simplex, while solid
(hollow) points denote stable (unstable) fixed points. Red corresponds to fast dynamics and blue to slow dynamics close to the fixed
points of the system. Parameter settings: cost-to-benefit ratio r = 0.5, ratio of vacant sites p, = 0.1, cost of expulsion ¢ = 0.5and
noise K = 0.1.

fact, we predict that the variation of w does not alter the evolutionary outcome that defectors will eventually
wipe out expellers and cooperators irrespective of the initial composition of the population. To confirm this
prediction, we present phase diagrams of prisoner’s dilemma with expellers for w = 0.2, w = 0.4, w = 0.6
and w = 0.8 in figure 3. It can be seen that all evolutionary trajectories end up in the pure state of defectors
irrespective of the values of w. In sum, defectors are advantageous over expellers as well as cooperators, and can
take over the whole population in the mean-field limit.

3.2. Spatial dynamics

In realistic populations, unlike the mean-field model, individuals do not interact with all other ones. Let us
therefore consider a structured population with individuals arranged on a square lattice with von Neumann
neighborhood (i.e. including connections between nearest neighbors) and periodic boundary conditions.
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Despite their difference from actual social networks [79], lattices provide a convenient entry point for exploring
the impacts of network structures on evolutionary dynamics [ 14, 20, 80]. Furthermore, the interaction and
competition between species in realistic systems, especially in biology and ecology, can be represented
adequately by means of lattices [81-84]. Therefore, we aim to study the evolutionary dynamics of prisoner’s
dilemma with expellers on spatial networks.

In our computer simulations, each efficient time step (#,) gives exactly one chance for every individual to
change its strategy. Initially, an equal number of expellers, cooperators and defectors are randomly placed on a
square lattice of size N, such that the fraction of occupied sitesis 1 — p,. The stationary densities of expellers
(pE), cooperators (pc) and defectors (pp) on square lattices are evaluated over sufficiently long sampling times
after the system enters into the equilibrium state. To ensure proper accuracy, final results (i.e. the mean densities
of expellers py,, cooperators p. and defectors py,) are averaged over up to 50 independent runs for each set of
parameter values.

3.2.1. The limiting casew — 0 andw — 1

For convenience of comparison, we start by presenting the evolutionary outcomes of spatial prisoner’s dilemma
when the parameter of time scale w — 0 in figure 4. It is shown that the mean fraction of cooperators

Pc / (1 — p,) decreases with the cost-to-benefit ratio r when ratio of vacant sites p is low (figures 4(a) and (b)). In
this case, cooperators are able to survive in the population by forming compact clusters as long as the cost-to-
benefitratio ris sufficiently low [23]. However, the mean fraction of cooperators p /(1 — p,) becomes almost
invariant with the cost-to-benefit ratio r when ratio of vacant sites p, is high (figures 4(c) and (d)). In this case,
the clusters of cooperators become sparse. Cooperators are vulnerable to the invasion of defectors irrespective of
the values of cost-to-benefit ratio . Therefore, only cooperators isolated from the spatial domain of defectors
remain in the population [85].

Let us now study the spatial prisoner’s dilemma with expellers when the parameter of time scale w — 0.1In
comparison with those in figure 4, results reported in figure 5 demonstrate that expulsion is able to promote the
evolution of cooperation irrespective of the values of cost-to-benefit ratio r, ratio of vacant sites p,, and cost of
expulsion c. On saturated square lattices (i.e. p; = 0), there is no vacant sites available for expellers to banish
their defective neighbors. Expellers, like cooperators, persist in the population solely by virtue of network
reciprocity. If cost of expulsion ¢ = 0, expellers and cooperators become equivalent. Hence the mean fraction of
expellers p; /(1 — p,)isidentical to that of cooperators p, /(1 — p,) for any value of cost-to-benefit ratio r
(figure 5(a)). However, if cost of expulsion ¢ > 0, the evolutionary performance of expellers becomes inferior to
that of cooperators (figures 5(e), (i) and (m)). In contrast, on diluted square lattices (i.e. p, > 0), expellers
perform better than cooperators and can persist (or even prevail) in the population across the whole applicable
range of cost-to-benefit ratio rand cost of expulsion ¢ (figure 5). In short, expulsion can coevolve with
cooperation in the spatial prisoner’s dilemma with expellers in contrast to the evolutionary outcomes in the
mean-field limit.

To systematically investigate the effects of cost of expulsion c and ratio of vacant sites p4, we move to study
phase diagrams for two representative values of cost-to-benefit ratio r in the spatial prisoner’s dilemma with
expellers. In the absence of expellers, cooperators survive only if r < 0.006, and they are able to defeat defectors
completely for r < 0 on the saturated square lattice. Taking these thresholds as benchmark values, we focus on
r = 0.005and r = 0.5. For r = 0.005, cooperators are able to coexist with defectors solely on the basis of
network reciprocity. This value of  thus yields lenient conditions for the evolution of cooperation. Forr = 0.5,
on the other hand, cooperators are unable to survive. This value of r thus yields adverse conditions for
cooperative behavior to emerge. In close vicinity of transition points, we here enlarge the size of system from
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Figure 5. Mean fraction of players, i.e. expellers (135/(1 — p,): W), cooperators (ﬁc/(l — p,):*)and defectors (ﬁD/(l — p): A),asa
function of cost-to-benefit ratio r for different combinations of ratio of vacant sites p,; ((a), (e), (i), (m) ps = 0, (b), (), (j), (n) ps = 0.2,
(0), (g), (k), (0) py = 0.4and (d), (h), (1), (p) ps = 0.8) and cost of expulsion c ((a), (b), (c), (d) c = 0, (e), (£, (g), (h) ¢ = 1, (i), (j), (k),
(1) ¢ = 2and (m), (n), (0), (p) ¢ = 3) in the spatial prisoner’s dilemma with expellers. The solid lines show the theoretical results
predicted by extended pair approximation methods (for details see appendix B and supplementary material). Parameter settings:
parameter of timescalew = 5 x 10~7, noise K = 0.1 and size of system N' = 10*,

N = 10*(figures 4and 5)to 9 x 10 (figure 7) to determine boundaries and types of phase transitions with a
higher accuracy. Meanwhile, the parameter of time scale w should be covariant with the size of system N to
ensure invariance of the ratio of time scale between pairwise interaction dynamics and strategy updating
dynamics. Namely,

I\]1WN1 _ NZWNZ

)

b
1—WN1 1—WN2

where wy denotes the parameter of time scale associated with a system of size N. Figure 6 shows the dynamical
behaviors of two systems with different sizes (i.e. N = 10*and N = 9 x 10%) but the same ratio of time scale
(i.e. Nw/(1 — w) = 5 x 107°). Clearly, evolutionary trajectories for both systems are largely coincident with
each other. Due to the finite-size effects, the current fractions of expellers py(t,) /(1 — p,), cooperators
Po(te) / (1 — p,) and defectors pj,(t.) / a - p¢) fluctuate around an equilibrium after initial transient times,
wherein fluctuations are smaller in the lattice with larger size (figure 6).

The phase diagram for r = 0.005 presented in figure 7(c) together with figure 5 suggests that at such alow
value of r, expellers rather than cooperators represent the more effective players to outperform defectors except
if cost of expulsion ¢ > 0 and ratio of vacant sites p, = 0. The mixed and dynamical (C + D)p phasein the
bottom line of the c — p plane first gives way to the mixed and dynamical (E 4+ C + D)p phase, subsequently
to the mixed and frozen (E + D)rphase and finally to the mixed and frozen (E + C + D)gphase as the ratio of
vacant sites p, increases. Here a mixed state is further classified as a frozen or dynamical sub-state. A sub-state is
called to be frozen provided two or more of the second order heterogeneous variables (i.e. pxc, prp or pcp) of the
system are equal to zero in the stationary state. Otherwise, the sub-state is defined to be dynamical. While
majority of phase transitions is continuous, the (E + C 4+ D)p — (E + D)g phase transition is discontinuous
because of an indirect territorial competition between expellers and cooperators (for details see main text below)
[86, 87]. Only if the ratio of vacant sites p, is either negligible or large, are cooperators able to survive. When the
ratio of vacant sites p,, is sufficiently small (e.g. p, = 0.005), the clusters of cooperators are compact enough to
fight against defectors (figure 8(a)). Accordingly, cooperators are able to coexist alongside expellers and defectors
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Figure 6. Examples of dynamical behaviors. Symbols (N = 10*: dotted lines; N = 9 x 10*: dashed lines) depict current fractions of
expellers (pg(t.)/(1 — p,): blue), cooperators (p(t.)/(1 — p,): orange) and defectors (pp(t,)/(1 — p,): red) on a spatial grid. The
ratio of time scale for both systems is set to Nw/(1—w) = 5 X 102 (equation (7)). ByN = 10*and N = 9 x 10% the fluctuations of
values around an equilibrium are smaller for the lattice with larger size. Indeed, if initial 5 x 10> values are discarded, the standard
deviations o of current fractions with respect to mean fractions are smaller for N = 9 x 10* in comparison with that for N = 10*
(0p, = 0.034, 0. = 0.029 and opp, = 0.022 for N = 10% 0y, & 0.014, 0. ~ 0.008 and 0, A 0.020 for N = 9 x 10%). Parameter
settings: cost-to-benefit ratio r = 0, ratio of vacant sites p,, = 0, cost of expulsion ¢ = 0 and noise K = 0.1.
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Figure 7. Full c — p, phase diagram for prisoner’s dilemma with expellers on a square lattice with von Neumann neighborhood and
periodic boundary conditions obtained via both extended pair approximation methods ((a), (b); see appendix B and supplementary
material) and Monte Carlo simulations ((c), (d); see main text) for (a), (c) r = 0.005 and (b), (d) r = 0.5, respectively. In upper
(bottom) panels, solid lines (closed symbols) denote continuous phase transitions, while dashed lines (hollow symbols) denote
discontinuous phase transitions. In addition, blue lines (blue squares) represent the phase boundaries between different states (i.e.
pure or mixed stationary states), while red lines (red bullets) represent the phase borders between different sub-states (i.e. dynamical
or frozen stationary state; see definition in main text). Parameter settings: parameter of time scale w = 5.6 X 1072 noise K = 0.1 and
size of system N = 9 x 10,

in a dynamical manner (see the mixed and dynamical (E + C + D)p phase in lower part of figure 7(c)). When
the ratio of vacant sites p,; is large (e.g. p, = 0.8), the clusters of cooperators are sparse and thus are easily
invaded by their defective neighbors. In this case, only cooperators that are isolated from defectors can persist in
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Figure 8. Characteristic spatial patterns emerging for ratio of vacantsites (a) p, = 0.005and (b) p,, = 0.8 when cost-to-benefit ratio
r = 0.005. Strategies E, C, and D are depicted in blue, orange and red, respectively; vacant sites are described in white. Parameter
settings: cost of expulsion ¢ = 2, parameter of time scale w = 5.6 x 10", noise K = 0.1 and size of system N = 9 x 10",

the system (figure 8(b)). Therefore, cooperators coexist with expellers and defectors in a frozen manner (see the
mixed and frozen (E + C + D)gphase in top part of figure 7(c)).

Interestingly, when the ratio of vacant sites p, is moderate (e.g. p, = 0.1), cooperators become extinct, and
expellers and defectors are frozenly coexistent in the system (see the mixed and frozen (E + D)rphase in middle
part of figure 7(c)). To understand why expellers can outperform cooperators despite additional costs of
expulsion, it is important to analyze spatiotemporal dynamics of spatial prisoner’s dilemma with expellers. Let
Trxy (t.)(X, Y € E, C, D) denote the transition probability of X’s changing into Y’s at efficient time step t,.
Defining p’x(t,) = py (te)/(l — )X € E, C, D), weget the following equation set [20]:

dp' (&,

P — Gep(t) — Gret) + Gpi(t) — Gan(to),

' (t,

p;te(t) = Ggc(te) — Gee(te) + Gpe(te) — Gep(te), 8)
dp'p (.,

p;’—f) = Ggp(t.) — Gpge(t) + Gep(te) — Gpe(te)s

where Gyy (f,) = p'x(t.) Trxy (t.)(X, Y € E, C, D) represents the current inflow of Y’s transitioning from X’s at
efficient time step #,. In our analysis, both p, (t.)(X € E, C, D)and Trxy (t.)(X, Y € E, C, D) are obtained
from computer simulations. Starting from a random strategy distribution (figure 9(e)), the imitation of better
performing neighbors generates clusters of individuals with the same strategies: expellers and cooperators form
tiny clusters in a sea of defectors (figure 9(f)). In this most early stage of evolutionary process (i.e. t, € [1, 8]), the
description of mean-field is applicable, and the current fraction of expellers p; (1) /(1 — p,) decreases with the
efficient time f, in an exponential way due to the advantage of defectors and cooperators in payoff (figures 9(a)

and (i)). In comparison, the current fraction of cooperators p-(t) / (I —p) does not vary sharply with the
efficient time t,: it first increases mildly and then decreases slowly. Although exploited by defectors at this

stage, cooperators are compensated at the expense of expellers (e.g. at f, = 1, the net inflow of cooperators
changing from defectors Gpc (t,) — Gep(f,) = —0.042 7; the net inflow of cooperators changing from expellers
Ggc(t,) — Gegp(t,) = 0.048 3; the overall net inflow of cooperators Gpc (t,) — Gep(te) + Gec(t.) — Gep(t,) =~
0.005 6; figure 9(i)). The further development is determined by a local equilibrium where strategy updating only
occurs at the interfaces between clusters of different strategies (i.e. t, € (8, +00); figures 9(f)—(h)). In the presence
of defectors, the evolutionary fate of expellers is decided not only by a direct competition with cooperators, but also
by the success of both cooperative strategies against invasion attempts by defectors (the accumulated net inflow of
expellers by the manner of direct domain competition with cooperators ft Gep(t) — Gge(t)dt =~ 0.104 6; the

accumulated net inflow of expellers through the manner of indirect domain competition with cooperators
ft Gepg(t) — Gepe(t)dt = 0.226 2, where Gxy, (t.)(X, Y, Z € E, C, D) denotes the current net inflow of Z’s

from X’s via Y’s at efficient time step #,; figure 9(d)). If ratio of vacant sites p, is moderate, the clusters of cooperators
are not compact enough to defend against defectors in their neighborhood. Furthermore, the spatial configurations
of cooperators are constantly subjected to additional destruction due to the attack of migratory defectors induced
by the expulsion of expellers (figures 9(f) and (g)). In contrast, expellers are able to continuously banish defectors

in their neighborhood, and thus reduce frequency of interaction with defective players (figures 9(f) and (g)).
Consequently, the evolutionary performance of cooperators become inferior to that of expellers, which explains
the advantage of expellers over cooperators in the direct domain competition (e.g. at t, = 8, the netinflow of
expellers changing from cooperators Geg (f,) — Ggc(f,) = 0.001 1;att, = 166, the net inflow of expellers
changing from cooperators G¢g(t,) — Ggc(t,) =~ 0.001 7; figures 9(j) and (k)). Figures 9(b) and (c) demonstrate
the excellent competitiveness of expellers against defectors in their evolutionary race. Except extremely few efficient
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Figure 9. Spatiotemporal dynamics of spatial prisoner’s dilemma with expellers for the mixed and frozen state (E + D)y phase
occurring at ratio of vacant sites p,, = 0.1 when cost-to-benefit ratio r = 0.005. Time courses depicting evolutionary process (top
row): (a) time evolution of current fractions of players, i.e. expellers (px(t,) /(1 — p): ), cooperators (p(t.)/(1 — py): ())and
defectors (pp(t.)/(1 — py): A). (b) time evolution of current net inflow of expellers transitioning from defectors Gpg(t.) — Gep(t,) =
po(te) Trpp(t) /(1 — py) — pr(te) Trep(t,)/(1 — py). The vertical green line shows when current net inflow Gpg(t,) — Ggp(t,) starts to
be positive (i.e. t, = 8), while the horizonal green line marks the border at Gp(t,) — Ggp(t,) = 0. (c) Enlargement of the dashed
rectangle area in figure 9(b): with very few exceptions, the current net inflow of expellers transitioning from defectors Gpg(t,) —
Ggp(t,) stays to be not smaller than zero during the whole evolutionary process. (d) Accumulated net flow between players
(equation (8)), i.e. expellers (pg/(1 — p,)), cooperators (pc/(1 — p,)) and defectors (pp/(1 — p,)), during the whole evolutionary
process: the bold arrows indicate the directions of accumulated net flows between players, while the numbers inside bold arrows
denote the values of accumulated net flows between players. Moreover, the slim arrows show two manners by which the net inflow of
expellers transitioning from cooperators is accumulated: direct (solid arrow) and indirect (dashed arrow) domain competition.
Formation of spatial patterns (middle row): the snapshots were taken at efficient times (e) t, = 1, (f) f, = 8,(g) f, = 166 and (h)
t, =5 x 10*(see green lines in figure 9(a) marking when snapshots of spatial distributions were recorded). Strategies E, C, and D are
depicted in blue, orange and red, respectively; vacant sites are described in white. Current net flow between players (equation (8)), i.e.
expellers (pg(t.)/(1 — py)), cooperators (p(t.)/(1 — p,))and defectors (pp(t.)/(1 — py)) (bottom row) at efficient times (i) £, = 1,
G0t.=8,kt,=166and(1)t, = 5 x 10* (see green lines in figure 9(a) showing when current net flow between players were
recorded): The bold arrows indicate the directions of current net flows between players, while the numbers inside bold arrows denote
the values of current net flows between players. Furthermore, the slim arrows represent the directions of current flows between
players, while the numbers near slim arrows show the values of current flows between players. See main text for definition of

Gxy (t.)(X, Y € E, C, D). Parameter settings: cost of expulsion ¢ = 2, parameter of time scalew = 5.6 X 107% noise K = 0.1and
size of system N = 9 x 10%,

time steps, the current net inflow of expellers changing from defectors is always no less than that of defectors
changing from expellers after the self-organization process of initial clusters (e.g. at t, = 8, the net inflow of
expellers changing from defectors Gpg(t,) — Gep(f,) ~ 0.000 2;att, = 166, the net inflow of expellers changing
from defectors Gpg(t,) — Ggp(f,) ~ 0.001 5; figures 9(j) and (k)). Indeed, expellers are able to accumulate more
payoffs than defectors in the pairwise interaction process, due to evolutionary mechanisms of network reciprocity
as well as expulsion. Interestingly, expellers can spread successfully in the presence of defectors that spatial domains
lost by cooperators are finally occupied by expellers (figures 9(f)—(h)), which elaborates the advantage of expellers
over cooperators in the indirect domain competition. The synergetic combination of direct and indirect territorial
competitions ultimately leads to the eventual extinction of cooperators and the final downfall of defectors
(figure 9(a)). The evolutionary competition between expellers and defectors terminates when they are completely
separated from each other (figures 9(h) and (1)).

Moreover, if ratio of vacantsites p, is negligible, the increment of cost of expulsion ¢ can lead to phase
transition from the mixed and frozen (E + D)y phase to the mixed and dynamical (E + C + D)p phase
(figure 7(c)). Here the emergence of cooperation is due to the increasing cost of expulsion ¢, which lends more
support for cooperators to compete with expellers. The more specific nature of the phase diagram for r = 0.005
isillustrated quantitatively in figures 10(a) and (b), which shows a cross section across the ratio of vacant sites p,,
for cost of expulsion ¢ = 2 and that across the cost of expulsion ¢ for ratio of vacant sites p, = 0.02, respectively.
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Figure 10. Representative cross sections of the phase diagram depicted in figure 7, as obtained for cost-to-benefit ratio r = 0.005
(@):c = 2and(b):p, = 0.02)and r = 0.5((c): ¢ = 2and (d): p, = 0.2). Depicted are mean fractions of players, i.e. expellers
(ﬁE/(l — py): W), cooperators (ﬁc/(l — p,):*)and defectors (ﬁD/(l — Dy): A),in dependence on ratio of vacant sites p, (a), (c) and
cost of expulsion ¢ (b), (d). Note that the green dashed line in figure 10(a) marks the optimal ratio of vacant sites pé* ~ 0.04, at which
the mean fraction of altruistic players (p; + pc) /(1 — p,) reaches its maximal value. The solid lines show the theoretical results
predicted by extended pair approximation methods (see appendix B and supplementary material). Parameter settings: parameter of
timescalew = 5 x 107, noise K = 0.1 and size of system N = 1 x 10*,

Interestingly, it can be observed in figure 10(a) that there exists an optimal ratio of vacant sites p¢* leading to the
maximal overall fraction of altruistic individuals (i.e. expellers and cooperators) in the system. Note that the
optimal ratio of vacant sites p¢* in present study does not relate to percolation threshold of the host graph, in
contrast to the findings in either prisoner’s dilemma [85] or public goods game [88]. Here the evolutionary fate
of altruistic individuals is determined by both direct and indirect territorial competition between expellers and
cooperators. Neither too large nor too small but moderate ratios of vacant sites p,* maximize the positive impact
of territorial competition. |

If the conditions for the evolution of cooperation become harsh, as is the case for r = 0.5, the phase diagram
changes qualitatively (figure 7(d)). It is shown that the mixed and dynamical (C + D)p phase at ratio of vacant
sites p, = 0 as well as the mixed and dynamical (E + C + D)p phase atlow ratio of vacant sites p,, transforms
into the pure D phase and the mixed and frozen (E + D)gphase, respectively. Here, cooperators vanish because
of the increasing cost of cooperation. In addition, the parameter region where expellers, cooperators and
defectors can frozenly coexist (i.e. the mixed and frozen (E + C + D)grphase) extends to lower part of the
¢ — pyparameter plane (compare figures 7(d) with (c)). When the cost-to-benefit ratio ris large (e.g. r = 0.5),
expellers and cooperators can survive only if they are separated from defectors. If the ratio of vacant sites p is
small (e.g. py = 0.1), cooperators would not have enough space to escape from the exploitation by defectors.
Thus expellers coexist with defectors in a frozen manner (figure 11(a)). If the ratio of vacant sites p,, is large (e.g.
P = 0.8),asisthe case for r = 0.005, cooperators are able to frozenly coexist with expellers and defectors in the
system (figure 11(b)). Figures 10(c) and (d) feature two characteristic cross sections of the phase diagram
presented in figure 7(d), which span across the ratio of vacant sites p,; for cost of expulsion ¢ = 2 and the cost of
expulsion c for ratio of vacant sites p;, = 0.2, respectively. Interestingly, it can be seen from figure 10(d) that the
impacts of cost of expulsion c become saturated when it is increased: the mean fractions of players are invariant
with the cost of expulsion c.

Generally, the results obtained from Monte Carlo simulations have been confirmed by using the extended
technique of pair approximation (see appendix B and supplementary material; figures 4, 5, 7 and 10). In terms of
equilibrium frequencies of strategies, the extended pair approximation methods correctly predict the trends of
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Figure 11. Typical spatial patterns appearing for ratio of vacant sites (a) p, = 0.1 and (b) p, = 0.8 when cost-to-benefit ratior = 0.5.
Strategies E, C, and D are depicted in blue, orange and red, respectively; vacant sites are described in white. Parameter settings: cost of
expulsion ¢ = 2, parameter of time scale w = 5.6 x 10~ %, noise K = 0.1 and size of system N = 9 x 10",

simulation data in variation with relevant parameters (figures 4, 5 and 10). However, predictions by the extended
pair approximation approaches are less accurate in the vicinity of phase transition points where long-range
correlations and fluctuations play a dominant role (compare bottom row with top row of figure 7) [89]. In
principle, more reliable predictions can be made by enlarging the basic cluster from two-point (used by pair
approximation or two-point approximation) to n-point (n > 2; used by n-point approximation) [20].

In the opposite limit w — 1, the system will stay in the strategy updating process but rarely enter into the
pairwise interaction process. In such a case, the whole population is governed by random drift because the
payoffs of expellers, cooperators and defectors are approximately equal to zero. In terms of game results, there is
no role difference between expellers, cooperators and defectors. Hence, expulsion plays neither positive nor
negative role in the evolution of cooperation.

3.2.2. Thegeneralcase 0 < w < 1

To explore impacts of parameter of time scale w on the evolutionary outcome of spatial prisoner’s dilemma
with expellers in detail, we present the contour plots of mean fraction of expellers p /(1 — p,), cooperators

pc /(1 — p,)and defectors p, /(1 — p,) asafunction of cost-to-benefit ratio rand parameter of time scale w for
different values of ratio of vacant sites p,, in figure 12. On saturated square lattices (i.e. p, = 0), cooperators are
able to survive only if cost-to-benefit ratio r and parameter of time scale w are sufficient small (figure 12(b)).
Otherwise, defectors dominate expellers as well as cooperators completely (see top row of figure 12). However,
on diluted square lattices (i.e. p, > 0), expellers can coexist with defectors on the full » — w parameter plane (see
middle and bottom rows of figure 12). For relatively low ratio of vacant sites p,;, (e.g. p, = 0.4), expellers perform
best when cost-to-benefit ratio r and parameter of time scale w are negligible (figure 12(e)). Meanwhile,
cooperators are able to survive only if the parameter of time scale w is moderate (figure 12(f)). Interestingly, the
mean fraction of cooperators p. /(1 — p,) is largely invariant with cost-to-benefit ratio . For relatively high
ratio of vacant sites p,, (e.g. p, = 0.8), the evolutionary fate of expellers is unaffected by cost-to-benefit ratio r as
well as parameter of time scale w (figure 12(i)).As for cooperators, both cost-to-benefit ratio r and parameter of
time scale w have similar effects as they have in the case of relatively low ratio of vacant sites p , (compare

figures 12(f) with (j)). Intriguingly, it is shown that there exists an optimal as well as a worst value of time scale
parameter w' and w™ that leads to the highest and lowest level of expulsion and cooperation, respectively
(figures 12(c), (g) and (k)). In present study, pairs of individuals are stochastically chosen to play prisoner’s
dilemma with expellers in the pairwise interaction process. The randomness of this process can be adjusted by
the parameter of time scale w. In one limit w — 0, the pairwise interaction dynamics is deterministic. In the
other limit w — 1, the pairwise interaction dynamics becomes stochastic to the largest extend. Whenever

0 < w < 1, the pairwise interaction dynamics falls somewhere between these limits. Therefore, the existence of
such an optimal phenomenon can attribute to the coherence resonance scenario trigged by the parameter of
time scale w which may be considered as the constructive noise [90, 91]. In this case, the increment of mean
fraction of altruistic players (i.e. expellers and cooperators) (p; + p.) /(1 — p,) isregarded as an constructive
effect, as widespread altruistic players yield a higher total population payoff in comparison with dominant
defectors, and thus is favourable for the population. The mean fraction of altruistic players (p; + pc) /(1 — p,)
determines the constructive effects of noise on the system and thus has the same meaning as the signal-to-noise
ratio in classical coherence resonance phenomena observed in dynamical systems [46]. On the other hand, the
appearance of the worst value of time scale parameter w near w = 1 is due to the unbalanced interplay between
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Figure 12. Color maps depicting the mean fraction of players (Pg/(1 — py): (@), (&), () pc /(1 — py): ®), (), G); (g + o) /(1 — py):
(), (), k); ppy / a - p¢): (d), (h), (1)) on two-dimensional r — w parameter planes, as obtained for vacancy rate p,, = 0 (top row),

Py = 0.4 (middle row)and p, = 0.8 (bottom row) in the sFatial prisoner’s dilemma with expellers. Parameter settings: cost of
expulsion ¢ = 1, noise K = 0.1 and size of system N = 10°.
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Figure 13. Optimal (w*: W) \ worst (w™: *) parameter of time scale, marking the maximal \ minimal mean fraction of expellers and

cooperators, in dependence on ratio of vacant sites p ;. Parameter settings: cost of expulsion ¢ = 1, noise K = 0.1 and size of system
N=10"

pairwise interaction dynamics and strategy updating dynamics. Figure 13 shows the optimal and worst
parameter of time scale w" and w™as a function of ratio of vacant sites p,,. Both the optimal and worst
parameters of time scale w" and w™ are increased with the ratio of vacant sites p . This result indicates that with
increasing vacancy rate the optimal as well as worst trade-offs between pairwise interaction dynamics and
strategy updating dynamics translate from deterministic to stochastic manner.

4. Summary and discussion

The purpose of the present paper is to study the evolutionary dynamics of prisoner’s dilemma with expellers, and
to determine whether expulsion can provide evolutionary advantages for altruistic individuals (i.e. expellers and
cooperators) to compete with defectors in prisoner’s dilemma. In the mean-field limit, we have shown that
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defection is the only evolutionarily stable strategy in prisoner’s dilemma with expellers. The increment of either
vacant sites ratio or time scale parameter between pairwise interaction dynamics and strategy updating dynamics
merely leads to the extension of mean time to reach the stable equilibrium. However, expulsion is, in general,
effective in deterring defection in spatial prisoner’s dilemma with expellers as long as the population has a sparse
structure. In one limit of time scale parameter w — 0, the introduction of expellers can dramatically change the
system behavior, wherein we do not find the dominance of defectors as it is in spatial prisoner’s dilemma, but do
find the maintenance or even prevalence of expellers (compare figures 4 with 5). In the presence of defectors,
expellers can take advantages over cooperators by a combination of direct and indirect domain competition. By
the evolutionary mechanism of expulsion, expellers are able to decrease frequency of interaction with defectors
while increase frequency of interaction between cooperators and defectors (see appendix B). The former factor
lowers down the payoffs of defectors in expellers’ neighborhood, which helps expellers to reach a superiority
over defectors who in turn diminish cooperators: a manner of indirect territorial competition. On the other
hand, both factors assist expellers to defeat cooperators in the direct territorial competition. Although there
exists a rather constrained and unrealistic parameter region (i.e. cost-to-benefit ratio r — 0, ratio of vacant sites
P = 0and cost of expulsion ¢ > 0; figure 5) where cooperators can outperform expellers, these advantages are
highly impossible to play a role in reality. The spatial prisoner’s dilemma with expellers gives rise to a rich variety
of possible dynamics and a number of continuous or discontinuous transitions between qualitatively different
system behaviors (figure 7). For low cost-to-benefit ratio r, we have observed several types of strategy
coexistence: (1) the mixed and dynamical state (C + D)p, (2) the mixed and dynamical state (E + C + D)p, (3)
the mixed and frozen state (E + D) and (4) the mixed and frozen state (E + C + D)g. Each kind of these states
is sustained in a particular way by means of which a portion of altruistic individuals can survive in the presence of
defectors. To be specific, cooperators can dynamically coexist with defectors by spatial aggregation in (C + D)p
phase.In (E + C + D)p phase, expellers can dynamically coexist with cooperators and defectors by direct and
indirect territorial competition, the latter of which also leads to the discontinuous phase transition between

(E + C + D)pand (E 4+ D)gphase. Inboth (E + D)rand (E + C + D) phases, altruistic individuals can
coexist with defectors by spatial isolation in a frozen manner. For high cost-to-benefit ratio r, we have observed
more simplified evolutionary outcomes: (1) the pure state D, (2) the mixed and frozen state (E + D)g and (3) the
mixed and frozen state (E + C + D).

Note that our principal discoveries are not expected to change for relaxing parameter of time scale from the
limiting case w — 0 to the general case 0 < w < 1 (figure 12). Interestingly, we have found that there exist not
only an optimal but also a worst value of time scale parameter w' and w ™ that results in the highest and lowest
level of expulsion and cooperation, respectively. By interpreting parameter of time scale w as constructive noise,
we can attribute the optimal phenomenon to coherence resonance reported previously in temporal and spatially
extended dynamical systems [46, 90, 91]. On the other hand, the existence of worst time scale parameter w™ is
due to the unbalanced interplay between pairwise interaction dynamics and strategy updating dynamics.
Furthermore, it is well known that mutation weakens the benefits of network reciprocity to cooperation in social
dilemma games [92]. Therefore it is worth investigating how the coevolution of expulsion and cooperation
affected by mutation. The preliminary simulation results show that the beneficial effects of expulsive behavior
on the evolution of cooperation are fairly robust against the variation of mutation. This indicates that the
evolutionary mechanism of expulsion on spatial networks is different from network reciprocity, which deserves
additional research to clarify.

It was previously found that punishment represents a typical behavior that is able to promote cooperation in
certain situations [93, 94]. Particularly, costly punishment refers to the special kind of punishment that is
manipulated by imposing some fine on defectors but at a cost to punishers [86, 95-101]. In fact, this kind of
costly punishment can be classified as an active one. In this sense, the expulsive behavior in our model can be
considered as akind of passive punishment: expellers tend to ‘punish’ defectors in a way that they terminates
future interactions between them. On the other hand, expulsion is very similar to ostracism, in which defectors
lose all their present partners [102, 103]. In addition, the evolutionary mechanism that assists expellers to fight
against the exploitation of defectors share a similarity with that in optional games of social dilemma: reduction of
interaction frequency between cooperative strategies and defective strategies [ 104]. Nevertheless, different from
the loner in optional games, expellers in our model can also win over cooperators via enhancing frequency of
interaction between cooperators and defectors though it requires additional supports from network reciprocity
aswell as dilution of graph. This is the reason that leads to different dynamics between games with loners and
games with expellers. Still, spatial prisoners dilemma with expellers can also be considered as a kind of
coevolutionary model between individual strategies and network structures as the neighborhoods of individuals
are also coevolved with strategies in our model [22]. Recently, the impact of social exclusion on the evolution
of cooperation governed by group interaction has been extensively studied in infinite populations, finite
populations and spatial networks, respectively [105—-107]. In their works, excluders are able to deny the rights of
defectors to enjoy the benefits of public goods at some cost. In this case, excluders can defeat defectors aslong as
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the net gain of excluders from the public goods game is greater than the cost of exclusion. Thus social exclusion is
avery powerful mechanism for the evolution of cooperation even in infinite populations. In contrast, expellers
in our model are able to recognize the types of coplayers only after they play games with each other. In other
words, expellers need to pay a cost r, which is the cost-to-benefit ratio, to make identification as well as another
cost c to execute expulsion so as to expel defectors from their neighborhoods. This is the reason why expellers
perform inferior to both cooperators and defectors in the mean-field limit. Finally, cooperators in our model
play the role of second-order free riders. To explain this, suppose that there are no defectors in the population. In
this case, natural selection cannot distinguish between the players that cooperate and banish defectors (i.e.
expellers) and the players that cooperate but do not expel defectors (i.e. cooperators). There is no requirement to
expel, so there is no second-order free rider problem. If defectors are present in the population, however, the
players that eject defectors must do so at a personal cost. Natural selection will now favor the players that
cooperate but do not expel defectors. As a result, cooperators rise at the expense of expellers and eventually
introduce the invasion of defectors. However, we have shown that the coevolution of expulsion and cooperation
can be promoted even in such an adverse condition.
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Appendix A. Mean-field dynamics of prisoner’s dilemma with expellers

In the mean-field theory, the state of a system is characterized by the density of players. In this situation, the
expected values Ex (*) of average payoffs Py (X € E, C, D) for expellers, cooperators and defectors in prisoner’s
dilemma with expellers are respectively given by

n { — igp)!

ik i
igp!(I — iEE)!pE ipc!(I — igg — igc)! (szpC) *
oS I % (I — ipg — igc)! 2 isp
Ex(pE) _ WZ a-— W)I Z igp!(I — igg — igc — iED)!( pEpD) R (A.1)
=1 ipptinotisp=1 X(l _ pEZ _ ZPEPC _ ZPEPD)I*iEE*iE(J*iHD

« 2(1 = r)igg+ (1 = r)igc + (=1 — c)igp
2igg + igc + igp

n ice d—ico)! (ZPEPC )iEC

iU —iconPC il —ice — i)

00 I i a *A icc *A irc)! i (zp p )icD
Ex(PC) = WZ(I — W)I Z icp!(I — icc — ipc — icp)! L CED R (A.2)
=1 icc+isetico=1 X (1 — pc* — 2pppe — 2popp)'—ocicic

« 2(1 = nigc + (1 — r)igc + (=1)icp
2icc + igc + icp

and
I! 2ipp (I —ipp)! i
ool — oo D ool — o — i) (2pgpp)™®
. I « (I — ipp — igp)! 2 icp
Ex(Pp)=w) (1 —-w)' > "C”I(I*i’)”*i“)*ic“)!( PePp) ) (A3)
=1 ipp+istico=1 X (1 — pp? — 2pppp — 2ppp) oo~ iw—ico

igp + icp
2ipp + igp + icp

where I represents the frequency of randomly chosen pairs of individuals to endure pairwise interaction
dynamics between strategy updating events. ixy denotes the number of XY pairs satisfying > "y ixy = I. Herein,
Xand Ystand for the state of a site, which is occupied by either an expeller or a cooperator, or a defector.

Since the present dynamical rule has the form of Fermi function (equation (4)), the motion for
concentrations of expellers, cooperators and defectors can be given by the following equation set:
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dpr Ex(Pc) — Ex(Pr) Ex(Pp) — Ex(Pg)
5 gtk (BEEC) o (B0 50,

dpe Ex(Pg) — Ex(Pc) Ex(Pp) — Ex(Pc)

d_tc - _pCpE tanh (T) - pCpD tanh (T)’ (A4)
dpp Ex(Pg) — Ex(Pp) Ex(Pc) — Ex(Pp)

% — PpPe tanh (T) — Pppc tanh (T)

Defining p} = py /(1 — py) (X € E, C, D), we obtain
% =(1- p@)[— pyp.- tanh (75;:(}3@)2;(&(?5)) — pyp), tanh (75’(%)2;{&(}55))],
] ddi; =1 - p¢)[—pépE’ tanh (7’5"“5 5)2;’5’“’56)) — plp} tanh (4E"(’3 D>2;<E"(PC))], (A.5)

dp, ’ Ex(Pg) — Ex(Pp) I, Ex(Pc) — Ex(Pp)
- = - p¢)[—prE tanh(T — ppbe tanh [ ———=) |,

L

which is the master equations governing the evolution of the whole system.

Appendix B. Pairwise interaction dynamics of spatial prisoner’s dilemma with expellers

In this appendix, we would like to present an extended pair approximation method for describing pairwise
interaction dynamics of prisoner’s dilemma with expellers on regular graphs. Let pg, pc, pp and p denote the
density of expellers, cooperators, defectors and vacant sites in a population, respectively. Let pgg, prc, Pce Pccs
DPED> PDE> PDDs PEgs P> Pods PCDs PDG> Pegs Pocs P and pgp represent the density of EE, EC, CE, CC, ED, DE,
DD, E¢, ¢E, ¢¢, CD, DC, Cp, ¢C, D¢ and ¢D pairs, respectively. Then dxjy = Pxy /Py specifies the conditional
probability that the neighboring site of a site of state Yis in state X. Herein, X and Y'stand for the state of a site,
which is occupied by either an expeller or a cooperator or a defector, or just vacant. For pair approximation
method [15, 108—112], only frequencies of state pairs pxyare tracked. The probabilities of larger configurations
are expressed and approximated by the frequencies of pair configurations. Based on the symmetry condition
Pxy = Pyx the compatibility condition p, = 3"y pyy,and the closure conditions, the whole system can be
described by the following eight variables in pair approximation: pg, pc, Pes PEc> PED» Pco Pep and ppp.

During the pairwise interaction process, the configuration frequencies do not change except if a defector is
ejected by an expeller after they play games with each other. Let us now consider the case that an ED pair is
randomly selected for interaction from the population. The expulsion of the chosen expeller to the chosen
defector from its current site to another vacant site in the population may lead to the variation of pgp, pcp and
Ppop- The expelled defector has kg expellers, k¢ cooperators, kp defectorsand k, = k — 1 — kg — kc — kp
vacant sites among the k — 1 remaining neighbors on a regular graph with connectivity k. The frequency of such
aconfiguration is

kg k—1—ks—k
k—1)! k“’(l . )k,I,]% (k—1—ky)! 9E|DE £ 1— 9E|DE o (k¢ + kp)!
kgl(k — 1 —ky)! 94|DE 94|DE kel(k — 1 — ky — kg)! kelkp!

1 —4ypE 1 =4y g
ke k
« 9c|pE ¢ 9p|DE b
dcipe t 49pipE deipe + 4pipE

The frequency of the configuration, in which a vacant site has kg’ expellers, k¢’ cooperators, kp’ defectors and
ky' =k — kg’ — k¢’ — kp’ vacantsites, is

!

. ' bk ok ke
k! k‘*/(l . )k*ko' (k—ky"! qE16 1 — qE)6 (k' + kp”)! dcye
ko 1k — ko0t 1olo 9510 ke 1k — ko' — ke \ 1= a0, 1—a,, ke ko't \ g+ dops

k;
X qD\o L
dcig+4pis

Therefore, the number of ED pairs increases by kg’ — kg — 1, and thus pppincreasesby 2(kg’ — kg — 1) /(kN)
with probability
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dcipe T 9pipE
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The number of CD pairs increases by k¢’ — k¢, and thus pcp increases by 2(kc’ — k¢) /(kN) with
probability

o Z(kcl — kC) _ k' k' k—ky' (k - k@/)'
Prob(APcp TN )T PEDm%w (@ = g4, ke'l(k — ko' — kg
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deipe T 9dpipE

x (1 — 94 |DE

Similarly, the number of DD pairs increases by kp’ — kp, and thus ppp increasesby 2(kp’ — kp) / (kN) with
probability

_ 2(kp" — kp)) _ k! o k!
Prob(ApDD e b ngm%w (L= gy6)" "
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In the limit of large site sizes N — o0, we obtain the following differential equation set:

y. = lim =0
pE N*K)OI/N ’
Ape
= lim —< =0,
pc N—oo 1/N
. Ap
= lim —% =0,
pEE N—oo 1/N
. Apre
lim —£ =0,
pEC N—oo 1/N
k-1 k
. . A I — kp— I fen—
<PED = lim Pep _ 20k kkE D Z Z PI‘Ob(ApED _ 20ke kk}s 1))’ (B.4)
N—oo 1/N / N
kp=0 kg'=0
. Ap,
= lim =~ =0
Pcc = MM /N ]
k-1 k
. . A S ke N
Pep = lim 2 53\]’) = —Z(ka ke) > Prob(ApCD = 720““\] kC)),
N—oo
ke kc/:()
k—1 k
. . A - r_
ppp = lim 722 i’?\'}j = 72(’@]( ) 5~ 3 Prob(ApDD = 72(kaN kD)).
N—oo kp=0 kp'=0

L

After some algebra, equation (B.4) can be simplified to

rpE _ 0,
pc =0,
pep =0,
pEC =0,
A 2 ED
) pED = Pk [qu|<p‘ - (k - l)qE|DE - 1]; (BS)
pcc =0,
A 2 ED
Pep = pk (kde)s — (k = Ddgpgls
kPDD = zpkED [qu|¢ — (k- l)qD|DE]'

The above equation set requires a‘moment closure’ by approximating gy, y, ~ gy, y. This means that only first order
pair correlations are taken into account and hence the name ‘pair approximation’. Thus from equation (B.5), we have

rpE _ O)
pc =0,
pee =0,
bpc =0,
. 2
Y Brp = T21kgg, — (k= Dagp — 1, (B.6)
bec =0,
. 2
Pep = pkED [qu(g, — (k- l)qu],
. 2
kPDD = pkED [qu|(/) - (k— l)qDlD]‘

Further rearranging equation (B.6), we obtain

-

pE =0,
pc =0,
bpr =0,
Ppc =0,
; 2( k-1 2 2| 1.PE — Pre — Prc
= | —=]— - = £e ok O PRC 1 N
1 Pep ] k(ﬂ0 + o )]PED + [k(k ” )]PED (B.7)
Pec =0,
. k k—1)2p 2(pc — Ppc — Pec) P
pCD = _(p_o + ?)%]pCD + [—(‘ E;@ cC ED:|’
k—1})2p 2(pp — Pgp — Pep) P
pDD —_ _ _o _"_ pD ) kl'[) ]pDD + [ D IP‘I;)G) CD I*D].
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From equation (B.7), we can see that the ordinary differential equation of py, has the form of Bernoulli’s
equation. Dividing throughout by p;,?, one gets

dpep 2|, Pe — Per — Prc 2(k k-1
4| S| R EE__ZEEFEC g =4 — | B.8
dt k ) Prp kp(b 'R (B.8)

2 ka —PEE—PEC _

Multiplying throughout by ej .[k ( ks 1)]dt, equation (B.8) is transformed into
EWAAH( ety _af k) Sl e (B.9)
dr P k ’ ‘
by Pp
which leads to a general solution
PEE Pec ]d - [; ke Per"Prc ]d
z@%ﬂ( w:fﬂ£+ii%f4 § )%+a (B.10)

by Pp

PE—PEE—PEC _

where Cis a constant. Multiplying ¢/ ‘[i( Z )]d’ solves for p,,~!
Py ' = ef_[%[k%(%_l)]dt fg[ﬁ - u]ef[i(kpﬁpf’flf}h‘c_l)]dtdt +c| (B.11)
k\p, Pp
Therefore, we obtain
Ppp = ef[%(k%q)]dt :
f%(ﬁ n u)ef[i(k””ii”“)]dfdt LC

Py Pp

(B.12)

Assuming that at the beginning of each pairwise interaction stage, expellers with a fraction p, (' = 0),
cooperators with a fraction p.(t' = 0) and defectors with a fraction p,, (¢ = 0) are distributed on a regular
graph with the vacancyrate p, = 1 — (pp + pc + pp). Thus pg, (t) is given by:

;(kw,l)ﬂ
(e

ek
th = B.13
Pep(*) kpp (0) + (k — 1)p, (k"E‘“’ PEE©)—pEc©) 1)t, | ) (B.13)
P ek Py _
k[pg(0) — ppe(0) — ppc(M]1pp(0) — pypp (0) ) + Pep(0)
Similarly, p.,(t") and p,,;,(t') can be respectively expressed by
k[pe(0) — ppe(0) — pec(0)] i(kPE(O)—PEbX‘,:DOFPEdO) - I)I/ T Pep(©)
’ klpg(0) — ppp(0) — prc(0)] — b, Pep(0)
pep(t) = , (B.14)
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e ) —
klpg(0) = ppe(0) — prc(1pp(0) — pypp(0) ( ' )+ Pep(0)
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k[PE(O) - PEE(O) - ch(o)]p[)(o) - PQPD(O) ) + PED(O)
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klpg(0) = ppr(0) — Ppc(0)1py(0) — p,pp (0) Pep (0)
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ED D » k(kipé 1)[ S D41
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(B.15)
For rest of equations in equation (B.7), the current densities of players and the current pair densities can be

simply solved as py (t') = py, (0)(X € E, C)and p,, (") = pyy (0)(X, Y € E, C), respectively.
From equations (B.13)—(B.15) we can observe that there exists a critical fraction of vacant sites

POC = k[PE(O) - PEE(O) - PEc(O)]> (B.16)
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depending on which the equilibrium state of the population at the end of pairwise interaction stage can be

summarized into the following three generic cases:

(@) If p, < p,°, the stationary state is given by

pe(t" = t.") = py(0),
Pc(t/ = te/) = Pc(0)>
pee(t’ = t') = pp(0),
pEc(t/ = te,) = PEc(0)>

kpp(0)[pgp(0) + pr, (0)] — pyppp(0)
/N _ Pp ED Ep »PD
3 pep(t' = 1) = kpp(0) + (k— )p, i

pcc(tl = te/) = pcc(o):
kpp (0)[pep (0) + pey (0)]
/ 1y — b PG
Pep(t' =11 = kpp(©) + (k= )p,

' =1t")=
Pop( ¢') [kpp (0) + (k — 1) p, 12

(ii) If p, = p,°, the stationary state is given by

(pp(t' = t.") = pg (0),

pc(t/ = te/) = Pc(o):

pee(t' = t) = pp(0),
3 pEc(t/ = te/) = pEc(O))
Pep(t' = t.") = ppp(0),
pcc(t/ = te/) = Pcc(0)>
pep(t' = t.') = pep(0),
| Ppp(t' = 1) = ppp(0);

(iii) If b, > p,°» thestationary state is given by
PE(t/ == te/) == PE(0)>

Pc(tl = tel) = Pc(o):

pEE(t/ = te/) = PEE(O),

Pec(t’ = t') = pp(0),

pep @ =1t.") =0,

Pcc(t/ = te/) = Pcc(0)>

Pep ( ¢ t, ,) _ P50)pep (0) {klppp (0) + pry (0] — by} — kpp (0)pgp (0) [Py (0) + Py (0)]

Pp O {klpgp(0) + prs (0)] — p,} — Ppp(0) [kpp (0) + (k — 1) ;]
PpOppp(0) {klppp(0) + pry (0] — p, }
Pp (O {k[ppp(0) + pry (0] — £} — Pep(0)[kpp (0) + (k — 1) p, ]
k2pp 0’ pp () {pp (0) + £y — [P (0) + prg (O] — [P (0) + peys (O}

pDD(t/ = tel) =

O (Klpgp(0) + e O1 = p; ) kpp () + (k = D py] = pepy () [kpp, (0) + (k — D p, I°

(B.17)

K2pp(0)*{pp(0) + £y — [P (0) + Py (0] — [P (0) + P (O]}

>

(B.18)

(B.19)

Pp©) {klppp(0) + ppy (0] — py} — [kpp (0) + (k — Dy 1 [Ppp(0) + pep (0)] + kppy (0) [P (0) + pys (0]

Pp©O) {k[pep(0) + pry (O] = py} hpp (0) + (k — D py 1P — ppp (0 [kpp (0) + (k — Dp, PP

X kpp(0)*{k[ppp(0) + P (0] — p¢}ln(1 —

PepOTkpp(©) + (k= 1) p,]
Pp(0) {k[pgp(0) + Py, O] — 1y} )’

where f,’ represents the ending time of pairwise interaction stage. Obviously, asw — 0, the time interval #,” of
pairwise interaction stage becomes much longer than the time that is required for the whole system enters into

the equilibrium state in the pairwise interaction stage.

To demonstrate the predictive power of the extended pair approximation method for describing pairwise
interaction dynamics of spatial prisoner’s dilemma with expellers, we now consider a typical class of initial
conditions: at the start of pairwise interaction process, a fraction of p , random sites of a regular graph with
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degree k are set to be vacant, and the remaining sites are occupied by either expellers, cooperators or
defectors with equal probability. In this case, the initial values of local densities can be estimated as

xy (0) = py(0) = (1 — p¢)/3 (X€E,C,DandY€E,C,D, ¢)and 44y (0) =~ p,(YEE,C,D, @). Thus the
solutions of p, (t'), pp,(t') and p,, (¢') becomes

=gt )t’

(1 —pye ( Bk

Pep (1) = — , (B.20)
9k + (2k — 3)p,] ( o =5 7%] " 9
k+ (k—9)p, — 2kp,? € - D+ 1-p,
1+p@—2poz
k(1 +p, —2p,%) 2( 9% 7%}[
, k+ (k- 9)p, — 2kp,? (e —D+1
Pep(t) = ‘ — > (B.21)
oLk + 2k — 3)p,] ( g 7%)t’ ST
(1= plk+ (k= 9) p, — 2kp,*] (1 -p)*

and

1+pq,—2p¢2 |

k(1= p)(A + 2py)?
[k+ (k—9) p, — 2kp,*1[k + 2k — 3)p,]

@\ "]’ -D+1

PDD (t/) ==

Ltps—2py%
9k + 2k —3)p,] ( 2( - 7%}/ D
e o _
(1 = p)lk+ (k= 9)p, — 2kp,?] (1—py)?
_ 2
3kp, (1 + 2p,) (- p)k+ k- 3)%]( 2(1+p(i;p¢21’¢ 7%]“ b
lk+ 2k —3)p, I R (k—9)p, — 2kp,?
- . ) (B.22)
otk + 2k — 3)p,] o Lt 20 7l)r' 0
(3 (e 9% k _ 1) +

(1 —p)lk+ (k= 9)p, — 2kp,*] (1-py)?

respectively. While the current densities of players and the current pair densities can be respectively solved as
px@) =1 —p)/3(X € E, C)and py, (t) = (1 — p¢)2/9(X, Y € E, C).
According to equations (B.20)—(B.22) the critical ratio of vacant sites can be given as

pc_k—9+3~/k2—2k+9
4k

(& (B.23)
bysolving (1 + p, — 2p,*) /(9p,) = 1/k. Still, the stationary state of the system at the end of pairwise
interaction process can be classified into the following three generic cases:

(i) If p; < p,°, theequilibrium state becomes
(pp(t' =)y = (1 - p,) /3,
pc(t/ te/) =1 - P¢)/3:
PEE(t' - te,) - (1 - P¢)2/9,
PEc(t/ = te/) =1 - P¢)2/9,
1—p)lk+ (k—9)p, — 2kp,*]
R (B.24)

9Lk + 2k —3)p,] >
pcc(t/ = te/) =( - P¢)2/9,

k(1 —p,)*(1 +2py)

9k + 2k —3)p] "’

K21 =) (L +2p,)"
9lk+ 2k —3)p,* ’

PCD(t/ = te/) =

PDD(t/ = te/) =

u
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(i) If p; = p,*, the equilibrium state becomes

ppt' =ty =1 —p) /3,

Pt =ty =1 —p) /3,

P =t) =1 —p)*/9,
P =t) =1 —p)?/9,
1P = tH=a - /9
Poc(t' =ty = (1 = p)*/9,
Pep(t’ =1ty = (1 = p)?/9,
| Ppp (' = 1)) = (1 = p,)* /95

(B.25)

>iii) If b, > pgf,the equilibrium state becomes

pr =t = (1 —p)/3
pct' =1t = (1 —p)/3,
P =1t = (1 —p)?/9
Pect' =1t = (1 —p)?/9
ppp' =t') =0,

pcc(t, ) = (1 —p¢,)2/9, o
<PCD(I": t)) = et 24 (520

32+p)’
(1= p)2lk + 2k = 3)p, 1 {Tk + 2k — 3)p 1Tk + (k — 9 p, — 2kp,*1 = K>(1 — p) (1 + 2p,)*)
9k + 2k = 3) p, P {Ik + (k — 9) p, — 2kp, 1 — (1 — p) [k + @k — 3) p, 1}
B kp, (1 = p,)*(1 +2py) [k + (k — 9) p, — 2kp,*]
3[k+ 2k = 3)p, P {Ik + (k=9 p, — 2kp,*1 — (1 — p [k + 2k — 3) p, 1)

[ omwkrek-ap
xn ket k-9p, 2k |

PDD(t, = te/) =

Figures B1 and B2 show that simulation and analytical results almost perfectly coincide with each other both
in steady state and during evolutionary process of pairwise interaction dynamics, and thus confirm the validity of
our method. Besides, from equations (B.20) and (B.21) we can obtain

dpgp (1)

— =0ifp, =pS,
dpdt(t,) (& (& (B.27)
S < 0ifp, = pS,
and
deijt’) -0 lfPO _ pcbc’
" f(t,) ‘ ‘ (B.28)
- .
S > 0ifp, = pS.

Here, the overall impacts of pairwise interaction dynamics on strategy distribution are to decrease interaction
frequency between expellers and defectors while increase interaction frequency between cooperators and
defectorsifonly p, = p,° (figures Bl and B2), which reveals the origin of evolutionary advantages of expellers
over cooperators as well as defectors. For p, = p,, the currentlocal densities become invariant with time step ¢!
during the whole pairwise interaction process.
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Figure B1. Stationarylocal densities qyy = pyy /py (X = E:B; X = C: X = D: A; X = ¢ ¥)associated with steady-state
configurations reached via pairwise interaction dynamics in dependence on ratio of vacant sites p,; (toprow): (a) Y = E;(b) Y = G
()Y = D;(d) Y = ¢. Densities of players (i.e. () expellers: pg; (f) cooperators: pc; (g) defectors: pp) and (h) vacant sites: p,, in
dependence on ratio of vacant sites p ; (bottom row). In present experiments, a fraction of p,, random sites of a square lattice of size
N = 10" with von Neumann neighborhood and periodic boundary conditions are set to be vacant, and the remaining sites are
occupied by either expellers, cooperators or defectors with equal probability at the start of pairwise interaction stage. Herein each data
point obtained by Monte Carlo simulations is averaged over up to 50 independent runs in order to ensure proper accuracy. The solid
lines show the theoretical results predicted by the extended pair approximation method for describing equilibrium state of pairwise
interaction dynamics (equations (B.24)—(B.26)). The green dashed lines in top row of figure B1 mark the critical ratio of vacant sites
p,° ~ 0.460 6 with degree k = 4, which separates pairwise interaction dynamics into three distinct patterns (equations (B.23)—
(B.26)). On the other hand, densities of players keep constant because there is no strategy updating event happening in pairwise
interaction stage. Therefore, the density of expellers, cooperators and defectors is given by p(t') = (1 — py) / 3,

Pt =(Q1 — p¢)/3 and p,(t") = (1 — pé)/3,respectively(ﬁgures B1(e)—(g))-
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Figure B2. Currentlocal densities qX|Y(t/) = pXY(t')/pY(t’) X=E0;X=CO;X=D:A; X = ¢: v)associated with
transient-state configurations of pairwise interaction dynamics: (a) Y = E;(b) Y = C;(c) Y = D;(d) Y = ¢. In our simulations, a
fraction of p, = 0.5 random sites of a square lattice of size N = 10* with von Neumann neighborhood and periodic boundary

0.0 50x10° 1.0x10° 1.5x10° 2.0x10°
time step, t'

conditions are set to be empty, and the remaining sites are occupied by either expellers, cooperators or defectors with equal probability

at the beginning of pairwise interaction process. Here data points are collected in one run of Monte Carlo simulations. The solid lines
show the theoretical results predicted by the extended pair approximation method for describing pairwise interaction dynamics
(equations (B.7) and (B.20) (B.22)). According to equations (B.7), (B.27) and (B.28), the current local densities of altruistic players (i.e.
expellers and cooperators) )k th, quE(t’), ¢ th, qC|C(t’) keep constant, qDlE(t’) and dsic (t") decrease, while ‘1¢|E(tl) and
qp)c(t") increase during the whole pairwise interaction process, as also confirmed in figure B2.
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