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Abstract—Tool-path optimization has been applied in many
industrial applications, including subtractive manufacturing likes
drilling and additive manufacturing likes 3D printing. The
optimization process involves finding a time-efficient route for
tools to visit all the required sites, which is often computationally
intensive. In practice, heuristics and meta-heuristics are used to
generate sub-optimal results within reasonable durations. The
aim of this work is to use artificial neural networks to yield
better tool-paths.

Index Terms—Additive manufacturing, Tool-path optimization,
3D printing, Neural networks.

I. INTRODUCTION

Tool-path optimization problems can be found in many

manufacturing processes, including drilling, milling, and 3D

printing. In previous decades, multiple attempts have been

made to formulate and generalize them into classic mathe-

matical problems like traveling salesman problem (TSP)[1],

[2] and undirected rural postman problem (URPP)[3], [4].

Approximation algorithms such as Christofides’ algorithm

(for TSP)[5] and Frederickson’s algorithm (for URPP)[6]

have demonstrated their capabilities in generating sub-optimal

solutions with an approximation ratio of 1.5. Refinement

techniques such as k-opt are commonly adopted to further

improve the intermediate solutions [7].

Neural networks (NN) have demonstrated their capability

in solving pattern recognition problems and have been applied

in different applications. Recently, a human action recognition

system using an NN was proposed [8]. Meta-heuristics were

utilized to minimize its classification error. It showed that with

a proper feature extraction, NNs are capable of identifying the

motion patterns of complicated actions. NNs have also been

applied to improve the performance of systems. In [9], the

authors developed a fuzzy energy management controller using

a NN for identifying the driving pattern of vehicles with fuel

cells. The outcomes can minimize the energy consumption of

the vehicles and prolong the lifetime of the fuel cells. In a

recent study [10], a NN was utilized to solve a TSP. NNs

have also demonstrated promising performances on predicting

the distribution over different node permutations. The method

proposed in [10] can successfully find optimal results up to

100 nodes. At the same time, authors of [10] have raised a

concern over its processing time. In this work, some tool-path

optimization problems, which are sensitive to the computa-

tional time, were considered.

In order to generate a fast tool-path in a time-efficient

manner, an NN and a hierarchical refinement process is

proposed in this paper. According to the experiment results,

the proposed solver can generate better solutions than other

selected solvers under test. Computational times have also

been recorded and then compared to those of an algorithm

with a single-pass refinement process. The rest of the paper

are organized as follows. A preliminary study on this work is

presented in Section II. The design and implementation of the

proposed solver are introduced in Section III. The proposed

solver is evaluated against an existing algorithm on different

tool-pathing problems. Results are presented and discussed in

Section IV and Section V, respectively. Concluding remarks

are given in Section VI.
II. PRELIMINARY STUDY

Among existing TSP and URPP solvers, greedy algorithms

are common and intuitive approaches. Their computational

complexity is O(n2), where n is the size of a problem.

Fig. 1(a) shows the optimal solution for the drilling problem

“a280” [1]. Fig. 1(b) shows a tool-path generated using a

greedy algorithm for the same problem. It can be observed

that the cost (i.e. path length) of the tour generated using

a greedy algorithm (3148 unit) is much higher than that of

the optimum tour (2579 unit). In Fig. 1(b), there are several

long tool-path motion segments (known as transitions) which

lead to a relatively higher cost. To ease the explanation, the

term optimal transition is utilized in this work to indicate a

transition in the optimal tour.

The optimal transitions on the sub-optimal tour generated

using a greedy algorithm are highlighted in Fig. 1(c). A total of

207 transitions (74%) of all the transitions being generated are

regarded as optimal transitions. According to our preliminary

study, similar results are observed in other TSP instances.
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Fig. 1: Illustrations showing (a) the optimum tour of the

problem “a280”[1], (b) a tour generated using a greedy al-

gorithm, (c) optimal transitions in (b), and (d) a non-optimal

transition connecting nodes 19 and 20 generated from a greedy

algorithm. Black dots and blue lines represent nodes and

transitions, respectively.

If all the optimal transitions in a sub-optimal tour can be

identified, the problem is then became finding a low-cost tour

traversing all nodes and those identified optimal transitions,

which will have a much lower computational complexity.

However, identifying optimal transitions is a non-trivial task.

There is no direct relations between the cost of a transition

and the likelihood of it being one of the optimal transitions.

For example, Fig. 1(d) highlights one transition from Fig. 1(b)

which connects nodes 19 and 20. It can be observed that this

transition is shorter than most of the transitions in the tour.

However, it is not an optimal transition according to Fig. 1(a).

In this work, it is found that an NN can give good estimations

in identifying optimal transitions when given a proper training

dataset.

III. THE PROPOSED METHOD

The proposed solver has 6 processing phases in generating

solutions for TSP and URPP.

Phase 1: The proposed solver is initialized by given 1)

a trained NN for optimal transitions identification and 2) an

initial tour. Details on the preparation of the NN will be

elaborated shortly. The initial tour can be generated using any

arbitrary method. In this work, a greedy algorithm is adopted

in this phase due to its low computational complexity.

Phase 2: The NN is then used to evaluate transitions in

the given tour and identify those which are very likely to be

on the optimal tour. Identified transitions which intersect at

common nodes will be connected to form route segments. The

remaining transitions will be discarded temporarily.

Phase 3: The initial tour is now dissected into multiple

disconnected route segments. The objective of the current

phase is to find a low-cost tour to traverse all the disconnected

segments exactly once. The problem is formulated as an

URPP. Since the subjects are now segments instead of nodes,

the complexity has been reduced when comparing with the

original problem.

Phase 4: The objective of this phase is to further optimize

the transitions within each route segment. In this work, 2-opt

[7] is employed for such a task due to its high performance

in optimizing tours or routes with small to medium scales.

Phase 5: Since the initial tour given in Phase 1 is indeed

a valid solution for connecting all the route segments in

the problem, those transitions in the initial tour which are

connecting the endpoints of the route segments are restored

in this phase and a valid tour is then formed again. This

intermediate tour will then go through another 2-opt process

that will only alternate those restored transitions between route

segments.

Phase 6: The outcome from Phase 5 will be a valid solution

as well since it traverses all nodes and route segments exactly

once. At last, the tour will go through a 2-opt process once

more, which can alter any transitions on the tour whenever it

is possible to reduce its cost. This last phase is essential for

eliminating transitions which have been misclassified by the

NN as optimal transitions in Phase 2.

To conclude, the proposed solver optimizes an initial tour

using 2-opt algorithms in a hierarchical manner in Phases 4, 5,

and 6 based on the outcomes of the NN. The NN distinguishes

optimal transitions and temporarily prevents those transition

from being further modified in Phase 4. The tour, generated

in Phase 5 which traverses all segments, is very likely to

be closer (in terms of cost) to the optimal tour than the

initial tour. It is expected that the processing time due to 2-

opt will be shorter when the input tour is getting closer to

the optimal solution as not much improvement can be made

further. The proposed solver prevents 2-opt from beginning

its searches on the main problem which has a relatively large

scale. Instead, it adopts a divide and conquer strategy which

allows 2-opt to first operate on sub-problems. Even though a

complete search is conducted in the last phase, lots of the non-

optimal transitions have already been eliminated. Therefore,

the number of alternations required are limited and should not

impose a huge computational burden to the proposed solver.

A. Training Datasets

The dataset used for training the NN is obtained as follows.

A set of well-studied TSP and their corresponding optimal

solutions is requited in the training process. Since all the

transitions in an optimal solution are regarded as optimal tran-

sitions, they are all labeled as class 1. In order to generate non-

optimal transitions for training purposes, a greedy algorithm

is used to work on the same set of TSP. By comparing sub-

optimal solutions obtained from the greedy algorithm and their

counterparts, non-optimal transitions are identified and labeled

as class 0. Feature vectors are then extracted from all the

transitions. Details on the extraction process are elaborated

in the next sub-section.



B. Feature Vectors

From the training dataset, feature vectors of transitions and

their corresponding labels are fed into an NN for training.

Here, let D(A,B) be the cost of the transition between

nodes A and B. Also, let G(A,B, S) be a function which

returns an integer j that indicates the transition (A,B) is the

j-th shortest transition in the tour S. Furthermore, let R(A, k)
be a function which returns the node index of the k-th nearest

node of node A in a given graph where k ∈ {1, 2, . . . , n}.

Given a transition (A,B), its feature vector F(A,B) is denoted

as

F(A,B) =
[G(A,B, S)

n
,
D(A,R(A, 1))

D(A,B)
,
D(A,R(A, 2))

D(A,B)
,

D(A,R(A, 3))

D(A,B)
,
D(A,R(A, 4))

D(A,B)
,
D(B,R(B, 1))

D(A,B)
,

D(B,R(B, 2))

D(A,B)
,
D(B,R(B, 3))

D(A,B)
,
D(B,R(B, 4))

D(A,B)

]T

.

(1)

A total of 8 cost ratios are acquired in the feature vector.

This feature vector considers not only the cost of the transition

(A,B), which is the cost between nodes A and B, but also

the costs from nodes A and B to their other nearby nodes. For

example, the physical meaning of the term
D(A,R(A,1))

D(A,B) is the

ratio of the cost between node A and its nearest node to the

cost of the transition (A,B). If node B is the nearest node to

node A,
D(A,R(A,1))

D(A,B) equals 1. If there exists other nodes which

are closer to node A then node B, then
D(A,R(A,1))

D(A,B) > 1.

According to our preliminary study in Section II, apart form

the cost of the transition, the neighboring nodes of its two

endpoints also play important roles in determining whether

it is an optimal transition. Therefore, F(A,B) incorporates the

distances to the neighbouring nodes of both endpoints of the

transition. As shown in (1), it takes both the nearest 4 nodes

of node A and the nearest 4 nodes of node B into its account.

Based on our studies, the gain in performance of the proposed

solver diminished when more than 4 nearest neighbouring

nodes are being considered.

For each transition in our training dataset, 8 ratios are

extracted. These ratios, being independent to scaling and

rotation, are then fed into the input layer of the NN as 8

individual inputs. There is 1 node at the output layer of the

NN which returns the likeliness of the current transition for

being an optimum transition.

The proposed solver classifies a transition as an optimal

transition if the value of the NN’s output is larger than a user-

defined threshold θ, where θ ∈ (0, 1). The selection of θ alters

the performance of the proposed solver. If the value of θ is too

small, it is likely that some transitions will be misclassified as

an optimal transition. On the other hand, if the value of θ is

too high, it can be expected that many optimal transitions will

not be identified correctly. Therefore, not many transitions can

be consolidated into segments. Furthermore, λ is another user-

defined parameter which denotes the maximum percentage of

transitions that can be used to form route segments in Phase

2, where λ ∈ (0, 1). For a problem of size n, if there are more

TABLE I: TSP instances in TSPLIB [1] that are used in

constructing the dataset.

a280 berlin52 eil51 gr96 lin105

att48 ch130 eil76 kroA100 pa561

bayg29 ch150 gr120 kroC100 pcb442

bays29 eil101 gr202 kroD100 pr76

than λn transitions being identified as optimal, then only the

first λn transitions with the highest θ values will be preserved

in Phase 2.

IV. EXPERIMENTS

A. Experiments Settings

The NN used in the proposed solver is implemented with

MATLAB Deep Learning Toolbox [11]. The NN has a total

of 10 hidden layers with 10 nodes in each of them. All other

parameters are kept at their default values. From the dataset,

80% of them are used for training, and the remaining are used

for testing. There are a total of 24 problems given in TSPLIB

[1] and their optimal solutions were used to construct the

dataset with the procedures mentioned in Section III-A. The

problems are listed in TABLE I.

Experiments were conducted to evaluate the performance

of the proposed solver. In the first set of experiments, the

proposed solver was used to solve TSP. Another 20 TSP

instances in TSPLIB [1] (as shown in TABLE II) were chosen

for this experiment, where many of them were relevant to tool-

path optimization problems in drilling processes.

In the second set of experiments, the proposed solver was

used to solve URPP. The testing instances were derived from

a 3D printing tool-path optimization problem, which can be

formulated to URPP [3]. A print plan was generated by slicing

a 3D model [12] using Cura-15.04.6 [13] with its default

settings. The print plans contains layers of tool-paths. The

bottommost 5 layers were extracted and all their transitions

have been removed to form the URPP in this experiment.

For comparison purposes, a greedy algorithm followed by a

2-opt operation is evaluated together with the proposed solver.

For the proposed solver, θ and λ are both 0.80. During the

experiment, costs of the solutions generated by the solvers

were recorded so as the processing time required by them.

Here, costs for TSP and URPP were calculated based on the

formulations in [1] and [2], respectively. All solvers were

executed on a computer with Intel Core i7 processors, 16GB,

and Windows 10. All programs were executed for 30 times

to obtain mean cost values and processing times. Results are

presented in TABLES II and III.

B. Experiment Results

According to TABLE. II, the proposed solver can always

generate tours with lower costs when comparing to those from

the greedy algorithm followed by 2-opt. When comparing

the processing time required by the greedy algorithm with

2-opt with that of the proposed solver, the proposed solver

required shorter processing durations on solving 19 out of all

20 selected TSP instances. The proposed solver on average

required around 66.01% of the processing time to that of the

greedy algorithm with 2-opt and at most save around 60.82%

on the processing time which is in the problem “d1655”.



TABLE II: Experiment results on solving TSP.

Problems
Cost (unit length) Processing time (s)

Greedy + 2-opt Proposed
Greedy + 2-opt Proposed
Mean Max Min Mean Max Min

d1655 65947 65283 87.50 165.04 79.10 34.29 49.13 30.54

dsj1000 20251000 20231000 47.13 62.16 42.59 21.31 29.98 19.13

fl1400 21243 21225 137.68 143.77 133.65 67.12 71.35 65.30

fl1577 23234 23169 107.29 118.83 102.49 85.89 109.54 77.00

gr666 3315 3290 8.95 11.10 8.23 8.59 9.92 7.90

nrw1379 60107 59957 83.14 108.86 75.60 45.43 58.79 41.11

pcb1173 61400 61009 42.79 53.85 39.68 26.88 30.54 24.94

pr1002 273660 271910 25.54 27.51 24.64 23.03 38.77 20.57

pr2392 403590 402070 300.62 325.80 292.63 160.82 171.60 156.92

pcb3038 148610 147560 687.20 819.64 636.25 344.18 411.37 305.81

rat575 7175 7131 6.51 7.32 6.12 6.97 9.23 6.28

rl1304 281390 280140 47.38 58.44 44.22 23.99 29.83 21.48

rl1323 287610 286450 36.96 55.05 33.85 24.31 31.09 21.45

u1060 241920 240670 37.73 46.94 35.03 20.88 30.96 18.56

u1432 164900 164260 74.69 85.46 69.99 40.41 52.67 36.22

u2152 69892 69514 216.34 266.44 199.43 156.97 195.10 141.65

u574 39337 39264 7.01 10.60 6.33 5.91 7.06 5.39

u724 44456 44114 12.38 18.27 11.23 10.24 15.53 9.29

vm1084 260120 256090 30.87 51.36 27.83 17.69 21.60 16.17

vm1748 358590 356070 73.26 111.09 66.44 51.29 64.77 46.66

TABLE III: Experiment results on solving 3D printing tool-path optimization problem.

Layer
Number of
print segments

Cost (mm) Processing time (s)

Greedy + 2-opt Proposed
Greedy + 2-opt Proposed
Mean Max Min Mean Max Min

1 3134 587.12 587.12 60.76 68.35 57.64 25.64 34.86 24.07

2 2674 623.78 623.78 55.23 63.13 51.69 22.10 32.84 20.43

3 3115 648.18 648.18 119.22 135.35 113.38 27.56 40.29 25.56

4 3269 688.54 688.54 194.03 213.31 185.26 29.24 39.43 27.29

5 3431 702.16 702.16 103.58 114.07 99.36 30.35 39.25 28.71

According to TABLE. III, the proposed solver always re-

quires shorter processing time in solving URPP than that of

the greedy algorithm with 2-opt. The proposed solver required

on average around 70.06% of the processing time to that of the

greedy algorithm with 2-opt. The costs of tool-paths generated

by the proposed solver were identical to those using the greedy

algorithm with 2-opt.

V. DISCUSSIONS

According to TABLE II, the proposed solver has taken

on average 33.99% less processing time on optimizing tours

when comparing to that with the greedy algorithm and 2-opt.

Nevertheless, the proposed solver did not degrade the quality

of the solutions, i.e. the costs of solutions generated using the

proposed solver are all lower than those generated using the

greedy algorithm with 2-opt. It is worth to further investigate

that the results on solving “rat575”, where the proposed solver

required a slightly longer processing time. For the greedy

algorithm with 2-opt, it took 6.26 seconds on executing 2-

opt. In the proposed solver, it took a total of 2.79 seconds at

executing 2-opt in Phases 4, 5, and 6. Apart from that, for this

particular problem, the NN in the proposed solver took 4.05

seconds in Phase 2 to identify the optimal transitions. Thus,

the total time required by the proposed solver was longer.

Interestingly, “rat575” has a relatively smaller scale than other

problems under test, which sheds some insights on its cause.

According to [14], the processing time of a 2-opt algorithm

is a function of n2. Referring to our observations, the process-

ing time required by the NN grows with n. However, when

n is larger, the overall processing times are dominated by the

processing time of 2-opt processes in other phases rather than

that of the NN. Thanks to the hierarchical structure of the

proposed solver, the processing time of 2-opt processes in

different phases do not increase as quickly as a single generic

2-opt process. This explains why the proposed solver can yield

shorter processing times in large-scale problems.

According to TABLE III, the proposed solver required less

processing time and can generate identical solutions as the

greedy algorithm with 2-opt. According to [15], curves in a

3D model are constructed with multiple short print segments.

With the help of the NN, the proposed solver can successfully

identify a fast route to traverse those curves segments.

VI. CONCLUSION

In this paper, a machine learning based solver is proposed

for accelerating tool-path optimization processes. The pro-

posed method uses an NN and a divide and conquer strategy

to solve large-scale TSP and URPP. Experiment results show

that the proposed method can solve general TSPs, URPPs, and

tool-path optimization problems efficiently.
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