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Abstract
Expulsion refers to thewidespread behavior of expelling intruders from the owners’ territories, which
has not been considered in currentmodels on the evolutionary dynamics of cooperation so far. In the
context of prisoner’s dilemma,we present a simple game-theoreticalmodel of expulsion inwhich
punishing cooperators (i.e. expellers) are able to banish defectors from their ownneighborhoods. In
themean-field limit, our theoretical analysis of prisoner’s dilemmawith expellers shows that the
increment of either vacant sites ratio or time scale parameter between pairwise interaction process and
strategy updating process can slowdown evolutionary speed though defection is the only stablefixed
point anyway. Inmore realistic spatial settings, we provide both analytical and numerical results for
the limiting casewhere pairwise interaction dynamics proceedsmuch faster than strategy updating
dynamics. Using the extended pair approximationmethods andMonteCarlo simulations, we show
that the introduction of expellers not only promotes coevolution of expulsion and cooperation by
means of both direct and indirect domain competition but also opens the gate to rich dynamical
behaviors even if expulsion is costly. Phase diagrams reveal the occurrence of frozen aswell as
dynamical stationary states, betweenwhich continuous or discontinuous phase transitionmay
happen. For intermediate ranges, we investigate numerically the coupled interplay between pairwise
interaction dynamics and strategy updating dynamics, and show that the validity ofmain results for
the limiting case can be extended to this general case. Interestingly, there exists an optimal value of
time scale parameter that results in themaximum fraction of altruistic players, which resembles the
coherence resonance phenomenon in dynamical systems.Our resultsmay provide insights into
understanding coevolutionary dynamics of expulsive and cooperative behavior in social dilemma
situations.

1. Introduction

In pairwise social dilemma games, two players have to simultaneously choose between two strategies, i.e.
cooperation (C) and defection (D).Mutual cooperation leads to a rewardR, whereasmutual defection results in
a punishment valueP for each individual (R>P). If one player cooperates and the other one defects, then the
cooperator obtains a payoff S, i.e. the sucker’s payoff, whereas the defector gets a payoffT, which is often
described as the temptation to defect (T>S). In the presence of social dilemmas,mutual cooperation should be
preferred over unilateral cooperation (i.e.R>S) and over an equal probability of unilateral cooperation and
defection (i.e. 2R>T+S). IfT>R>P>S is further satisfied, we obtain the famous prisoner’s dilemma [1],
which is themost challenging pairwise social dilemma game for the evolution of cooperation [2]. Obviously,
it is best for a rational individual to defect regardless of the coplayer’s decisionwhen facing such a dilemma.
Indeed, defection is the only strict Nash equilibrium [3], and also the evolutionarily stable strategy [2, 4, 5] in
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the one-short prisoner’s dilemma.However, if both players choose defection then their individual income is
lower than that obtained formutual cooperationwhenmaximumoverall payoff is shared equally.Meanwhile,
we observe that cooperation is ubiquitous in nature as well as human society [6–8]. The evolutionary puzzle here
arising is hownatural selection can lead to cooperation [9].

Until now,five fundamental rules, i.e. kin selection [10, 11], direct reciprocity [12], indirect reciprocity [13],
network reciprocity [14–16] and group selection [17, 18], are reported to be able to enforce the evolution of
cooperation in different contexts [19]. Of thefivemechanisms for the evolution of cooperation, considerable
attention fromphysics community has been paid to network reciprocity [20–22]. In evolutionary games on
graphs, players occupy the vertices of a graph. The edges determinewho interacts and competes withwhom.
Following the pioneering work ofNowak andMay [14], evolutionary prisoner’s dilemma has been explored on
various spatial networks [23–25] and different social graphs [26–33]. Nowak andMay show that spatial
prisoner’s dilemmawith best-take-over rule (deterministic evolutionary rule) and synchronous updating
pattern (discrete-time evolution) can generate chaotically changing patterns bywhich cooperators are able to
coexist with defectors indefinitely [14]. Szabó andTőke subsequently extend spatial prisoner’s dilemmawith
Fermi-function-style rule (stochastic evolutionary rule) and asynchronous updating pattern (continuous-time
evolution) [23], and observe that such stochasticity just simplifies the evolutionary dynamics, but does not alter
the basicfinding that cooperators and defectors can persist permanently in spatial networks.Masuda andAihara
find that small-world topology realizes rapid convergence to the equilibriumwith slightly suboptimal level of
cooperation in comparisonwith spatial networks [27].Moreover, Santos and Pacheco reveal that scale-free
networks provide themost favorable conditions for the evolution of cooperation [28]. Recently, Gómez-
Gardeñes et al show thatmultiplex networks enlarge the coexistence regions of cooperators and defectors:
Cooperation is promoted in parameter regionswhere it cannot survive in themonoplex scenario at the expense
of amoderate decrease of cooperation in thosewhere it can dominate [31]. On thewhole, the survival or
prevalence of cooperators on graphs ismainly due to the formation of network clusters bywhich cooperators are
able to protect themselves against invasion of defectors.Meanwhile, a large amount of works dedicate to
studying cooperation dynamics by the interplay between network reciprocity and other additionalmechanisms
[34–45]. For instance, Perc et al discuss how the annealed [34] and quenched [35] randomness of payoff affects
the evolution of cooperation in spatial prisoner’s dilemma. Theyfind that the annealed randomness of payoff
can be beneficial for the evolution of cooperation in away similar to coherence resonancewithin the framework
of noise-driven dynamical systems [46], while the quenched one promotes the evolution of cooperation owing
to social diversity: high-rankingwealthy players can form robust cooperative clusters with low-ranking obedient
neighbors. Szolnoki and Perc investigate the spatiotemporal dynamics of cooperation in spatial networks with
multiple populations, andfind the sustenance of cooperation under adverse conditions that could never be
bridged by network reciprocity alone as well as the spontaneous emergence of cyclic dominance, where defectors
of one population become prey of cooperators in another population, and vice versa [45]. In recent years, there
has also been a growing interest in evolutionary games on dynamic networks [47–52]. In this framework,
individuals are able to not only change their strategies but also adjust their social ties in response to game
outcomes. Themain finding from these studies is that the coevolutionary dynamics of individual strategies and
network structures can lead to robust cooperation in social networks. Besides thefive fundamentalmechanisms,
voluntary participation [53, 54], costly punishment [55, 56] and destruction effects [57] are also reported to
support the evolution of cooperation in different situations.

On the other hand, expulsion behavior is frequently observed in amphibians, reptiles andmammalsmainly
for the purpose of resource occupation [58]. For example, the red-backed salamanders, Plethodon cinereus, use
pheromonalmarkers, visual aggressive displays, and bites in expulsion of intruders from areas inwhich the
residents occur [59–61]. Themountain spiny lizards, Sceloporus jarrovi, use aggression to defend their territories
from conspecifics by expressing a series of behaviors with increasing intensity: pushups, fullshows, shudders,
approaches, face-offs and charges which are usually accompanied by bites [62–64]. TheMongolian gerbils
(Meriones unguiculatus) trigger the expulsion of their familymembers with the highest reproductive capacity to
compete for reproductionwithin the groups [65, 66]. Other examples include parasite expulsion (e.g. the
nematodeTrichinella spiralis are expelled from gastrointestinal tract by immune systemdue to the contribution
of bothmucosalmast and goblet cells, and themediators they produce [67]), social ostracism (e.g. three-spined
sticklebacks prevent other sticklebacks if those individuals emit cues, which indicates that they have been
infested by parasites, from joining their social groups [68]), and so on. In fact, expulsion behavior is common in
not only nonhuman animal groups but also human society [69–76].

Despite the availability of such abundant empirical data of expulsion behavior, we are still unclear its
evolutionary origin aswell as its significance for the cooperation among individuals in the presence of social
dilemmas. In the following, we construct a simple evolutionary game theoreticalmodel of prisoner’s dilemma
with expellers. The expellers not only cooperatewith coplayers in the game, but also ‘punish’ defectors by
excluding them from future reciprocal relationships. This ismotivated by the observation that individuals prefer
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neighborhoodswith better quality, and are oftenwilling to expel cheaters who accept benefits but do not
reciprocate in order to avoid exploitation. Remarkably, it is found that expulsion and cooperation can coevolve
in the spatial prisoner’s dilemmawith expellers as long as population has a sparse structure, though defection is
the only evolutionarily stable strategy in themean-field prisoner’s dilemmawith expellers.

The paper is organized as follows. Section 2 describes the evolutionary game theoreticalmodel of prisoner’s
dilemmawith expellers in detail. Section 3 presents themain results, including analysis ofmean-field dynamics
(section 3.1) as well as spatial dynamics (section 3.2). Section 4 gives summarizations and discussions on our
findings.

2. Prisoner’s dilemmawith expellers

Consider a population of sizeN structured by an undirected and unweighted graph G V E,( )where the set of
verticesV represents the sites, and the set of edges E denotes the possible pairwise symmetric interactions
between individuals. The vertex vi represents the ith site which can be either occupied by an individual or just
empty, while the edge eij denotes the possible pairwise partnership between the individual at site vi and that
at site vj.

Initially, a fraction pf ( p0 1 <f ) of sites are set to be vacant, and the remaining sties are occupied by either

an expeller (E, denoted by a three-dimensional unit vector s 1, 0, 0 T= [ ] ) or a cooperator (C, s 0, 1, 0 T= [ ] )
or a defector (D, s 0, 0, 1 T= [ ] ). In each time step (e.g. t), pairwise interaction dynamics happens with
probability 1−w, whereas strategy updating dynamics occurs with probabilityw.

2.1. Pairwise interaction dynamics
Apair of sites linked by an edge, e.g. eij, is randomly picked up from the graph. If both sites are occupied by
individuals, they play the one-shot prisoner’s dilemmawith each other; otherwise, the current time step ends.
The payoffPij of the individual at site vi and the payoff Pji of the individual at site vj resulted from such an
interaction can be respectively expressed as

P s Ms

P s Ms

,

,
1

ij i
T

j

ji j
T

i

=

=

⎪

⎪

⎧
⎨
⎩

( )

where the 3×3 payoffmatrixM is given by

M

E C D
E r r r
C r r r
D

1 1
1 1

1 1 0

, 2= - - -
- - -

( )

which represents the donor-recipient version of prisoner’s dilemmawith a single rescaled parameter: the cost-
to-benefit ratio r (0<r<1). Here the cost-to-benefit ratio rmeasures the strength of dilemma confronted by
individuals [77, 78]. Note that, in ourmodel, expellers act as cooperators to play the prisoner’s dilemmawith
their coplayers. But different from cooperators, we assume that expellers will unilaterally exclude defectors at a
cost c from their current sites into any other vacant sites in the population after they are exploited by defectors in
the prisoner’s dilemma.

The payoff of each individual, e.g. the payoff Pi of the individual at site vi, is accumulated during the pairwise
interaction process. Because of the randomness in selecting pairs of individuals, the rounds that each individual
participates in vary from each other. To decouple the effect of this heterogeneity, the accumulative payoff of each
individual, e.g. the one at site vi, isfinally normalized according to

P
P z z

z

if 0,

0 if 0,
3i

i=
>

=

⎧⎨⎩¯ ( )

where z represents the frequencywithwhich the individual at site vi is chosen for interactionwith other ones
during the pairwise interaction process.

2.2. Strategy updating dynamics
Individuals experience strategy updating phase in a synchronousmanner. Specifically, each individual at site vi
imitates a randomly selected neighbor at site vj, if any, with probability given by the Fermi function [20]:

Tr P P
P P K

1

1 exp
, 4j i

j i

- =
+ - -

( ¯ ¯ )
[ ( ¯ ¯ ) ]

( )

where the noiseK is themeasure of stochastic uncertainties allowing irrational choices. Otherwise, the player at
site vi does not change its strategy.
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Obviously, the parameterw controls time scale between pairwise interaction process and strategy updating
process:Whenw→0, pairwise interaction dynamics proceedsmuch faster than strategy updating dynamics.
Therefore, the equilibriumof pairwise interaction dynamics determines the local configurations aswell as the
average payoffs of individuals on a graph (see an analyticalmethod for regular graphs in appendix B). Thismeans
that the consequent strategy evolution proceeds as on a graphwith nomobility of individuals induced by
expulsion events (see a theoreticalmethod for regular graphs in supplementarymaterial available online at
stacks.iop.org/JPCO/3/015011/mmedia); whenw→ 1, one can expect neutral evolution on a graph depending
on the initial strategy configuration; whenever 0< w< 1, evolution is driven by a detailed interplay between
these two dynamical processes.

3. Results

3.1.Mean-field dynamics
Now let us consider the deterministic dynamics of prisoner’s dilemmawith expellers in themean-field
setting, where the state is characterized by density p of players (i.e. pE of expellers, pC of cooperators and
pD=1−pE−pC−pf of defectors) (see appendix A). In the limitw→0, the expected values Ex •( ) of
average payoffs PX̄ (X ä E,C,D) for expellers, cooperators and defectors are respectively given by

Ex P r p p r c p

Ex P r p p rp

Ex P p p

1 ,

1 ,

.

5

E E C D

C E C D

D E C

= - + - +

= - + -

= +

⎧
⎨⎪

⎩⎪
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( ¯ ) ( )( )
( ¯ )

( )

According to the replicator-like equation set describingmotion for the concentration of each type of players
(equation (A.5)), pE and pC tend to zero for arbitrary value of pf andK as Ex P Ex P Ex PD C E>( ¯ ) ( ¯ ) ( ¯ ). The
increment of pf orKmerely leads to the slowdown of evolutionary speed (figure 1), but cannot change
evolutionary direction of the population as Ex P Ex P Ex PD C E>( ¯ ) ( ¯ ) ( ¯ ) for any composition of the population
(equation (5)). In short, expellers and cooperators become extinct in themean-field limit forw→0
(figure 2(a)). In the opposite limitw→ 1, pairwise interaction dynamics almost never occurs. In this case, one
can obtain Ex P Ex P Ex P 0E C D= = =( ¯ ) ( ¯ ) ( ¯ ) . Then natural selectionwill not change the composition of the
population. Anymixture of expellers, cooperators and defectors in the simplex S3 is an unstable equilibrium
(figure 2(b)).

In the general case of 0<w<1, we cannot give analytical predictions on the evolutionary outcome of the
population since the expressions of Ex PE( ¯ ), Ex PC( ¯ ) and Ex PD( ¯ ) cannot be further simplified (equations (A.1)–
(A.3)). Nevertheless, in themean-field limit, the prisoner’s dilemmawith expellers can be described by the
following transformed 3×3 payoffmatrixM’:

M

E C D
E r r c r
C r r r
D

1 1
1 1

1 1 0

, 6¢ = - - - -
- - -

( )

according to equations (A.1)–(A.3) From the above payoffmatrix, we can see that the strategyD is completely
dominant overC andE, and has a basin of attraction extended to thewhole domain of the system. Based on this

Figure 1.Mean time to achieve absorption state (i.e. the pureD state) T T2 1i
T

j
T i i j

0
1

0
1 ,t t= å å +=

-
=
- -¯ [ ( )] as a function of (a) ratio

of vacant sites pfwhen noiseK=0.1 and (b)noiseKwhen ratio of vacant sites pf=0.5. The time to reach stablefixed point τ i, j

is determined by equations (5) and (A.5) the initial condition ofwhich is given by p i T0E
i j, =( ) , p j T0C

i j, =( ) and p 0 1D
i j, = -( )

i j T+( ) where the integer iä [0,T−1] and jä [0,T−i−1]. Parameter settings: cost-to-benefit ratio r=0.5, cost of expulsion
c=0.5 andT=100.
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fact, we predict that the variation ofw does not alter the evolutionary outcome that defectors will eventually
wipe out expellers and cooperators irrespective of the initial composition of the population. To confirm this
prediction, we present phase diagrams of prisoner’s dilemmawith expellers forw=0.2,w=0.4,w=0.6
andw=0.8 infigure 3. It can be seen that all evolutionary trajectories end up in the pure state of defectors
irrespective of the values ofw. In sum, defectors are advantageous over expellers as well as cooperators, and can
take over thewhole population in themean-field limit.

3.2. Spatial dynamics
In realistic populations, unlike themean-fieldmodel, individuals do not interact with all other ones. Let us
therefore consider a structured populationwith individuals arranged on a square lattice with vonNeumann
neighborhood (i.e. including connections between nearest neighbors) and periodic boundary conditions.

Figure 2.Deterministic dynamics of themean-field systemwith expellers, cooperators and defectors in the simplex S3 (equations (5)
and (A.5)). The arrows indicate the direction of deterministic flows in the simplex, while solid (hollow) points denote stable (unstable)
fixed points. Red corresponds to fast dynamics and blue to slow dynamics close to thefixed points of the system. (a) Forw→0, there
is only one stable fixed point in the defector corner, and any state alone the line EC in the simplex is an unstable fixed point. (b) For
w→1, there is no stablefixed point, and any state of the dynamical system is an unstablefixed point. Parameter settings: cost-to-
benefit ratio r=0.5, ratio of vacant sites pf=0, cost of expulsion c=0.5 and noiseK=0.1.

Figure 3.Phase portraits and stability diagramof prisoner’s dilemmawith expellers for (a)w=0.2, (b)w=0.4, (c)w=0.6 and
(d)w=0.8 (equations (A.1)–(A.3) and (A.5)). The arrows indicate the direction of deterministic flows in the simplex, while solid
(hollow)points denote stable (unstable)fixed points. Red corresponds to fast dynamics and blue to slow dynamics close to thefixed
points of the system. Parameter settings: cost-to-benefit ratio r=0.5, ratio of vacant sites pf=0.1, cost of expulsion c=0.5 and
noiseK=0.1.
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Despite their difference from actual social networks [79], lattices provide a convenient entry point for exploring
the impacts of network structures on evolutionary dynamics [14, 20, 80]. Furthermore, the interaction and
competition between species in realistic systems, especially in biology and ecology, can be represented
adequately bymeans of lattices [81–84]. Therefore, we aim to study the evolutionary dynamics of prisoner’s
dilemmawith expellers on spatial networks.

In our computer simulations, each efficient time step (te) gives exactly one chance for every individual to
change its strategy. Initially, an equal number of expellers, cooperators and defectors are randomly placed on a
square lattice of sizeN, such that the fraction of occupied sites is 1−pf. The stationary densities of expellers
(pE), cooperators (pC) and defectors (pD) on square lattices are evaluated over sufficiently long sampling times
after the system enters into the equilibrium state. To ensure proper accuracy, final results (i.e. themean densities
of expellers pE¯ , cooperators pC̄ and defectors pD¯ ) are averaged over up to 50 independent runs for each set of
parameter values.

3.2.1. The limiting case w 0 and w 1
For convenience of comparison, we start by presenting the evolutionary outcomes of spatial prisoner’s dilemma
when the parameter of time scalew→0 infigure 4. It is shown that themean fraction of cooperators
p p1C - f¯ ( ) decreases with the cost-to-benefit ratio rwhen ratio of vacant sites pf is low (figures 4(a) and (b)). In
this case, cooperators are able to survive in the population by forming compact clusters as long as the cost-to-
benefit ratio r is sufficiently low [23]. However, themean fraction of cooperators p p1C - f¯ ( ) becomes almost

invariant with the cost-to-benefit ratio rwhen ratio of vacant sites pf is high (figures 4(c) and (d)). In this case,
the clusters of cooperators become sparse. Cooperators are vulnerable to the invasion of defectors irrespective of
the values of cost-to-benefit ratio r. Therefore, only cooperators isolated from the spatial domain of defectors
remain in the population [85].

Let us now study the spatial prisoner’s dilemmawith expellers when the parameter of time scalew→0. In
comparisonwith those infigure 4, results reported infigure 5 demonstrate that expulsion is able to promote the
evolution of cooperation irrespective of the values of cost-to-benefit ratio r, ratio of vacant sites pf and cost of
expulsion c. On saturated square lattices (i.e. pf=0), there is no vacant sites available for expellers to banish
their defective neighbors. Expellers, like cooperators, persist in the population solely by virtue of network
reciprocity. If cost of expulsion c=0, expellers and cooperators become equivalent. Hence themean fraction of
expellers p p1E - f¯ ( ) is identical to that of cooperators p p1C - f¯ ( ) for any value of cost-to-benefit ratio r
(figure 5(a)). However, if cost of expulsion c>0, the evolutionary performance of expellers becomes inferior to
that of cooperators (figures 5(e), (i) and (m)). In contrast, on diluted square lattices (i.e. pf>0), expellers
performbetter than cooperators and can persist (or even prevail) in the population across thewhole applicable
range of cost-to-benefit ratio r and cost of expulsion c (figure 5). In short, expulsion can coevolve with
cooperation in the spatial prisoner’s dilemmawith expellers in contrast to the evolutionary outcomes in the
mean-field limit.

To systematically investigate the effects of cost of expulsion c and ratio of vacant sites pf, wemove to study
phase diagrams for two representative values of cost-to-benefit ratio r in the spatial prisoner’s dilemmawith
expellers. In the absence of expellers, cooperators survive only if r<0.006, and they are able to defeat defectors
completely for r<0 on the saturated square lattice. Taking these thresholds as benchmark values, we focus on
r=0.005 and r=0.5. For r=0.005, cooperators are able to coexist with defectors solely on the basis of
network reciprocity. This value of r thus yields lenient conditions for the evolution of cooperation. For r=0.5,
on the other hand, cooperators are unable to survive. This value of r thus yields adverse conditions for
cooperative behavior to emerge. In close vicinity of transition points, we here enlarge the size of system from

Figure 4.Mean fraction of players, i.e. cooperators (p p1C - f¯ ( ): •) and defectors (p p1D - f¯ ( ):), in dependence on the cost-to-
benefit ratio r for different ratios of vacant sites pf ((a) pf=0, (b) pf=0.2, (c) pf=0.4 and (d) pf=0.8) in the spatial prisonerʼs
dilemma. Initially, each individual is designated as either a cooperator with probability 2/3 or a defector with the remaining
probability. The solid lines show the theoretical results predicted by extended pair approximationmethods (for details see
SupplementaryMaterial). Parameter settings: parameter of time scalew=5×10−7, noiseK=0.1 and size of systemN=104.
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N=104 (figures 4 and 5) to 9×104 (figure 7) to determine boundaries and types of phase transitions with a
higher accuracy.Meanwhile, the parameter of time scalew should be covariant with the size of systemN to
ensure invariance of the ratio of time scale between pairwise interaction dynamics and strategy updating
dynamics. Namely,

N w

w

N w

w1 1
, 7N

N

N

N

1 21

1

2

2-
=

-
( )

wherewN denotes the parameter of time scale associatedwith a systemof sizeN. Figure 6 shows the dynamical
behaviors of two systemswith different sizes (i.e.N=104 andN=9×104) but the same ratio of time scale
(i.e.Nw/(1−w)=5×10−3). Clearly, evolutionary trajectories for both systems are largely coincident with
each other. Due to the finite-size effects, the current fractions of expellers p t p1E e - f( ) ( ), cooperators
p t p1C e - f( ) ( ) and defectors p t p1D e - f( ) ( ) fluctuate around an equilibrium after initial transient times,
wherein fluctuations are smaller in the lattice with larger size (figure 6).

The phase diagram for r=0.005 presented infigure 7(c) together withfigure 5 suggests that at such a low
value of r, expellers rather than cooperators represent themore effective players to outperformdefectors except
if cost of expulsion c>0 and ratio of vacant sites pf=0. Themixed and dynamical (C+D)D phase in the
bottom line of the c−pf planefirst gives way to themixed and dynamical (E+C+D)D phase, subsequently
to themixed and frozen (E+D)F phase andfinally to themixed and frozen (E+C+D)F phase as the ratio of
vacant sites pf increases. Here amixed state is further classified as a frozen or dynamical sub-state. A sub-state is
called to be frozen provided two ormore of the second order heterogeneous variables (i.e. pEC, pED or pCD) of the
system are equal to zero in the stationary state. Otherwise, the sub-state is defined to be dynamical.While
majority of phase transitions is continuous, the E C D E DD F+ +  +( ) ( ) phase transition is discontinuous
because of an indirect territorial competition between expellers and cooperators (for details seemain text below)
[86, 87]. Only if the ratio of vacant sites pf is either negligible or large, are cooperators able to survive.When the
ratio of vacant sites pf is sufficiently small (e.g. pf=0.005), the clusters of cooperators are compact enough to
fight against defectors (figure 8(a)). Accordingly, cooperators are able to coexist alongside expellers and defectors

Figure 5.Mean fraction of players, i.e. expellers (p p1E - f¯ ( ):), cooperators (p p1C - f¯ ( ): •) and defectors (p p1D - f¯ ( ):), as a
function of cost-to-benefit ratio r for different combinations of ratio of vacant sites pf ((a), (e), (i), (m) pf=0, (b), (f), (j), (n) pf=0.2,
(c), (g), (k), (o) pf=0.4 and (d), (h), (l), (p) pf=0.8) and cost of expulsion c ((a), (b), (c), (d) c=0, (e), (f), (g), (h) c=1, (i), (j), (k),
(l) c=2 and (m), (n), (o), (p) c=3) in the spatial prisonerʼs dilemmawith expellers. The solid lines show the theoretical results
predicted by extended pair approximationmethods (for details see appendix B and supplementarymaterial). Parameter settings:
parameter of time scalew=5×10−7, noiseK=0.1 and size of systemN=104.
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in a dynamicalmanner (see themixed and dynamical (E+C+D)D phase in lower part of figure 7(c)).When
the ratio of vacant sites pf is large (e.g. pf=0.8), the clusters of cooperators are sparse and thus are easily
invaded by their defective neighbors. In this case, only cooperators that are isolated fromdefectors can persist in

Figure 6.Examples of dynamical behaviors. Symbols (N=104: dotted lines;N=9×104: dashed lines) depict current fractions of
expellers (pE(te)/(1−pf): blue), cooperators (pC(te)/(1−pf): orange) and defectors (pD(te)/(1−pf): red) on a spatial grid. The
ratio of time scale for both systems is set toNw/(1−w)=5×10−3 (equation (7)). ByN=104 andN=9×104, thefluctuations of
values around an equilibrium are smaller for the latticewith larger size. Indeed, if initial 5×103 values are discarded, the standard
deviationsσ of current fractions with respect tomean fractions are smaller forN=9×104 in comparisonwith that forN=104

( pE
s ≈0.034, 0.029pC

s » and 0.022pD
s » forN=104; 0.014pE

s » , 0.008pC
s » and 0.020pD

s » forN=9×104). Parameter
settings: cost-to-benefit ratio r=0, ratio of vacant sites pf=0, cost of expulsion c=0 and noiseK=0.1.

Figure 7. Full c−pf phase diagram for prisoner’s dilemmawith expellers on a square lattice with vonNeumann neighborhood and
periodic boundary conditions obtained via both extended pair approximationmethods ((a), (b); see appendix B and supplementary
material) andMonte Carlo simulations ((c), (d); seemain text) for (a), (c) r=0.005 and (b), (d) r=0.5, respectively. In upper
(bottom) panels, solid lines (closed symbols) denote continuous phase transitions, while dashed lines (hollow symbols) denote
discontinuous phase transitions. In addition, blue lines (blue squares) represent the phase boundaries between different states (i.e.
pure ormixed stationary states), while red lines (red bullets) represent the phase borders between different sub-states (i.e. dynamical
or frozen stationary state; see definition inmain text). Parameter settings: parameter of time scalew=5.6×10−8, noiseK=0.1 and
size of systemN=9×104.
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the system (figure 8(b)). Therefore, cooperators coexist with expellers and defectors in a frozenmanner (see the
mixed and frozen (E+C+D)F phase in top part offigure 7(c)).

Interestingly, when the ratio of vacant sites pf ismoderate (e.g. pf=0.1), cooperators become extinct, and
expellers and defectors are frozenly coexistent in the system (see themixed and frozen (E+D)F phase inmiddle
part offigure 7(c)). To understandwhy expellers can outperform cooperators despite additional costs of
expulsion, it is important to analyze spatiotemporal dynamics of spatial prisoner’s dilemmawith expellers. Let
Tr t X Y E C D, , ,XY e Î( )( ) denote the transition probability ofXʼs changing intoYʼs at efficient time step te.
Defining p t p t p X E C D1 , ,X e X e¢ = - Îf( ) ( ) ( )( ), we get the following equation set [20]:

G t G t G t G t

G t G t G t G t

G t G t G t G t
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whereG t p t Tr t X Y E C D, , ,XY e X e XY e= ¢ Î( ) ( ) ( )( ) represents the current inflowofYʼs transitioning fromXʼs at
efficient time step te. In our analysis, both p t X E C D, ,X e Î( )( ) andTr t X Y E C D, , ,XY e Î( )( ) are obtained
fromcomputer simulations. Starting froma randomstrategy distribution (figure 9(e)), the imitationof better
performingneighbors generates clusters of individualswith the same strategies: expellers and cooperators form
tiny clusters in a sea of defectors (figure 9(f)). In thismost early stage of evolutionary process (i.e. t 1, 8e Î [ ]), the
description ofmean-field is applicable, and the current fraction of expellers p t p1E - f( ) ( ) decreaseswith the
efficient time te in an exponentialway due to the advantage of defectors and cooperators in payoff (figures 9(a)
and (i)). In comparison, the current fractionof cooperators p t p1C - f( ) ( ) does not vary sharplywith the
efficient time te: itfirst increasesmildly and then decreases slowly. Although exploited bydefectors at this
stage, cooperators are compensated at the expense of expellers (e.g. at te=1, the net inflowof cooperators
changing fromdefectorsG t G t 0.042 7;DC e CD e- » -( ) ( ) the net inflowof cooperators changing fromexpellers
G t G t 0.048 3;EC e CE e- »( ) ( ) the overall net inflowof cooperatorsG t G t G t G tDC e CD e EC e CE e- + - »( ) ( ) ( ) ( )
0.005 6; figure 9(i)). The further development is determined by a local equilibriumwhere strategy updating only
occurs at the interfaces between clusters of different strategies (i.e. t 8, ;e Î +¥( ) figures 9(f)–(h)). In the presence
of defectors, the evolutionary fate of expellers is decidednot only by a direct competitionwith cooperators, but also
by the success of both cooperative strategies against invasion attempts by defectors (the accumulated net inflowof
expellers by themanner of direct domain competitionwith cooperators G t G t dt 0.104 6;

t CE EC
e

ò - »( ) ( ) the

accumulated net inflowof expellers through themanner of indirect domain competitionwith cooperators
G t G t dt 0.226 2

t CDE EDC
e

ò - »( ) ( ) , whereG t X Y Z E C D, , , ,XYZ e Î( )( ) denotes the current net inflowofZʼs

fromXʼs viaYʼs at efficient time step te;figure 9(d)). If ratioof vacant sites pf ismoderate, the clusters of cooperators
are not compact enough to defend against defectors in their neighborhood. Furthermore, the spatial configurations
of cooperators are constantly subjected to additional destruction due to the attack ofmigratory defectors induced
by the expulsion of expellers (figures 9(f) and (g)). In contrast, expellers are able to continuously banish defectors
in their neighborhood, and thus reduce frequencyof interactionwith defective players (figures 9(f) and (g)).
Consequently, the evolutionary performanceof cooperators become inferior to that of expellers, which explains
the advantage of expellers over cooperators in the direct domain competition (e.g. at te=8, the net inflowof
expellers changing fromcooperatorsG t G t 0.001 1;CE e EC e- »( ) ( ) at te=166, thenet inflowof expellers
changing fromcooperatorsG t G t 0.001 7;CE e EC e- »( ) ( ) figures 9(j) and (k)). Figures 9(b) and (c)demonstrate
the excellent competitiveness of expellers against defectors in their evolutionary race. Except extremely few efficient

Figure 8.Characteristic spatial patterns emerging for ratio of vacant sites (a) pf=0.005 and (b) pf=0.8when cost-to-benefit ratio
r=0.005. Strategies E,C, andD are depicted in blue, orange and red, respectively; vacant sites are described inwhite. Parameter
settings: cost of expulsion c=2, parameter of time scalew=5.6×10−8, noiseK=0.1 and size of systemN=9×104.
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time steps, the current net inflowof expellers changing fromdefectors is always no less than that of defectors
changing fromexpellers after the self-organization process of initial clusters (e.g. at te=8, the net inflowof
expellers changing fromdefectorsG t G t 0.000 2;DE e ED e- »( ) ( ) at te=166, the net inflowof expellers changing
fromdefectorsG t G t 0.001 5;DE e ED e- »( ) ( ) figures 9(j) and (k)). Indeed, expellers are able to accumulatemore
payoffs thandefectors in thepairwise interaction process, due to evolutionarymechanismsof network reciprocity
aswell as expulsion. Interestingly, expellers can spread successfully in thepresence of defectors that spatial domains
lost by cooperators arefinally occupied by expellers (figures 9(f)–(h)), which elaborates the advantage of expellers
over cooperators in the indirect domain competition.The synergetic combination of direct and indirect territorial
competitions ultimately leads to the eventual extinction of cooperators and thefinal downfall of defectors
(figure 9(a)). The evolutionary competition between expellers anddefectors terminateswhen they are completely
separated fromeach other (figures 9(h) and (l)).

Moreover, if ratio of vacant sites pf is negligible, the increment of cost of expulsion c can lead to phase

transition from themixed and frozen (E+D)F phase to themixed and dynamical (E+C+D)D phase
(figure 7(c)). Here the emergence of cooperation is due to the increasing cost of expulsion c, which lendsmore
support for cooperators to compete with expellers. Themore specific nature of the phase diagram for r=0.005
is illustrated quantitatively infigures 10(a) and (b), which shows a cross section across the ratio of vacant sites pf
for cost of expulsion c=2 and that across the cost of expulsion c for ratio of vacant sites pf=0.02, respectively.

Figure 9. Spatiotemporal dynamics of spatial prisoner’s dilemmawith expellers for themixed and frozen state (E+D)F phase
occurring at ratio of vacant sites pf=0.1when cost-to-benefit ratio r=0.005. Time courses depicting evolutionary process (top
row): (a) time evolution of current fractions of players, i.e. expellers (pE(te)/(1−pf):), cooperators (pC(te)/(1−pf): ◯) and
defectors (pD(te)/(1−pf):). (b) time evolution of current net inflowof expellers transitioning fromdefectorsGDE(te)−GED(te)=
pD(te)TrDE(te)/(1−pf)−pE(te)TrED(te)/(1−pf). The vertical green line showswhen current net inflowGDE(te)−GED(te) starts to
be positive (i.e. te=8), while the horizonal green linemarks the border atGDE(te)−GED(te)=0. (c)Enlargement of the dashed
rectangle area infigure 9(b): with very few exceptions, the current net inflowof expellers transitioning fromdefectorsGDE(te)−
GED(te) stays to be not smaller than zero during thewhole evolutionary process. (d)Accumulated net flowbetween players
(equation (8)), i.e. expellers (pE/(1−pf)), cooperators (pC/(1−pf)) and defectors (pD/(1−pf)), during thewhole evolutionary
process: the bold arrows indicate the directions of accumulated net flows between players, while the numbers inside bold arrows
denote the values of accumulated net flows between players.Moreover, the slim arrows show twomanners bywhich the net inflowof
expellers transitioning from cooperators is accumulated: direct (solid arrow) and indirect (dashed arrow) domain competition.
Formation of spatial patterns (middle row): the snapshots were taken at efficient times (e) te=1, (f) te=8, (g) te=166 and (h)
te=5×104 (see green lines infigure 9(a)markingwhen snapshots of spatial distributions were recorded). Strategies E,C, andD are
depicted in blue, orange and red, respectively; vacant sites are described inwhite. Current netflowbetween players (equation (8)), i.e.
expellers (pE(te)/(1−pf)), cooperators (pC(te)/(1−pf)) and defectors (pD(te)/(1−pf)) (bottom row) at efficient times (i) te=1,
(j) te=8, (k) te=166 and (l) te=5×104 (see green lines in figure 9(a) showingwhen current net flowbetween players were
recorded): The bold arrows indicate the directions of current net flows between players, while the numbers inside bold arrows denote
the values of current net flows between players. Furthermore, the slim arrows represent the directions of currentflows between
players, while the numbers near slim arrows show the values of currentflows between players. Seemain text for definition of
G t X Y E C D, , ,XY e Î( )( ). Parameter settings: cost of expulsion c=2, parameter of time scalew=5.6×10−8, noiseK=0.1 and
size of systemN=9×104.
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Interestingly, it can be observed infigure 10(a) that there exists an optimal ratio of vacant sites p *f leading to the

maximal overall fraction of altruistic individuals (i.e. expellers and cooperators) in the system.Note that the
optimal ratio of vacant sites p *f in present study does not relate to percolation threshold of the host graph, in

contrast to thefindings in either prisoner’s dilemma [85] or public goods game [88]. Here the evolutionary fate
of altruistic individuals is determined by both direct and indirect territorial competition between expellers and
cooperators. Neither too large nor too small butmoderate ratios of vacant sites p *f maximize the positive impact

of territorial competition.
If the conditions for the evolution of cooperation becomeharsh, as is the case for r=0.5, the phase diagram

changes qualitatively (figure 7(d)). It is shown that themixed and dynamical (C+D)D phase at ratio of vacant
sites pf=0 as well as themixed and dynamical (E+C+D)D phase at low ratio of vacant sites pf transforms
into the pureD phase and themixed and frozen (E+D)F phase, respectively. Here, cooperators vanish because
of the increasing cost of cooperation. In addition, the parameter regionwhere expellers, cooperators and
defectors can frozenly coexist (i.e. themixed and frozen (E+C+D)F phase) extends to lower part of the
c−pf parameter plane (compare figures 7(d)with (c)).When the cost-to-benefit ratio r is large (e.g. r=0.5),
expellers and cooperators can survive only if they are separated fromdefectors. If the ratio of vacant sites pf is
small (e.g. pf=0.1), cooperators would not have enough space to escape from the exploitation by defectors.
Thus expellers coexist with defectors in a frozenmanner (figure 11(a)). If the ratio of vacant sites pf is large (e.g.
pf=0.8), as is the case for r=0.005, cooperators are able to frozenly coexist with expellers and defectors in the
system (figure 11(b)). Figures 10(c) and (d) feature two characteristic cross sections of the phase diagram
presented infigure 7(d), which span across the ratio of vacant sites pf for cost of expulsion c=2 and the cost of
expulsion c for ratio of vacant sites pf=0.2, respectively. Interestingly, it can be seen from figure 10(d) that the
impacts of cost of expulsion c become saturatedwhen it is increased: themean fractions of players are invariant
with the cost of expulsion c.

Generally, the results obtained fromMonteCarlo simulations have been confirmed by using the extended
technique of pair approximation (see appendix B and supplementarymaterial; figures 4, 5, 7 and 10). In terms of
equilibrium frequencies of strategies, the extended pair approximationmethods correctly predict the trends of

Figure 10.Representative cross sections of the phase diagramdepicted infigure 7, as obtained for cost-to-benefit ratio r=0.005
((a): c=2 and (b): pf=0.02) and r=0.5 ((c): c=2 and (d): pf=0.2). Depicted aremean fractions of players, i.e. expellers
(p p1E - f¯ ( ):), cooperators (p p1C - f¯ ( ): •) and defectors (p p1D - f¯ ( ):), in dependence on ratio of vacant sites pf (a), (c) and
cost of expulsion c (b), (d). Note that the green dashed line infigure 10(a)marks the optimal ratio of vacant sites p 0.04* »f , at which
themean fraction of altruistic players p p p1E C+ - f( ¯ ¯ ) ( ) reaches itsmaximal value. The solid lines show the theoretical results
predicted by extended pair approximationmethods (see appendix B and supplementarymaterial). Parameter settings: parameter of
time scalew=5×10−7, noiseK=0.1 and size of systemN=1×104.
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simulation data in variationwith relevant parameters (figures 4, 5 and 10). However, predictions by the extended
pair approximation approaches are less accurate in the vicinity of phase transition points where long-range
correlations and fluctuations play a dominant role (compare bottom rowwith top rowoffigure 7) [89]. In
principle,more reliable predictions can bemade by enlarging the basic cluster from two-point (used by pair
approximation or two-point approximation) ton-point (n>2; used by n-point approximation) [20].

In the opposite limitw→ 1, the systemwill stay in the strategy updating process but rarely enter into the
pairwise interaction process. In such a case, thewhole population is governed by randomdrift because the
payoffs of expellers, cooperators and defectors are approximately equal to zero. In terms of game results, there is
no role difference between expellers, cooperators and defectors. Hence, expulsion plays neither positive nor
negative role in the evolution of cooperation.

3.2.2. The general case w0 1< <
To explore impacts of parameter of time scalew on the evolutionary outcome of spatial prisoner’s dilemma
with expellers in detail, we present the contour plots ofmean fraction of expellers p p1E - f¯ ( ), cooperators
p p1C - f¯ ( ) and defectors p p1D - f¯ ( ) as a function of cost-to-benefit ratio r and parameter of time scalew for

different values of ratio of vacant sites pf infigure 12.On saturated square lattices (i.e. pf=0), cooperators are
able to survive only if cost-to-benefit ratio r and parameter of time scalew are sufficient small (figure 12(b)).
Otherwise, defectors dominate expellers as well as cooperators completely (see top rowoffigure 12). However,
on diluted square lattices (i.e. pf>0), expellers can coexist with defectors on the full r−w parameter plane (see
middle and bottom rows offigure 12). For relatively low ratio of vacant sites pf (e.g. pf=0.4), expellers perform
best when cost-to-benefit ratio r and parameter of time scalew are negligible (figure 12(e)).Meanwhile,
cooperators are able to survive only if the parameter of time scalew ismoderate (figure 12(f)). Interestingly, the
mean fraction of cooperators p p1C - f¯ ( ) is largely invariant with cost-to-benefit ratio r. For relatively high
ratio of vacant sites pf (e.g. pf=0.8), the evolutionary fate of expellers is unaffected by cost-to-benefit ratio r as
well as parameter of time scalew (figure 12(i)).As for cooperators, both cost-to-benefit ratio r and parameter of
time scalew have similar effects as they have in the case of relatively low ratio of vacant sites pf (compare
figures 12(f)with (j)). Intriguingly, it is shown that there exists an optimal as well as a worst value of time scale
parameterw+ andw−that leads to the highest and lowest level of expulsion and cooperation, respectively
(figures 12(c), (g) and (k)). In present study, pairs of individuals are stochastically chosen to play prisoner’s
dilemmawith expellers in the pairwise interaction process. The randomness of this process can be adjusted by
the parameter of time scalew. In one limitw→0, the pairwise interaction dynamics is deterministic. In the
other limitw→ 1, the pairwise interaction dynamics becomes stochastic to the largest extend.Whenever
0<w<1, the pairwise interaction dynamics falls somewhere between these limits. Therefore, the existence of
such an optimal phenomenon can attribute to the coherence resonance scenario trigged by the parameter of
time scalewwhichmay be considered as the constructive noise [90, 91]. In this case, the increment ofmean
fraction of altruistic players (i.e. expellers and cooperators) p p p1E C+ - f( ¯ ¯ ) ( ) is regarded as an constructive
effect, as widespread altruistic players yield a higher total population payoff in comparisonwith dominant
defectors, and thus is favourable for the population. Themean fraction of altruistic players p p p1E C+ - f( ¯ ¯ ) ( )
determines the constructive effects of noise on the system and thus has the samemeaning as the signal-to-noise
ratio in classical coherence resonance phenomena observed in dynamical systems [46]. On the other hand, the
appearance of theworst value of time scale parameterw−nearw=1 is due to the unbalanced interplay between

Figure 11.Typical spatial patterns appearing for ratio of vacant sites (a) pf=0.1 and (b) pf=0.8when cost-to-benefit ratio r=0.5.
Strategies E,C, andD are depicted in blue, orange and red, respectively; vacant sites are described inwhite. Parameter settings: cost of
expulsion c=2, parameter of time scalew=5.6×10−8, noiseK=0.1 and size of systemN=9×104.
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pairwise interaction dynamics and strategy updating dynamics. Figure 13 shows the optimal andworst
parameter of time scalew+ andw−as a function of ratio of vacant sites pf. Both the optimal andworst
parameters of time scalew+ andw−are increasedwith the ratio of vacant sites pf. This result indicates that with
increasing vacancy rate the optimal aswell as worst trade-offs between pairwise interaction dynamics and
strategy updating dynamics translate fromdeterministic to stochasticmanner.

4. Summary anddiscussion

The purpose of the present paper is to study the evolutionary dynamics of prisoner’s dilemmawith expellers, and
to determinewhether expulsion can provide evolutionary advantages for altruistic individuals (i.e. expellers and
cooperators) to compete with defectors in prisoner’s dilemma. In themean-field limit, we have shown that

Figure 12.Colormaps depicting themean fraction of players (p p1E - f¯ ( ): (a), (e), (i); p p1C - f¯ ( ): (b), (f), (j); p p p1E C+ - f( ¯ ¯ ) ( ):
(c), (g), (k); p p1D - f¯ ( ): (d), (h), (l)) on two-dimensional r−w parameter planes, as obtained for vacancy rate pf=0 (top row),
pf=0.4 (middle row) and pf=0.8 (bottom row) in the spatial prisonerʼs dilemmawith expellers. Parameter settings: cost of
expulsion c=1, noiseK=0.1 and size of systemN=104.

Figure 13.Optimal (w+:) ⧹worst (w−: •) parameter of time scale,marking themaximal ⧹minimalmean fraction of expellers and
cooperators, in dependence on ratio of vacant sites pf. Parameter settings: cost of expulsion c=1, noiseK=0.1 and size of system
N=104.
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defection is the only evolutionarily stable strategy in prisoner’s dilemmawith expellers. The increment of either
vacant sites ratio or time scale parameter between pairwise interaction dynamics and strategy updating dynamics
merely leads to the extension ofmean time to reach the stable equilibrium.However, expulsion is, in general,
effective in deterring defection in spatial prisoner’s dilemmawith expellers as long as the population has a sparse
structure. In one limit of time scale parameterw→0, the introduction of expellers can dramatically change the
systembehavior, whereinwe do not find the dominance of defectors as it is in spatial prisoner’s dilemma, but do
find themaintenance or even prevalence of expellers (comparefigures 4with 5). In the presence of defectors,
expellers can take advantages over cooperators by a combination of direct and indirect domain competition. By
the evolutionarymechanism of expulsion, expellers are able to decrease frequency of interactionwith defectors
while increase frequency of interaction between cooperators and defectors (see appendix B). The former factor
lowers down the payoffs of defectors in expellers’neighborhood, which helps expellers to reach a superiority
over defectors who in turn diminish cooperators: amanner of indirect territorial competition. On the other
hand, both factors assist expellers to defeat cooperators in the direct territorial competition. Although there
exists a rather constrained and unrealistic parameter region (i.e. cost-to-benefit ratio r→ 0, ratio of vacant sites
pf=0 and cost of expulsion c>0; figure 5)where cooperators can outperform expellers, these advantages are
highly impossible to play a role in reality. The spatial prisoner’s dilemmawith expellers gives rise to a rich variety
of possible dynamics and a number of continuous or discontinuous transitions between qualitatively different
systembehaviors (figure 7). For low cost-to-benefit ratio r, we have observed several types of strategy
coexistence: (1) themixed and dynamical state C D D+( ) , (2) themixed and dynamical state E C D D+ +( ) , (3)
themixed and frozen state E D F+( ) and (4) themixed and frozen state E C D F+ +( ) . Each kind of these states
is sustained in a particular way bymeans of which a portion of altruistic individuals can survive in the presence of
defectors. To be specific, cooperators can dynamically coexist with defectors by spatial aggregation in C D D+( )
phase. In E C D D+ +( ) phase, expellers can dynamically coexist with cooperators and defectors by direct and
indirect territorial competition, the latter of which also leads to the discontinuous phase transition between
E C D D+ +( ) and E D F+( ) phase. In both E D F+( ) and E C D F+ +( ) phases, altruistic individuals can
coexist with defectors by spatial isolation in a frozenmanner. For high cost-to-benefit ratio r, we have observed
more simplified evolutionary outcomes: (1) the pure stateD, (2) themixed and frozen state E D F+( ) and (3) the
mixed and frozen state E C D F+ +( ) .

Note that our principal discoveries are not expected to change for relaxing parameter of time scale from the
limiting casew→0 to the general case 0<w<1 (figure 12). Interestingly, we have found that there exist not
only an optimal but also aworst value of time scale parameterw+ andw−that results in the highest and lowest
level of expulsion and cooperation, respectively. By interpreting parameter of time scalew as constructive noise,
we can attribute the optimal phenomenon to coherence resonance reported previously in temporal and spatially
extended dynamical systems [46, 90, 91]. On the other hand, the existence of worst time scale parameterw−is
due to the unbalanced interplay between pairwise interaction dynamics and strategy updating dynamics.
Furthermore, it is well known thatmutationweakens the benefits of network reciprocity to cooperation in social
dilemma games [92]. Therefore it is worth investigating how the coevolution of expulsion and cooperation
affected bymutation. The preliminary simulation results show that the beneficial effects of expulsive behavior
on the evolution of cooperation are fairly robust against the variation ofmutation. This indicates that the
evolutionarymechanism of expulsion on spatial networks is different fromnetwork reciprocity, which deserves
additional research to clarify.

It was previously found that punishment represents a typical behavior that is able to promote cooperation in
certain situations [93, 94]. Particularly, costly punishment refers to the special kind of punishment that is
manipulated by imposing some fine on defectors but at a cost to punishers [86, 95–101]. In fact, this kind of
costly punishment can be classified as an active one. In this sense, the expulsive behavior in ourmodel can be
considered as a kind of passive punishment: expellers tend to ‘punish’ defectors in away that they terminates
future interactions between them.On the other hand, expulsion is very similar to ostracism, inwhich defectors
lose all their present partners [102, 103]. In addition, the evolutionarymechanism that assists expellers tofight
against the exploitation of defectors share a similarity with that in optional games of social dilemma: reduction of
interaction frequency between cooperative strategies and defective strategies [104]. Nevertheless, different from
the loner in optional games, expellers in ourmodel can alsowin over cooperators via enhancing frequency of
interaction between cooperators and defectors though it requires additional supports fromnetwork reciprocity
aswell as dilution of graph. This is the reason that leads to different dynamics between gameswith loners and
gameswith expellers. Still, spatial prisoners dilemmawith expellers can also be considered as a kind of
coevolutionarymodel between individual strategies and network structures as the neighborhoods of individuals
are also coevolvedwith strategies in ourmodel [22]. Recently, the impact of social exclusion on the evolution
of cooperation governed by group interaction has been extensively studied in infinite populations, finite
populations and spatial networks, respectively [105–107]. In their works, excluders are able to deny the rights of
defectors to enjoy the benefits of public goods at some cost. In this case, excluders can defeat defectors as long as
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the net gain of excluders from the public goods game is greater than the cost of exclusion. Thus social exclusion is
a very powerfulmechanism for the evolution of cooperation even in infinite populations. In contrast, expellers
in ourmodel are able to recognize the types of coplayers only after they play gameswith each other. In other
words, expellers need to pay a cost r, which is the cost-to-benefit ratio, tomake identification as well as another
cost c to execute expulsion so as to expel defectors from their neighborhoods. This is the reasonwhy expellers
perform inferior to both cooperators and defectors in themean-field limit. Finally, cooperators in ourmodel
play the role of second-order free riders. To explain this, suppose that there are no defectors in the population. In
this case, natural selection cannot distinguish between the players that cooperate and banish defectors (i.e.
expellers) and the players that cooperate but do not expel defectors (i.e. cooperators). There is no requirement to
expel, so there is no second-order free rider problem. If defectors are present in the population, however, the
players that eject defectorsmust do so at a personal cost. Natural selectionwill now favor the players that
cooperate but do not expel defectors. As a result, cooperators rise at the expense of expellers and eventually
introduce the invasion of defectors. However, we have shown that the coevolution of expulsion and cooperation
can be promoted even in such an adverse condition.
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AppendixA.Mean-field dynamics of prisoner’s dilemmawith expellers

In themean-field theory, the state of a system is characterized by the density of players. In this situation, the
expected values Ex •( ) of average payoffs PX̄ (X ä E,C,D) for expellers, cooperators and defectors in prisoner’s
dilemmawith expellers are respectively given by
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where I represents the frequency of randomly chosen pairs of individuals to endure pairwise interaction
dynamics between strategy updating events. iXY denotes the number ofXY pairs satisfying i IXY XYå = . Herein,
X andY stand for the state of a site, which is occupied by either an expeller or a cooperator, or a defector.

Since the present dynamical rule has the formof Fermi function (equation (4)), themotion for
concentrations of expellers, cooperators and defectors can be given by the following equation set:
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Defining p p p1X X
¢ = - f( ) (X ä E,C,D), we obtain
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which is themaster equations governing the evolution of thewhole system.

Appendix B. Pairwise interaction dynamics of spatial prisoner’s dilemmawith expellers

In this appendix, wewould like to present an extended pair approximationmethod for describing pairwise
interaction dynamics of prisoner’s dilemmawith expellers on regular graphs. Let pE, pC, pD and pf denote the
density of expellers, cooperators, defectors and vacant sites in a population, respectively. Let pEE, pEC, pCE, pCC,
pED, pDE, pDD, pEf, pfE, pff, pCD, pDC, pCf, pfC, pDf and pfD represent the density ofEE,EC,CE,CC,ED,DE,
DD,Ef,fE,ff,CD,DC,Cf,fC,Df andfD pairs, respectively. Then q p pX Y XY Y=∣ specifies the conditional

probability that the neighboring site of a site of stateY is in stateX. Herein,X andY stand for the state of a site,
which is occupied by either an expeller or a cooperator or a defector, or just vacant. For pair approximation
method [15, 108–112], only frequencies of state pairs pXY are tracked. The probabilities of larger configurations
are expressed and approximated by the frequencies of pair configurations. Based on the symmetry condition
pXY=pYX, the compatibility condition p pX Y XY= å , and the closure conditions, thewhole system can be
described by the following eight variables in pair approximation: pE, pC, pEE, pEC, pED, pCC, pCD and pDD.

During the pairwise interaction process, the configuration frequencies do not change except if a defector is
ejected by an expeller after they play gameswith each other. Let us now consider the case that anED pair is
randomly selected for interaction from the population. The expulsion of the chosen expeller to the chosen
defector from its current site to another vacant site in the populationmay lead to the variation of pED, pCD and
pDD. The expelled defector has kE expellers, kC cooperators, kD defectors and kf=k−1−kE−kC−kD
vacant sites among the k−1 remaining neighbors on a regular graphwith connectivity k. The frequency of such
a configuration is
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The frequency of the configuration, inwhich a vacant site has kE ¢ expellers, kC ¢ cooperators, kD ¢ defectors and
k k k k kE C D¢ = - ¢ - ¢ - ¢f vacant sites, is

q q1 1

.

k

k k k
k k k k k

k k k k

q

q

k q

q

k k k
k k

k k

q

q q

k

q

q q

k

1 1E E

E
E

E
E

C D

C D

C

C D

C

D

C D

D

- -

´

f f f f¢ - ¢
¢ - ¢ - ¢

¢ - ¢ - ¢ -

¢

-

- ¢- ¢
¢ + ¢
¢ ¢ +

¢

+

¢

f f

f f f

f

f

f f

f

f f

f
f

f f

f

f f

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )!
!( )! ∣ ∣

( )!
!( )!

( )!
! !

∣

∣

∣

∣

∣

∣ ∣

∣

∣ ∣

Therefore, the number ofED pairs increases by k k 1E E¢ - - , and thus pED increases by k k kN2 1E E¢ - -( ) ( )
with probability

16

J. Phys. Commun. 3 (2019) 015011 XWang et al



p
k k

kN
p

k

k k k
q q

k k

k k k k

q

q

q

q

k k

k k

q

q q

q

q q

k

k k k
q

q
k k

k k k k

q

q

q

q

k k

k k

q

q q

q

q q

Prob
2 1

1

1
1

1

1

1

1
1

1 1

1
1

. B.1

ED
E E

ED
k k k

E E

E
k

E
k k k

C D

C D

C

C D

k
D

C D

k

DE
k

DE
k k

E E

E DE

DE

k

E DE

DE

k k k

C D

C D

C DE

C DE D DE

k

D DE

C DE D DE

k

1

1

E E

C D

E

E C

D

D =
¢ - -

=
¢ - ¢

-
- ¢

¢ - ¢ - ¢

´
-

-
-

¢ + ¢
¢ ¢

´
+ +

-
- -

´ -
- -

- - - -

´ -
-

+
+

´
+

f f
f f f f

f

f

f

f f

f

f f

f

f f

f

f f f f
f

f
f

f f

f

¢ - ¢

¢ - ¢- ¢

¢ ¢

- -

- - -

f f

f

f

f

f

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) !
!( )!

( )
( )!

!( )!

( )!
! !

( )!
!( )!

( )
( )!

!( )!

( )!
! !

( )

∣ ∣

∣

∣

∣

∣

∣

∣ ∣

∣

∣ ∣
∣

∣
∣

∣

∣

∣

∣

∣ ∣

∣

∣ ∣

The number ofCD pairs increases by k kC C¢ - , and thus pCD increases by k k kN2 C C¢ -( ) ( )with
probability
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Similarly, the number ofDD pairs increases by k kD D¢ - , and thus pDD increases by k k kN2 D D¢ -( ) ( )with
probability
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In the limit of large site sizes N  ¥, we obtain the following differential equation set:
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After some algebra, equation (B.4) can be simplified to
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The above equation set requires a ‘moment closure’by approximating q qX YZ X Y»∣ ∣ . Thismeans that onlyfirst order
pair correlations are taken into account andhence thename ‘pair approximation’. Thus fromequation (B.5), wehave
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Further rearranging equation (B.6), we obtain
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From equation (B.7), we can see that the ordinary differential equation of pED
˙ has the formof Bernoulli’s

equation. Dividing throughout by pED
2, one gets
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which leads to a general solution
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Therefore, we obtain

p
e

e dt C

. B.12ED

k dt

k

k

p

k

p

k dt

1

2 1 1

k

pE pEE pEC
p

D

k

pE pEE pEC
p

2

2

ò
=

+ +

ò

ò

-

- -

f

f

f

- -

- -

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

Assuming that at the beginning of each pairwise interaction stage, expellers with a fraction p t 0E ¢ =( ),
cooperators with a fraction p t 0C ¢ =( ) and defectors with a fraction p t 0D ¢ =( ) are distributed on a regular
graphwith the vacancy rate p p p p1 E C D= - + +f ( ). Thus p tED ¢( ) is given by:
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Similarly, p tCD ¢( ) and p tDD ¢( ) can be respectively expressed by

p t
e

e

1

1

, B.14CD

k p p p

k p p p p

k t p

p

kp k p

k p p p p p p

k t

p

0 0 0

0 0 0

1 0

0

0 1

0 0 0 0 0

1 1

0

C EC CC

E EE EC

k

pE pEE pEC
p CD

ED

D

E EE EC D D

k

pE pEE pEC
p

ED

2 0 0 0

2 0 0 0
¢ =

- +

- +

- -

- - -
- ¢

+ -

- - -
- ¢

f

f

f

f

f

- -

- -

( )
( )( )

( )

( )
( )

[ ( ) ( ) ( )]
[ ( ) ( ) ( )]

( )
( )

( ) ( )

[ ( ) ( ) ( )] ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

and

p t
e

e

e

p kp k p

k p p p p p p
e

1

1

1 1

1

ln
0 0 1

0 0 0 0 0
1 1 .

B.15

DD

k p p p p p p p p p

k p p p p kp k p

k t p

p

kp k p

k p p p p p p

k t

p

k p p p p p p

p kp k p

k p p p

k p p p p

p

p

kp

kp k p

kp k p

k p p p p p p

k t

p

ED D

E EE EC D D

k t

0 0 0 0 0 0 0 0

0 0 0 0 1

1 0

0

0 1

0 0 0 0 0

1 1

0

0 0 0 0 0

0 0 1

0 0 0

0 0 0

0

0

0

0 1

0 1

0 0 0 0 0

1 1

0

1

D D E EE EC C EC CC

E EE EC D

k

pE pEE pEC
p DD

ED

D

E EE EC D D

k

pE pEE pEC
p

ED

E EE EC D D

ED D

C EC CC

E EE EC

CD

ED

D

D

D

E EE EC D D

k

pE pEE pEC
p

ED

k

pE pEE pEC
p

2 2 0 0 0

2 0 0 0

2 0 0 0

2 0 0 0

¢ =
- +

- +

+
+ - -

- +

´
+ -

- - -
- +f

f

+ - - - - - -

- - - + -
- ¢

+ -

- - -
- ¢

- - -

+ -

- -

- - - + -

+ -

- - -
- ¢

- ¢

f

f f

f

f

f

f

f

f f f

f

f

f

f

- -

- -

- -

- -

⎜ ⎟

⎪

⎪

⎪

⎪

⎧⎨⎩
⎛
⎝

⎞
⎠

⎫⎬⎭

⎧
⎨
⎩

⎫
⎬
⎭

( )
( )

( )

( )

( )
( )

( )

( )

( )[ ( ) ( ) ]

[ ( ) ( ) ( )] ( ) ( )
( )

( )

( ){ ( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]}

{ [ ( ) ( ) ( )] }[ ( ) ( ) ]
( )
( )

( ) ( )

[ ( ) ( ) ( )] ( ) ( ) ( )

[ ( ) ( ) ( )] ( ) ( )

( )[ ( ) ( ) ]
[ ( ) ( ) ( )]

[ ( ) ( ) ( )]
( )
( )

( )
( ) ( )

( ) ( )

[ ( ) ( ) ( )] ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

For rest of equations in equation (B.7), the current densities of players and the current pair densities can be
simply solved as p t p X E C0 ,X X¢ = Î( ) ( )( ) and p t p X Y E C0 , ,XY XY¢ = Î( ) ( )( ), respectively.

From equations (B.13)–(B.15)we can observe that there exists a critical fraction of vacant sites

p k p p p0 0 0 , B.16c
E EE EC= - -f [ ( ) ( ) ( )] ( )
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depending onwhich the equilibrium state of the population at the end of pairwise interaction stage can be
summarized into the following three generic cases:

(i) If p p c<f f , the stationary state is given by
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(ii) If p p c=f f , the stationary state is given by
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(iii) If p p c>f f , the stationary state is given by
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where te ¢ represents the ending time of pairwise interaction stage. Obviously, asw→0, the time interval te ¢ of
pairwise interaction stage becomesmuch longer than the time that is required for thewhole system enters into
the equilibrium state in the pairwise interaction stage.

To demonstrate the predictive power of the extended pair approximationmethod for describing pairwise
interaction dynamics of spatial prisoner’s dilemmawith expellers, we now consider a typical class of initial
conditions: at the start of pairwise interaction process, a fraction of pf random sites of a regular graphwith
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degree k are set to be vacant, and the remaining sites are occupied by either expellers, cooperators or
defectors with equal probability. In this case, the initial values of local densities can be estimated as
q p p0 0 1 3X Y X» = - f( ) ( ) ( )∣ (X ä E,C,D andY ä E,C,D,f) and q p0Y »f f( )∣ (Y ä E,C,D,f). Thus the
solutions of p tED ¢( ), p tCD ¢( ) and p tDD ¢( ) becomes
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respectively.While the current densities of players and the current pair densities can be respectively solved as
p t p X E C1 3 ,X ¢ = - Îf( ) ( ) ( ) and p t p X Y E C1 9 , ,XY

2¢ = - Îf( ) ( ) ( ).
According to equations (B.20)–(B.22) the critical ratio of vacant sites can be given as
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by solving p p p k1 2 9 12+ - =f f f( ) ( ) . Still, the stationary state of the system at the end of pairwise
interaction process can be classified into the following three generic cases:
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(ii) If p p c=f f , the equilibrium state becomes
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(iii) If p p c>f f , the equilibrium state becomes
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Figures B1 andB2 show that simulation and analytical results almost perfectly coincidewith each other both
in steady state and during evolutionary process of pairwise interaction dynamics, and thus confirm the validity of
ourmethod. Besides, from equations (B.20) and (B.21)we can obtain
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Here, the overall impacts of pairwise interaction dynamics on strategy distribution are to decrease interaction
frequency between expellers and defectors while increase interaction frequency between cooperators and
defectors if only p p c¹f f (figures B1 andB2), which reveals the origin of evolutionary advantages of expellers
over cooperators as well as defectors. For p p c=f f , the current local densities become invariant with time step t ¢
during thewhole pairwise interaction process.
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