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A B S T R A C T

The land value uplift effects of rapid transit infrastructure provide evidence of willingness to pay for more
sustainable forms of development and suggest a rationale for land value capture. The present research utilizes
spatio-temporal methods in a quasi-experimental research design to examine changes in property values asso-
ciated with pedestrian accessibility to the West Island Line heavy rail extension in Hong Kong. Several in-
novations in methods and techniques are proposed that respond to the econometric challenges involved in
conducting research in high density, topographically-rich cities. Of these, the paper incorporates landscape
topography throughout its estimation process, including the calculation of slope-aware measures of walkable
accessibility on a 3D pedestrian network and proposes a new Spherical Distance Weights method for capturing
horizontal and vertical spatial association among observations in 3D space. Finally, these weights are combined
with measures of temporal distance for a 4D approach that accounts for relations among observations in space
and time. Spatio-temporal difference-in-differences results reveal a significant change in the value of pedestrian
access to the new transit stations of between 26% and 41% after opening. Interestingly, uplift occurred across
both the new stations as well as for properties around the previous terminus, highlighting the network effects
associated with changes in accessibility. Beyond demonstrating that rail transit is valued, these findings confirm
the assumptions behind the city’s Rail+ Property value capture approach, suggesting it remains a viable model
for sustainable finance and urbanism in other high-density and transit-oriented cities.

1. Introduction

In the spatial equilibrium framework established by Alonso (1964),
Muth (1969), and Mills (1972), the value and development intensity of
land at any location is partly an outcome of its accessibility, which is
defined here as the ease with which one can travel between origins and
destinations of value (Páez, Scott, & Morency, 2012). Consequently, a
rapid transit project that reduces transportation costs and increases
accessibility should, in theory, result in an increase in land prices and
development intensity around station access points. Over the past
40 years, more than one hundred studies have sought to test this hy-
pothesized relationship between urban rail transit, accessibility, and
land value uplift (see Debrezion, Pels, and Rietveld (2007), Higgins and
Kanaroglou (2016b), and Mohammad, Graham, Melo, and Anderson
(2013) for reviews).

Despite being a mature topic, research in this area has recently been
re-invigorated along several dimensions. For policy and planning, the
existence of land value uplift around stations offers evidence of a transit

project’s larger benefits to society and suggests a willingness to pay for
sustainable urbanism. From this, there has been a resurgence in interest
in capitalizing on land value uplift through the use of land value cap-
ture (Cervero & Murakami, 2009; Suzuki, Murakami, Hong, &
Tamayose, 2015; Zhao & Levinson, 2012) to offset the public costs of
transit projects.

Moreover, recent research has benefitted from new theory, evi-
dence, and innovations in methods and techniques used to better un-
cover the value of transit. This includes a shift to using walking time/
network distance over Euclidean distance as a more behaviourally-re-
levant proxy for accessibility (Hess & Almeida, 2007); evidence of the
value of not just transit accessibility, but transit-oriented development
(TOD) in general (Bartholomew & Ewing, 2011); and, by extension,
models that have revealed differences in land value uplift in hetero-
geneous station area TOD contexts (Atkinson-Palombo, 2010; Duncan,
2011a,b; Higgins & Kanaroglou, 2016a, 2018).

On the technical side, research has increasingly adopted the use of
spatial econometrics (Anselin, 1988; Kelejian & Prucha, 1998, 1999,
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2010; LeSage & Pace, 2009) to model spatial dependencies in real estate
data and control for spatially-dependent omitted variables (Kuminoff,
Parmeter, & Pope, 2010). Recent work has also seen innovations in
spatio-temporal econometric methods (Dubé & Legros, 2013a,b) and an
increase in the use of longitudinal data and quasi-experimental research
methods to better isolate causal effects from new rapid transit (e.g.
Diao, Leonard, & Sing, 2017; Devaux, Dubé, & Apparicio, 2017; Dubé,
Des Rosiers, Thériault, & Dib, 2011; Dubé, Thériault, & Des Rosiers,
2013; Dubé, Legros, Thériault, & Des Rosiers, 2014). Related to this,
longitudinal studies have detected anticipation or speculation effects
that can begin as soon as a rapid transit project is announced (e.g.
Knaap, Ding, and Hopkins (2001), Devaux et al. (2017), Dubé, Legros,
and Devaux (2018); see Devaux et al. (2017) for a review).

Another recent strand of research has challenged the “hor-
izontalism” that dominates contemporary urban geographic scholarship
and the associated top-down, surficial, or planar cartographic gaze as
the default representation of cities. In response, authors such as Graham
and Hewitt (2012) and Harris (2014) argue that a more vertical, three-
dimensional (3D), and volumetric frame of analysis is required to truly
understand complex modern urban environments. In line with this ar-
gument, previous research has seen innovations in spatial econometrics
that, in effect, extend the Alonso-Muth-Mills (AMM) model’s concepts
of bid-rent to vertical space by utilizing neighbourhood- and building-
level weights (Sun, Tu, & Yu, 2005) and 3D spatial contiguity weights
(Chen & Li, 2017).

The present paper combines these strands, and its novelty is derived
from several aspects. First, this work employs state-of-the-art methods
and approaches from previous research in planning and applied spatial
econometrics. This includes calculating more behaviourally-relevant
measures of pedestrian access to capture the land value uplift impacts
associated with proximity to rapid transit; utilizing a spatio-temporal
difference-in-differences (STDID) longitudinal study design to better
isolate the impact of changes in rapid transit on land values; and esti-
mating a disaggregate model that controls for different station area
contexts.

Second, the paper also proposes three innovations of its own that
respond to some econometric challenges that arise when conducting
research in high-density and topographically-rich study areas. Of these,
the paper is the first to incorporate landscape topography throughout
the estimation process, including the calculation of slope-aware walk-
ability and pedestrian accessibility. The paper also develops a new
Spherical Distance Weights method for capturing spatial association in
three-dimensions. It then combines its 3D weights with temporal
weighting techniques for a new four-dimensional (4D) approach that
accounts for relations among observations in space and time.

These techniques are applied to examine the property value impact
of the West Island Line (WIL) extension of the Mass Transit Railway
(MTR) in Hong Kong. The paper begins with a brief background on the
project, followed by the development of the study’s spatio-temporal
methods. STDID model results show a significant change in the value of
pedestrian access to different MTR stations over project phases. The
paper concludes with a discussion of implications for research and
planning practice.

2. Background

The WIL project is a 3-kilometre extension of the east–west Island
Line on the MTR’s heavy rail network in Hong Kong. Although versions
of the WIL had been envisioned since MTR system planning began
(Freeman & Partners, 1970), it was not until the early 2000 s that a
proposal was put forward by the MTR to build the project. Consisting of
three additional stops (Kennedy Town, Hong Kong University (HKU),
and Sai Ying Pun), plans for the WIL underwent several revisions, with
the final scheme presented in 2007, approved in early 2009, and con-
struction beginning later that year. Kennedy Town and HKU stations

opened on December 28, 2014, and Sai Ying Pun followed in March of
2015.

The cost of the extension is estimated to be HK$18.5 billion (USD
$2.4 billion). In the past, the Hong Kong Government and the MTR have
employed the Rail+ Property (R+P) joint development model to
offset the costs of constructing new heavy rail transit in the territory
(Cervero & Murakami, 2009; Suzuki et al., 2015). This model of land
value capture involves the Hong Kong Government granting land at
“pre-rail” prices to the MTR, who in turn develops, leases, or disposes of
this land at “post-rail” prices to recoup its costs. This recognition of, and
capitalization on, the accessibility and land value benefits that new
heavy rail transit projects can provide has been successful at offsetting
costs (and sometimes creating a profit) for the MTR in the past. How-
ever, in the case of the WIL, the mature character of neighbourhoods
around the new stations resulted in a lack of suitable opportunities for
large-scale redevelopment. This led the Hong Kong Government to di-
rectly contribute HK$12.7 billion (USD$1.6 billion) to the project in-
stead. Despite not utilizing the R+P model, the present study can still
provide insight into the price increment that underpins the approach by
estimating the difference between pre-rail and post-rail property prices
in the Hong Kong context.

3. Data and methodology

3.1. Modelling approach

This research employs a STDID hedonic model to estimate the land
value uplift effect associated with the opening of the WIL. Established
by Lancaster (1966) and Rosen (1974), the hedonic model postulates
that the total value of a good is the sum of the value placed on, or utility
derived from, its constituent characteristics and that regressing these
characteristics on the price of the good reveals their implicit price at
equilibrium. The base technique employed to estimate the hedonic re-
gression is the spatial autoregressive model proposed by Kelejian and
Prucha (1998, 1999, 2010), which is extended here to include spatio-
temporal weights. The model takes the form:

y Wy M H L Q= + + + + + + (1)

W µ= + (2)

where y is a vector of log-transformed sale prices per square foot of net
living area, is a constant term; and are scalar autoregressive
parameters; W is the spatio-temporal weights matrix; Wy is the spa-
tially- and temporally-lagged dependent variable; M is a vector of
variables associated with the opening of the WIL extension; H is a
vector of housing characteristics; L is a vector of locational character-
istics; Q is a vector of quarterly dummies corresponding to the time of
sale; , , , and are parameters to be estimated; is the spatio-
temporal autoregressive error term;W is the spatially- and temporally-
lagged error term; and µ is the independent and heteroskedastically
distributed error term. The model is estimated using maximum like-
lihood with robust standard errors.

Difference-in-differences (DID) is a quasi-experimental technique
that seeks to identify what are assumed to be causal effects associated
with some change by modelling differences between a treatment group
and a control group. The DID estimator assumes that in the absence of
the change, any trends in the treatment group would be identical to the
control group. The variables of interest associated with the WIL include:

M Walk Station Phase Station Walk

Phase Walk Phase Station

Phase Station Walk

( )

( ) ( )

( )

1 2 3 4

5 6

7
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+ × × (3)

The parameter Walk captures each property’s slope-aware walking
time to the nearest MTR station, Station is a dummy variable that
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corresponds to whether the nearest MTR station is in the treatment
group, and Phase is a dummy variable that corresponds to whether the
property transaction took place after the treatment occurred. In a
simple case with one control group (e.g. an existing MTR station), one
treatment group (where a new MTR station opened), a pre-treatment
time period or project phase (before the new station opened), and post-
treatment project phase (after the new station opened), the interaction
terms from Eq. (3) correspond to the estimated effects associated with
the opening of the new station on the treatment group relative to the
control (Table 1).

The present research extends this approach to consider four project
phases and five station areas. The three direct treatment stations consist
of the new WIL Kennedy Town, HKU, and Sai Ying Pun stations. For the
control group, the networked nature of transit systems presents a con-
ceptual challenge to the identification of “true” control sites. While the
addition of new stations to the MTR network should result in increases
in accessibility for locations around them, these changes also increase
accessibility in existing stations by expanding available opportunities
and the potential for reaching them across the whole network.
However, in line with accessibility theory, the magnitude of this access
benefit should decrease as time or distance from the new WIL oppor-
tunities increases.

In response, the WIL is evaluated against two pre-existing stations.
The first is Sheung Wan station, which opened in 1986 and was the
previous western terminus of the Island Line prior to the WIL project.
The second is Chai Wan station, which opened in 1985 and serves as the
eastern terminus of the Island Line. Because Sheung Wan is adjacent to
the WIL, it seems likely that it too would benefit from increased access,
making it a less than ideal choice as a control. In contrast, as travel time
to Chai Wan is about 31min on the MTR from Kennedy Town, the
access benefits from the WIL should be more muted and stable over
time in this context. As a result, Chai Wan is employed as the control
station in the present study, while Sheung Wan is included in the
treatment group.

For the project phases, the Pre-Announcement control phase is be-
tween Q1 2001 up until the Announcement phase in the fourth quarter
of 2007 when final plans for the WIL were gazetted. After this, the
Construction phase began in the third quarter of 2009 and continued
until Kennedy Town and HKU stations opened on December 28, 2014
and Sai Ying Pun station opened in March of 2015. For the purposes of
this research, the Opening phase is assumed to begin in the first quarter
of 2015.

The central hypothesis being tested in this modelling framework is
whether homebuyers eventually begin to place a higher value on their
walking time to the nearest WIL station once station locations become
known and finalized, begin construction, and ultimately open. To op-
erationalize this hypothesis, each property’s slope-aware walk time to
the MTR is estimated as if their nearest station always existed. For some
properties, this assumption means their closest station in the model is
Sai Ying Pun when their closest functional station was Sheung Wan
prior to the opening of the WIL. Nevertheless, this specification of a
fixed walk time window around stations is intuitive for estimating when
homebuyers anticipate and realize accessibility effects from the WIL in
the DID framework as it captures if and when the property price gra-
dient around stations aligns or re-orients to that hypothesized by the
AMM model. Such an approach also implicitly controls for station area

contextual heterogeneity in other unobserved characteristics such as
amenities, TOD, urban design, and the urban spatial structure.

3.2. Data sources

Built on the slopes of a hilly to mountainous region, Hong Kong is a
topographically-rich city. Compared to a flat plane, this landscape plays
a fundamental role in informing the spatial processes under study. To
account for topographical variation, the research utilizes a digital ele-
vation model (DEM) captured at a spatial resolution of 2m by the Hong
Kong Government’s Lands Department to establish base heights for
features on the ground. The pedestrian network used for this study is
derived from OpenStreetMap. To control for general neighbourhood
trends, median monthly domestic household income was also collected
from the Hong Kong Census and Statistics Department for 2001, 2006,
2011, and 2016, linearly interpolated into a quarterly time series (based
on an assumed enumeration day in the 3rd quarter), and joined to
Constituency Area small-level geographic boundaries.

Real estate transactions used in the present analysis were obtained
from EPRC Limited, which records property transactions from Hong
Kong’s Land Registry. The sample consists of Agreements of Sale and
Purchase for residential property within a 10-minute walk of the MTR
stations in the study area. To ensure a quality sample of arm’s-length
transactions, observations were excluded if they lacked full data or if
the purchasing party was a private limited company or Hong Kong’s
Urban Renewal Authority. Some properties around Chai Wan were sold
under the government’s home ownership scheme, which was suspended
in 2003. These properties are traded at market value with the govern-
ment subsidizing a set proportion of the purchase price and preliminary
analysis revealed no systemic difference from other transactions in the
sample. Finally, transactions falling within the top and bottom 0.01% of
the distribution of sale prices (measured as the price per square foot of
living space) were excluded. In total, the sample used for this research
consists of 47,362 transactions that occurred between the first quarter
of 2001 and the third quarter of 2017. More information on the char-
acteristics of this sample can be found later in the paper.

3.3. 3D Topography, walkability, and accessibility

Although the calculation of network distances or walk time to sta-
tions is more behaviourally-relevant than Euclidean distance, previous
work has been conducted under the assumption of a flat pedestrian
plane and constant walking speed of between 1.3 and 1.4 m per second
(4–5kph). At this speed, the average pedestrian covers a distance of
800m in about 10-minutes, corresponding to the widely-used delinea-
tion of a transit station catchment area (Guerra, Cervero, & Tischler,
2013). However, although not problematic in more two-dimensional
study areas, this planar approach will overstate (or understate) pedes-
trian accessibility in more three-dimensional, topographically-varied
contexts. This is of course because walking speed is not constant with
topography; setting aside individual ability, time pressure, and other
factors, walking pace and speed varies with the slope or gradient of the
pedestrian environment.

To account for the effect of varied topography on pedestrian ac-
cessibility, this research employs Tolber’s “Hiking Function”, which
Tolber (1993) estimated empirically from data in Imhof (1950). The

Table 1
Treatment effects in the difference-in-differences approach.

Control group Treatment group Group Difference

Project Phase 1 1 1 2 4+ + 2 4+
Project Phase 2 1 3 5+ + 1 2 3 4 5 6 7+ + + + + + 2 4 6 7+ + +
Project Phase Difference Difference-in-Differences
Phase 2 Effect 3 5+ 3 5 6 7+ + + 6 7+
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function takes the form:

v e6 m3.5 | 0.05|= + (4)

where v is the velocity of travel measured in kilometres per hour andm
is the gradient of the terrain. From this, walking velocity decreases
exponentially as the topographical gradient of pedestrian paths in-
creases. To return a pace of travel p measured in seconds per metre, the
function can be rewritten as:

p e0.6 m3.5 | 0.05|= + (5)

Fig. 1 shows the change in pace and walking speed as the gradient of
pedestrian paths increases. Per Tobler’s function, changes in walking
speed/pace are not directly proportional to changes in gradient/slope
to account for different levels of effort involved in walking uphill or
downhill. Tobler’s function is offset so that a maximum walking speed
of 1.67m per second (6kph, or a pace of 0.6 s per metre) is achieved at a
gradient of −5%, which corresponds to a slight downhill walk. On flat
ground, walking speed is 1.4m per second (5kph, or a pace of 0.71 s per
metre).

To operationalize Tobler’s hiking function, several steps were un-
dertaken in a GIS environment using a custom Python tool available at
(https://github.com/higgicd/3D_Network_Toolbox). First, pedestrian
links were extracted from a 2D road centerline network. Second, ad-
ditional pedestrian links corresponding to MTR station access tunnels,
pedestrian bridges, plazas, staircases, internal building pathways, and
shortcuts were added based on data from the Lands Department,
OpenStreetMap, and manual audits, with no slope specified for parti-
cular links as appropriate. Third, each link was split into 10-metre
segments (based on their 2D distance), and each segment’s start- and
end-point elevation and 3D distance were interpolated from the DEM.
Fourth, each segment’s 2D length and 3D start- and end-point elevation
values were used to determine their average gradient. Fifth, the direc-
tional pace of travel p on each segment was calculated per Eq. (5).
Finally, each pace of travel was multiplied by the 3D length of the
segment to obtain slope- and direction-aware travel time cost attributes
for all links in the pedestrian network. While this 3D network corre-
sponds well to the topographically-rich pedestrian environment in the
study area, additional edits to the network topology were required at
the Belcher’s housing estate near HKU to account for the lifts that
connect the podium level to the shopping mall and streets beneath the
towers.

Using Network Analyst in ArcGIS, estimated average pedestrian
travel times on the 3D network were calculated based on the shortest
path between building XYZ centroids (discussed below) and station
entrance points (where stations passageways interface with the street).
In this sense, it is assumed that when homeowners are implicitly pricing

their accessibility to the MTR, they conceptualize the trip to the station
from street level and are not including any additional vertical travel
time that might occur within a building. Fig. 2 displays an overview of
station locations and the estimated slope-aware walking time to each
station from any building. For comparison, the extent of a flat-ground
10-minute pedestrian shed is shown as a dashed line in Fig. 2. Con-
trasted against the area covered when taking slope into consideration,
the assumption of a 2D landscape results in an over-estimation of the
pedestrian shed by 19% around the WIL, confirming that Hong Kong’s
topography plays an important role in defining pedestrian access within
the study area. It should be noted that any properties that were closer to
Central/Hong Kong station than Sheung Wan were dropped from the
analysis so that the sample consists only of properties within a 10-
minute walk of the 5 sample stations.

3.4. 3D spatial association

At the conceptual level, spatial dependence is a product of what is
referred to as the first law of geography – that “everything is related to
everything else, but near things are more related than distant things”
(Tobler, 1970, p. 236). Consequently, it has long been recognized that
the non-randomness of spatial dependence can impact the validity of
regression coefficients estimated using ordinary least-squares, and in
response, spatial econometric methods have been proposed to explicitly
take such relationships into account (Anselin, 2010).

In the field of real estate, the economic behaviours that inform the
data generating process exhibit spatial dependence (LeSage & Pace,
2009). For example, a spatial lag model specification is often justified
based on the intuition that a home owner sets a price for their property
based on not only the characteristics of their property, by also the
transacted value of nearby comparable properties. Likewise, a spatial
error term is often implemented to capture any measurement error or
omitted variables that are assumed to be spatially-dependent. To spe-
cify the nature of these spatial relationships, a system of weights is
used, of which Getis (2009) outlines three families: topological, based
on contiguity among areal units; theoretical, based on some distance
decline function; and empirical, based on a flexible system of weights
extracted from the data.

3.4.1. Limitations of 2D weights in 3D space
The combination of a high-density built environment and a topo-

graphically-rich study area presents unique challenges for the applica-
tion of spatial econometrics. For example, the typical workflow of the
spatial analyst involves geocoding real estate transaction data based on
the address of the property, returning the XY-coordinates of the sale.
Next, a common theoretical approach to specifying a system of spatial
weights involves calculating inverse Euclidean distances between ob-
servations in a two-dimensional Cartesian reference system:

d X X Y Y( ) ( )ij i j i j
2 2= + (6)

s
d i j

d d d
1, if 0

, if ¯

0, otherwise
ij

ij

ij ij
1=

=

(7)

where sij is the inverse distance dij between points i and j calculated
from the X- and Y-coordinates of each point on a 2D plane. In practice,
coincident points are typically assigned a dij equal to 1 to avoid division
by zero. Because spatial autocorrelation declines with distance, the area
of potential relations is often conceptualized as a circular buffer limited
to any observations j that fall within some distance d̄ of i. Decisions
about the value of d̄ are made based on theory or empirically by fitting
a semivariogram. This latter approach results in what Getis (2009) re-
fers to as a hybrid ‘theoretical-empirical’ weights matrix.

With single-detached homes on a flat plane, this specification of
distance does not present an issue, as each point corresponds to a single

Fig. 1. Walking speed and pace by gradient per Tolber (1993) hiking function.
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sale. Spatial models can then be used to capture neighbourhood-level
spatial dependence (or what Sun et al. (2005) refer to as the “neigh-
bourhood effect”). However, when constructing a spatial weights ma-
trix for a sample of sales in a high-density urban environment, multiple
sales in a single building geocoded to the same XY-coordinates result in
coincident points and spatial weights equal to 1 per Eq. (7). By re-
presenting 3D observations 2D space, this planar workflow only effec-
tively weights transactions by distance if they occurred in neighbouring
buildings, while all transactions inside the same building are given
identical and maximum weight.

Extending the real estate data generating process to high-density
residential contexts, it seems intuitive that, in addition to neighbour-
hood-level spatial effects, units in the same building share features in
common, such as the presence of a lift or particular interior or exterior
architectural attributes. Sun et al. (2005) refer to this as spatial de-
pendence due to the “building effect”. Recognizing the challenges as-
sociated with high-density contexts, Sun et al. (2005) propose the use of
separate weights matrices to capture differences in neighbourhood- and
building-level spatial dependence based on distance decay and trans-
actions at the same XY coordinates respectively. Gelfand, Banerjee,
Sirmans, Tu, and Ong (2007) adopt a similar approach and utilize
multi-level models to account for building- and neighbourhood-level
effects.

However, while these previous works incorporate binary building-
level elements into their estimation process, it is argued here that such
2D approaches are incompatible with the geographic principle that near
features are more related than distant ones in 3D space. For example, a
unit on a high floor of a building might share more in common with
other units on higher floors than lower floors, such as similar view-
sheds, sun exposure, or longer vertical travel times. Likewise, a unit on
a lower floor is likely to share more in common with other lower-floor
units in the same or neighbouring buildings, such as higher levels of
road-based particulate air pollution, noise, or shadows. The potential
for such differences was recognized by Sun et al. (2005), and indeed,
recent studies have explicitly examined the positive impact of factors
such as elevation and floor height (Wong, Chau, Yau, & Cheung, 2011)
and viewshed (Hui & Liang, 2016) on property prices in high-density
markets.

Although a binary building-level effect can capture some elements
of this 3D spatial dependence, the assumption of equal weight across all
transactions within the same building is restrictive. As such, there is a
rationale for broadening the conceptualization of spatial association to
three dimensions, particularly when analyzing high-density built en-
vironments where the potential for spatial dependence extends to both
the horizontal and vertical dimensions.

3.4.2. Cube contiguity
Building on recent advances in 3D geospatial technologies, one re-

cent paper that has incorporated 3D measures of distance in the spe-
cification of spatial weights is the novel Cube Contiguity method pro-
posed by Chen and Li (2017). Here, the authors conceptualize
residential transactions in a tower as a series of cubes stacked upon one
another and extend the concept of contiguity to 3D space by capturing
each cube’s nearest neighbours (which they specify to include up to
three lags).

However, although it incorporates the potential for horizontal and
vertical relations, the Cube Contiguity approach is limited by a sim-
plified conceptualization of distance. According to Getis (2009), by
limiting association to only spatial units with contiguous connections,
contiguity weights risk omitting important spatial relationships that
occur at greater distances. In response, Getis (2009, p. 407) argues that
more theoretical approaches that employ distance weights “offer a
considerable step forward over the use of contiguity matrices.” Still,
empirical weights are viewed as a better way to represent real-world
spatial associations, though Getis states that a hybrid ‘theoretical-em-
pirical’ approach that specifies distance weights based on an empirical
semivariogram is a suitable compromise.

3.4.3. Spherical distance weights
In an effort to better capture spatial relationships in high-density

housing markets, the present research proposes a Spherical Distance
Weights method that extends the formulation of more general inverse
distance weights in Eqs. (6)–(7) to 3D space. By utilizing X-, Y-, and Z-
coordinates, this simple extension incorporates horizontal and vertical
spatial distance:

d X X Y Y Z Z( ) ( ) ( )ij i j i j i j
2 2 2= + + (8)

s
d i j

d d d
1, if 0

, if ¯

0, otherwise
ij

ij

ij ij
1=

=

(9)

As with the circular buffer common in the 2D approach to distance
weights, applying some cut-off distance d̄ in the calculation of dij in 3D
space results in a spherical volume of potential spatial association
among observations i and j.

Although the theoretical justification for adding Z-coordinates to
the calculation of distance weights is strong, operationalizing Spherical
Distance Weights with real estate transaction data in high-density urban
environments presents some practical challenges related to data pre-
paration. In the absence of detailed building information models, sev-
eral steps were undertaken to associate real estate transactions with

Fig. 2. Walk time to nearest MTR station.
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estimates of their location in 3D space.

3.4.3.1. Building centroid. First, transactions were geocoded based on
their address and building name. For individual transactions, this
process returns X- and Y-coordinates that roughly correspond to a
building’s centroid. Next, building centroid points are plotted in a GIS
environment and their base ground height Z-coordinates are
interpolated from the DEM. These two steps result in coincident
building XYZ centroid points in 3D space, measured in metres.

3.4.3.2. Unit XY-offset. The second step involves offsetting base XY
coordinates for individual units from the building centroid according to
the 3m by 3m grid in the left panel of Fig. 3. Any numeric unit
sequences are converted to alphabetic, and in total, 12 unit positions
are considered. This layout fits the ‘skinny’ buildings of the Hong Kong
study area well (only about 1.5% of all transactions had to be dropped
from the analysis at this step, including transactions with unit labels
that were missing, indeterminate, or greater than ‘L’), but it can be
tailored to other study areas with larger floor plans.

3.4.3.3. Floor Z-offset. Although the previous step separates
transactions that occurred over different units, transactions of units
with the same number or label on different floors are still coincident. To
account for differences in elevation among floors in the same building,
the total height of each floor is estimated according to Eq. (10).

h h f( 3)total base adjust= + × (10)

Here, total floor height htotal is the building’s base height hbase in-
terpolated from the DEM plus the product of a transaction’s adjusted
floor number fadjust and an estimated average building storey height of
3m. Floor numbers are adjusted to account for tetraphobia and tris-
kaidekaphobia in the sequencing of building floors common in Hong
Kong, as this would lead to an overestimation of height for particular
floors located after breaks in the numerical sequence. For example, if a
floor’s original number is 36, but the building omits floors 4, 13, 14, 24,
and 34, the floor’s number is adjusted to 31.

These three steps produce XYZ-coordinates that correspond to a
series of regularly-spaced unit grid centroids layered by different floor
heights. After converting the unit centroids to cubes for visualization,
the end result in the right panel of Fig. 3 resembles the Cube Contiguity
method proposed by Chen and Li (2017). However, the resulting spatial
weights are based on 3D distances between cubic centroids rather than
contiguity among cubic neighbours.

Next, inverse distances sij between cubic centroids are calculated per
Eqs. (8)–(9). In the present case, the hybrid ‘theoretical-empirical’ ap-
proach recommended by Getis (2009) is adopted, with the radius d̄ of
the sphere set at 300m based on the estimation of an empirical semi-
variogram (Appendix 1). Pooling these sij results in an n n× matrix S of

spatial relations in three-dimensional space:

S

s s s
s s s
s s s

s s s

0
0

0

0

N

N

N

N N N

12 13 1

21 23 2

31 32 3

1 2 3

=

(11)

Diagonal elements of S are set to zero, as no single observation can
be a neighbour to itself. Note that observations in the sample are sorted
chronologically considering the year, month, and day of sale to aid in
the construction of temporal weights below. The resulting weighting
scheme is more consistent with distance theory than the Cube
Contiguity approach and more straightforward than specifying separate
neighbourhood- and building-level matrices. Although this formulation
omits a binary building-level indicator, the vertical morphology of the
city means that proximate transactions within the same building will be
afforded the greatest weight.

3.5. 4D spatio-temporal weights

Although the issue of spatial dependence has long been recognized,
less attention has been paid to the temporal dimension associated with
specifying spatial weights among observations collected over a period
of time, such as real estate transactions (Dubé & Legros, 2013a,b).
While spatial weights respond to Tobler’s (1970, 2004) law about
spatial association, the spatial weights matrix S is time-independent,
weighting relations among observations that are spatially proximate, or
near, but occurred at various times. In contrast, incorporating the time
dimension on top of space responds to Miller’s contention that it is “not
just a matter of where you are, but also when you are (Miller, 2004, p.
287).” Accordingly, a system of spatio-temporal weights better draws a
conceptual difference between things that are related versus just near.

Some recent research has incorporated temporal relations as a third
dimension in their spatially-planar studies. To do so, a time index v
corresponding to the sequential month of sale for each transaction is
calculated. As in Dubé and Legros (2013b), v takes the form:

v yyyy yyyy mm i12 ( )i i min i= × + (12)

where yyyyi and mmi are the year and month of sale for observation i
respectively and yyyymin is the earliest year of transactions in the
sample. Next, the temporal distance tij between observations i and j is
calculated:

t

v v v v v
v v i j

v v v v v

( ) , if 0 ( )
¯

1, if
( ) , if 0 ( ) ¯
0, otherwise

ij

i j i j

i j

j i j i
=

<
=
<

(13)

Fig. 3. Unit-offset grid (left) and combined unit-floor offset (right).
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where vi is a time index corresponding to the sequential month of sale
for transaction i, vj is the index for transaction j, and v

¯
and v̄ are cut-off

temporal distances (which in this case are set to 12 and 6 respectively).
With this month index, the relative temporal distance between trans-
actions can be calculated to account for the “anchoring” of real estate
asking prices relative to comparable sales and future expectations
(Thanos, Dubé, & Legros, 2016). In that paper, the authors specify three
separate weighting matrices that account for temporal distance relative
to sales that occurred in the past, present, and future respectively. In the
present case, relative temporal distance is estimated between transac-
tions i and j that occurred in either the past v v v(0 ( )

¯
)i j< , present

v v( )i j= , or future v v v(0 ( ) ¯)j i< simultaneously. This single-matrix
hybrid of the comparable past sales and speculative expectations ap-
proaches is similar to that in Dubé and Legros (2013a, 2013b). How-
ever, in contrast to Dubé and Legros (2013a) and Thanos et al. (2016)
who consider either 6 or 12months of temporal association in either
direction respectively and set both and to 1, this work assumes

1= and 2= . This steeper discount on temporal associations up to
6months in the future is done to reflect the inherent fuzziness of
speculative expectations based on incomplete information compared to
a record of sales that occurred over the previous 12months.

Pooling these tij forms an n n× matrix T of temporal relations
among observations:

T

t t t
t t t
t t t

t t t

0
0

0

0

N

N

N

N N N

12 13 1

21 23 2

31 32 3

1 2 3

=

(14)

As with matrix S, the diagonal of T is set to zero. With the sample
sorted chronologically by each transaction’s year, month, and day of
sale, non-zero elements in the lower triangle of T reflect the weighted
temporal distance tij between i and any past transactions j while the
upper triangle of T reflects the weighted distance between i and future
transactions j. Next, the spatio-temporal weights matrixW is calculated
by taking the Hadamard product of the spatial weights matrix S and the
temporal weights matrix T :

W S T

W W W
W W W
W W W

W W W

0
0

0

0

N

N

N

N N N

12 13 1

21 23 2

31 32 3

1 2 3

= =

(15)

As a final step, the 4D spatio-temporal weights matrix W is stan-
dardized using a spectral transformation. It should be noted that there
is some disagreement in the literature on weights standardization
techniques. Kelejian and Prucha (2010) argue in favour of a spectral
transformation over row-standardization, as row-stochastic scaling al-
ters the structure of weights among observations and produces a matrix
that cannot be re-scaled back to its un-normalized form. However,
LeSage and Pace (2014, p. 245) are of the position that this “purely
statistical” consideration neglects the data generating process used to
justify the inclusion of spatial relations, which they argue is more
consistent with row standardization. Still, Elhorst (2014) argues that
when using inverse distance, row-standardization affects the economic
assumptions behind the decay in relationships over space and can lead
to the misspecification of distance weights. Moreover, the separate issue
of missing data in the spatial weights matrix S from edge effects or
boundary values remains unresolved. Although Anselin (1988) notes
that, under the usual regularity conditions, the maximum likelihood
estimator will return consistent estimates of spatial dependence with
large samples, the impact of the additional edge effects that result from
the imposition of temporal boundaries in W is under-studied.

3.6. Sample description

Table 2 displays descriptive statistics for the full sample. The
average sale price over 2001 to 2017 was about HK$4.3 million and
properties had an average size of almost 500 ft2 of net living area. This
corresponds to an average purchase price of HK$8,158 (US$1,043) per
square foot of living space in the study area over this time period.
Average slope-aware walk time to the nearest MTR entrance is ap-
proximately 4min. Alternative log, negative exponential, squared, and
gamma specifications of this variable were tested; however, the linear
form ultimately provided the best balance between model fit, com-
plexity, and interpretability. Other variables include the proportion of
sales by station area and project phase, and the time of sale and char-
acteristics of the property, such as the number of bedrooms or whether
the property faces north (to control for any premiums associated with
views of Victoria harbour).

Table 3 displays a more detailed breakdown of the proportion of
property transactions in each station by project phase. Taken together,
Fig. 4 provides a view of the assembled data in 3D space looking east
from Kennedy Town station, highlighting the slope of the terrain, the
distribution of transactions according to their walk time to the MTR,
and their elevation and unit offset.

4. Model results

With 47,362 observations in the sample, the memory requirements
of the n n× spatio-temporal weights matrixW made the estimation of a
full model computationally infeasible. In response, five sub-samples
were created by randomly drawing 50% of the transactions from the
full sample, and the results in Tables 4 and 5 below correspond to
averages across the five separate sub-sample models (full results for the
five models can be found in Appendix 2). Both the spatio-temporal lag
( ) and error terms ( ) were found to be significant, and the mean
model fit is high at 0.884. Per LeSage and Pace (2009), the spatio-
temporal specification means model results are understood in terms of
direct (coefficients in Tables 4 and 5), indirect (spatial spillovers), and
total effects (sum of the direct and indirect effects). However, based on
Small and Steimetz (2012), it is argued here that the indirect spillover
benefits of MTR accessibility are welfare-neutral, and as such, the focus
of this section is on the direct effects only.

The variables corresponding to a property’s characteristics in
Table 4 indicate that properties sold for a higher value per square foot if
they have more bedrooms or living/dining rooms, and premiums were
also found if a property had a bay window, carpark space, flat roof or
rooftop, clubhouse, pool, or faces north or north-west. In contrast,
balcony space is a disamenity, perhaps seen by the market as a waste of
valuable space. Older buildings sold at a discount, although this dis-
count flattens over time, and no effect was seen for the terrace and
north-east direction variables.

For the WIL, the base MTR Station Area context dummies in Table 4
capture interesting submarket effects along the corridor. Because of the
interaction specification, these coefficients correspond to the average
value of a property at a travel time to the MTR equal to zero in the
different station areas in the first project phase relative to the Chai Wan
reference. Average sale prices per square foot of living space for
properties proximate to the Sheung Wan and HKU stations were about
10% and 5% more than properties around the Chai Wan control, while
the insignificant effect for Sai Ying Pun and Kennedy Town suggests
properties here were valued about the same as in Chai Wan in the pre-
construction phase, all else being equal. The interaction of the station
indicator variables with the project phases reveals that average prices
vary over the station areas relative to Chai Wan, ranging from between
24% and 28% greater in the Announcement phase, 19% to 32% in the
Construction phase, and 13% to 31% in the Opening phase.
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These base station effects capture some heterogeneity in the context
and desirability of different station areas over time and suggest that,
overall, property prices in the treated submarkets accelerated at a much
higher rate than that seen around Chai Wan. While these results offer an
indication of general trends around the WIL, the key variables of in-
terest consist of those associated with pedestrian accessibility to sta-
tions. To facilitate discussion, results for the Walk Time to MTR vari-
ables are pooled in Table 5 and interpreted according to the DID
framework in Table 1. Marginal effects for each station are also plotted
in Fig. 5.

First, in the Total Effects section, the Pre-Announcement MTR walk
time for Chai Wan indicates that sale prices per square foot decreased

by about 5.2% for every minute farther a property was from its nearest
station entrance. This suggests that walkable proximity to the MTR was
seen as an amenity in the control group prior to the WIL project. In
contrast, the effect for the pre-existing Sheung Wan station is positive,
with sale prices increasing by 1.2% as minutes from the station in-
crease. This effect is opposite of that hypothesized and suggests that
walkable proximity to the MTR was seen as a slight disamenity in this
station area. Of the new stations in the Pre-Announcement phase, walk
time is also positive for the Sai Ying Pun, HKU, and Kennedy Town
stations at 1%, 0.7%, and 0.5% respectively. This is the hypothesized
effect, as accessibility to the future stations should not be priced into
property values prior to the announcement of the WIL project.

Table 2
Sample descriptive statistics.

Variable Mean (Prop.) Std. Dev. Min Max.

Sale Price (HK$, thousands) 4,290.749 5,025.052 113.00 163,000.00
Net Area (ft2) 493.765 248.626 155.000 7,395.000
Sale Price per Sq. ft. (Net, HK$) 8,158.354 5,738.219 336.8794 46,333.140

MTR Proximity
Walking Time to Station (min) 3.998 2.033 0.147 9.988

Sales by MTR Station Areas
Chai Wan (0.115) 0 1
Sheung Wan (0.085) 0 1
Sai Ying Pun (0.337) 0 1
HKU (0.224) 0 1
Kennedy Town (0.239) 0 1

Sales by Project Phase
Pre-Announcement (0.469) 0 1
Announcement (2007 Q4) (0.119) 0 1
Construction (2009 Q3) (0.316) 0 1
Opening (2015 Q1) (0.095) 0 1

Property Characteristics
Balcony (0–1) (0.131) 0 1
Bay Window (0–1) (0.543) 0 1
Bedrooms (no.) 1.441 1.199 0 5
Building Age (years) 16.609 12.254 0 59
Carpark (0–1) (0.024) 0 1
Club House (0–1) (0.278) 0 1
Direction Facing: North (0–1) (0.060) 0 1
Direction Facing: North-East (0–1) (0.116) 0 1
Direction Facing: North-West (0–1) (0.124) 0 1
Flat Roof (0–1) (0.024) 0 1
Living Rooms/Dining Rooms (no.) 1.235 0.973 0 3
Pool (0–1) (0.298) 0 1
Rooftop (0–1) (0.019) 0 1
Terrace (0–1) (0.000) 0 1
Unit Elevation (metres) 70.286 39.722 5.000 242.074

Neighbourhood Attributes
Median Household Income (HK$1,000s) 28.021 12.508 14.000 91.586
Quarter of Sale
Omitted for Brevity (0–1)
n 47,362

Table 3
Proportion of sale transactions by MTR station and project phase.

Chai Wan Sheung Wan Sai Ying Pun HKU Kennedy Town Total

Phase 1: Pre-Announcement 0.050 0.039 0.158 0.110 0.111 0.469
Phase 2: Announcement 0.014 0.012 0.041 0.024 0.028 0.119
Phase 3: Construction 0.040 0.028 0.103 0.068 0.078 0.316
Phase 4: Opening 0.010 0.006 0.035 0.023 0.022 0.095

Total 0.115 0.085 0.337 0.224 0.239 1.000
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After the announcement and gazetting of the WIL project in the
fourth quarter of 2007, no change in the land value gradient is detected
around the Chai Wan control station, nor around Sheung Wan and the
future Sai Ying Pun and HKU stations. However, some speculative ef-
fects begin to be seen for properties that would be within walking
distance of the announced Kennedy Town station. Here, the gradient
changed to negative, with the total effect indicating every minute far-
ther a property was located from the future station was associated with
a price reduction of 1.5%. Over the construction phase, more evidence
of the future MTR stations being priced into the land market is seen
with walking distance to both Sai Ying Pun and Kennedy Town stations
associated with a negative gradient. In the case of Kennedy Town, the
walk time effect increased in magnitude, suggesting a higher value
placed on anticipated accessibility to the upcoming station.

Finally, after opening, the walk time gradient for all treated stations
becomes significantly negative. For the new WIL stations, results sug-
gest that sale prices per square foot decrease by about 2%, 2%, and
4.1% for every minute farther a property is located from the Sai Ying
Pun, HKU, and Kennedy Town stations respectively. For Sheung Wan,
the price effect is also now negative, suggesting a discount of 3.3% for
every minute farther a property is from the station.

Taking the first differences for individual stations in the Opening
phase from the Pre-Announcement phase, STDID results show that the
walk time gradient has decreased in absolute terms by 4.4%, 2.9%,
2.7%, and 4.6% in the Sheung Wan, Sai Ying Pun, HKU, and Kennedy
Town station areas respectively, while the gradient in Chai Wan re-
mained constant over time. Such results appear to confirm the hy-
pothesis that pedestrian accessibility to the MTR became more valuable
within the study area as the WIL project progressed. Consequently, for a
property located 10-minutes away from the Sheung Wan, Sai Ying Pun,
HKU, or Kennedy Town stations, the model estimates a decrease in
value of 41.2%, 28.6%, 25.9%, and 39.8% respectively relative to a
property located next to the station over the Pre-Announcement and
Opening phases.

Still, the absolute magnitude of the price gradient in all treated
stations is weaker than that seen around Chai Wan. For this station,
properties located 10-minutes away from their nearest entrance were
valued on average 41.6% less than those proximate to the station over

all project phases. Nevertheless, the STDID results reveal a significant
re-orientation of the property market towards the accessibility offered
by the new stations after the WIL opened. In particular, the model finds
evidence that the value of pedestrian access increased around all four
treatment stations in the study area and that anticipatory effects were
seen prior to the opening of the future Kennedy Town and Sai Ying Pun
stations.

5. Discussion and conclusions

This research employed a quasi-experimental model to isolate the
implicit capitalization of pedestrian accessibility to rapid transit into
property values in Hong Kong. However, conducting research in a high-
density, topographically-varied city presents some challenges for ap-
plied spatial econometrics. In response, the paper incorporated and
developed several innovations in methods and techniques. This includes
the creation of a 3D pedestrian network and the calculation of slope-
aware measures of pedestrian accessibility. The spatial characteristics
of a high-density property market also required the development of a
new Spherical Distance Weights technique for capturing spatial de-
pendence among observations in 3D space. These 3D weights were
combined with measures of temporal distance and the resulting 4D
approach is utilized within a STDID modelling framework to isolate
longitudinal property price trends associated with the WIL extension of
Hong Kong’s MTR.

Results show that the opening of the western extension of the Island
Line pushed up property values around the new stations and the line’s
previous western terminus relative to the eastern terminus control
station. Moreover, model findings suggest that the market eventually
oriented itself to the hypothesized walkability effect and began pricing
pedestrian access to the MTR. There are significant differences in the
timing of this effect, with speculation seen around the new Kennedy
Town and Sai Ying Pun stations. Still, the greatest changes for all sta-
tions occurred after the WIL opened, with properties in buildings lo-
cated 10-minutes away seeing price decreases that range from 25.9% to
41.2% relative to properties located next to station entrances.

In terms of extensions for research, this paper proposed several
methodological innovations. First, the Spherical Distance Weights

Fig. 4. View of sample transactions by walk time to the MTR.
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technique extends Tobler’s (1970, 2004) concept of spatial association
to 3D space. This weighting system is more straightforward than the
specification of separate neighbourhood- and building-level weights
matrices used by Sun et al. (2005) and more consistent with distance
theory than the Cube Contiguity approach proposed by Chen and Li
(2017), particularly when an empirical semivariogram is used to specify
spheres of potential spatial association. Given the potential for hor-
izontal and vertical association among properties in a multi-storey built
environment, such a 3D spatial weighting approach should be em-
ployed by any analyst utilizing spatial econometrics in high-density

cities where bid-rent theory is more relevant to the value of built vo-
lume than that of land. Extending the Spherical Distance Weights to
include a fourth temporal dimension works from Miller’s (2004) dis-
tinction between “near” and “related” to better capture relationships
that occurred in both 3D space and time.

Second, the use of Tobler’s Hiking Function is a logical extension of
the recent shift towards employing more behaviourally-relevant mea-
sures of network access over simple Euclidean distance. In the present
case, comparisons with an assumed flat plane show that landscape to-
pography has a significant impact on pedestrian accessibility, high-
lighting potential shortcomings associated with the horizontalism that
dominates previous studies. As such, this approach should be employed
to better capture how landscape affects access in other topographically-
rich study areas where assumptions of planarity are unrealistic.

Nevertheless, while the 3D network methods result in a network
that is more topographically-rich, representing the topologically com-
plex pedestrian environment of cities like Hong Kong will remain
challenging. Related to this, the paper considered walk times to the
nearest station access point at street level, and with the offset in
Tobler’s function, it may be that premiums differ when considering the
trip from the station. Research could also test for differences between
trips to/from the internal parts of a station rather than their street in-
terface. For example, both Sai Ying Pun and HKU stations feature ex-
tensive internal walkways, which could be impacting the magnitude of
the results seen here if more value is placed on the total travel time to
reach the station concourse rather than the station entrance. Direct
specifications of network accessibility or alternative functional forms
for walk time could also be used to estimate the relationship between
access and property value.

Third, the paper’s findings highlight an issue associated with de-
termining a “true” control in quasi-experimental studies with inter-
connected network effects. In the case of rapid transit, increased ac-
cessibility offered by new station nodes inherently affects the
accessibility of other stations on the transit network. This new supply of
rapid transit may also affect other transit modes, such as by reducing
the frequency or coverage of bus transit services. In the present case,
large price changes were detected around the pre-existing Sheung Wan
station after the WIL opened while trends in the more remote Chai Wan
station area were stable, suggesting the latter is a more suitable choice
as a control. Still, although the disaggregate model specification pro-
duces results that are sensitive to differences in uplift across individual
stations, the models are not able to identify how station-area contextual
factors are informing these differences.

Finally, for planning and policy, the significant value uplift seen
after the opening of the WIL highlights the important role of the MTR in
defining Hong Kong’s accessibility and economic geography. But be-
yond contributing to the growing body of evidence that rapid transit is
valued in general, the relevance of these findings for land value capture
is particularly strong. The efficacy of Hong Kong’s Rail+ Property
model of transit joint development is built on the difference between
“pre-rail” and “post-rail” prices. While joint development was not
pursued in practice along the WIL, an uplift increment of between
25.9% and 41.2% over the pre- and post-rail phases of the WIL project
validates the model’s key assumption. Still, such findings can also signal
possible transit-induced gentrification effects (He, Tao, Hou, & Jiang,
2018), and further research into how land value uplift is affected by
station area transit-oriented development contexts is required. But to
echo the conclusions of Cervero and Murakami (2009), although the
R+P model and the findings detailed here are informed by institu-
tional advantages and the urban geographic/structural context of Hong
Kong, it remains a viable model of sustainable finance and urbanism for
other high-density and transit-oriented cities around the world.

Table 4
STDID model results (5-Model Mean).

Variable Coefficient Std. Err.

MTR Station Walk Time and Interactions
Refer to Table 5

MTR Station Areas (Pre-Announcement)
Chai Wan (reference)
Sheung Wan 0.09974** 0.02789
Sai Ying Pun 0.04195 0.01841
HKU 0.05021* 0.02035
Kennedy Town −0.02652 0.02088

Project Phase * MTR Station Area
Pre-Announcement (All Stations) (reference)
Announcement * Chai Wan (reference)
Announcement * Sheung Wan 0.24984*** 0.05776
Announcement * Sai Ying Pun 0.21230*** 0.03743
Announcement *HKU 0.21969*** 0.04186
Announcement * Kennedy Town 0.22204*** 0.04342
Construction * Chai Wan (reference)
Construction * Sheung Wan 0.17912*** 0.04287
Construction * Sai Ying Pun 0.25411*** 0.02673
Construction *HKU 0.17615*** 0.03020
Construction * Kennedy Town 0.28204*** 0.03125
Opening * Chai Wan (reference)
Opening * Sheung Wan 0.21556** 0.07132
Opening * Sai Ying Pun 0.11931* 0.04356
Opening *HKU 0.12410* 0.04516
Opening * Kennedy Town 0.26815*** 0.04985

Property Characteristics
Balcony (0–1) −0.03287*** 0.00683
Bay Window (0–1) 0.01645** 0.00443
Bedrooms 0.01176* 0.00418
Building Age (years) −0.03147*** 0.00070
Building Age2 0.00038*** 0.00001
Carpark (0–1) 0.12646*** 0.01186
Club House (0–1) 0.03315*** 0.00711
Direction Facing: North (0–1) 0.02512*** 0.00700
Direction Facing: North-East (0–1) 0.00314 0.00526
Direction Facing: North-West (0–1) 0.01103* 0.00507
Flat Roof (0–1) 0.10127*** 0.00980
Living Rooms/Dining Rooms 0.01672** 0.00514
Pool (0–1) 0.04593*** 0.00537
Rooftop (0–1) 0.06740*** 0.01097
Terrace (0–1) 0.21177 0.12442
Unit Elevation (metres) 0.00247*** 0.00005

Neighbourhood Attributes
Median Household Income (HK$1,000 s) 0.00199*** 0.00017

Quarter of Sale
Omitted for Brevity (see Appendix)

8.18642*** 0.02440
0.00919*** 0.00151
4.17376*** 0.02343

n 23,681
Pseudo-R2 0.8844

*** p < 0.001.
** p < 0.01.
* p < 0.05.
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Table 5
MTR access difference-in-difference results (5-Model Mean).

Variable Chai Wan Sheung Wan Sai Ying Pun HKU Kennedy Town

MTR Walk Time
Pre-Announcement −0.05383*** + 0.06598*** 0.06391*** 0.06109*** 0.05931***

+ + + + +
Announcement 0.00278 + −0.00925 −0.01030 −0.01619 −0.02068*

Construction 0.00299 + −0.00805 −0.02446** −0.01405 −0.03563***

Opening 0.00914 + −0.04537*** −0.02986** −0.02760* −0.04726***

Total Effect (> 95% C.I. only)
Pre-Announcement −0.05383 0.01215 0.01008 0.00726 0.00547
Announcement −0.05383 0.01215 0.01008 0.00726 −0.01521
Construction −0.05383 0.01215 −0.01438 0.00726 −0.03016
Opening −0.05383 −0.03322 −0.01978 −0.02035 −0.04178

Difference from Pre-Announcement
Pre-Announcement – – – – –
Announcement 0.00000 0.00000 0.00000 0.00000 −0.02068
Construction 0.00000 0.00000 −0.02446 0.00000 −0.03563
Opening 0.00000 −0.04537 −0.02986 −0.02760 −0.04726

Difference from Chai Wan
Pre-Announcement – 0.06598 0.06391 0.06109 0.05931
Announcement – 0.06598 0.06391 0.06109 0.03862
Construction – 0.06598 0.03946 0.06109 0.02367
Opening – 0.02062 0.03406 0.03349 0.01205

Difference-in-Differences
Pre-Announcement – – – – –
Announcement – 0.00000 0.00000 0.00000 −0.02068
Construction – 0.00000 −0.02446 0.00000 −0.03563
Opening – −0.04537 −0.02986 −0.02760 −0.04726

Fig. 5. Estimated walk time marginal effect.
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Appendix 1. Empirical Semivariogram fit to 3D Transactions

Based on the results of the semivariogram, the range of spatial autocorrelation in the sample is determined to largely be contained within a
distance of 300m.

Appendix 2. Full 5-Model STDID Results

Variable Model 1 Model 2 Model 3 Model 4 Model 5

Coefficient Coefficient Coefficient Coefficient Coefficient

MTR Proximity
Walking Time to Station (min) −0.05409*** −0.05233*** −0.05439*** −0.05540*** −0.05295***

MTR Station Areas
Chai Wan (reference)
Sheung Wan 0.09398** 0.11010*** 0.07289* 0.10934*** 0.11237***

Sai Ying Pun 0.03936* 0.05609** 0.02518 0.03987* 0.04925**

HKU 0.04542* 0.03234 0.05604** 0.05636** 0.06086**

Kennedy Town −0.02287 −0.02602 −0.03748 −0.02291 −0.02332

Project Phase
Pre-Announcement (omitted)
Announcement (omitted)
Construction (omitted)
Opening (omitted)

MTR Proximity * MTR Station Area
Walk Time * Chai Wan (reference)
Walk Time * Sheung Wan 0.06943*** 0.06334*** 0.06949*** 0.06615*** 0.06152***

Walk Time * Sai Ying Pun 0.06472*** 0.06011*** 0.06543*** 0.06714*** 0.06217***

Walk Time *HKU 0.06239*** 0.06591*** 0.05897*** 0.06048*** 0.05769***

Walk Time * Kennedy Town 0.05848*** 0.06044*** 0.05999*** 0.06023*** 0.05740***

MTR Proximity * Project Phase
Walk Time * Pre-Announcement (reference)
Walk Time *Announcement −0.00034 0.00208 0.00610 0.00711 −0.00106
Walk Time * Construction 0.00322 −0.00007 0.00427 0.00458 0.00295
Walk Time *Opening 0.00944 0.00402 0.01172 0.00856 0.01195

Project Phase * MTR Station Area
Pre-Announcement * Chai Wan (reference)
Pre-Announcement * Sheung Wan (reference)
Pre-Announcement * Sai Ying Pun (reference)
Pre-Announcement *HKU (reference)
Pre-Announcement * Kennedy Town (reference)
Announcement * Chai Wan (reference)
Announcement * Sheung Wan 0.27491*** 0.29553*** 0.28751*** 0.22844*** 0.16283**
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Announcement * Sai Ying Pun 0.21295*** 0.19787*** 0.21819*** 0.23579*** 0.19668***

Announcement *HKU 0.21846*** 0.26542*** 0.22486*** 0.19674*** 0.19299***

Announcement * Kennedy Town 0.20420*** 0.23138*** 0.26265*** 0.20155*** 0.21041***

Construction * Chai Wan (reference)
Construction * Sheung Wan 0.19231*** 0.16079*** 0.18657*** 0.18626*** 0.16965***

Construction * Sai Ying Pun 0.29843*** 0.19254*** 0.26827*** 0.28114*** 0.23017***

Construction *HKU 0.16939*** 0.21380*** 0.16376*** 0.17926*** 0.15457***

Construction * Kennedy Town 0.27125*** 0.27909*** 0.29577*** 0.29439*** 0.26970***

Opening * Chai Wan (reference)
Opening * Sheung Wan 0.29330*** 0.19686** 0.20059** 0.16617* 0.22087**

Opening * Sai Ying Pun 0.10975* 0.09011* 0.11814** 0.12756** 0.15097***

Opening *HKU 0.09976* 0.12970** 0.13807** 0.10713* 0.14583**

Opening * Kennedy Town 0.25160*** 0.24691*** 0.31405*** 0.26098*** 0.26721***

Project Phase * MTR Station Area * Walk Time
Pre-Announcement * Chai Wan *Walk Time (reference)
Pre-Announcement * Sheung Wan *Walk Time (reference)
Pre-Announcement * Sai Ying Pun *Walk Time (reference)
Pre-Announcement *HKU *Walk Time (reference)
Pre-Announcement * Kennedy Town *Walk Time (reference)
Announcement * Chai Wan *Walk Time (reference)
Announcement * Sheung Wan *Walk Time −0.01513 −0.01441 −0.01456 −0.00959 0.00742
Announcement * Sai Ying Pun *Walk Time −0.00660 −0.00513 −0.01169 −0.02029** −0.00779
Announcement *HKU *Walk Time −0.01765 −0.02810** −0.01787 −0.01175 −0.00557
Announcement * Kennedy Town *Walk Time −0.01408 −0.02298* −0.02830** −0.01891* −0.01914*

Construction * Chai Wan *Walk Time (reference)
Construction * Sheung Wan *Walk Time −0.01184 −0.00420 −0.00924 −0.01006 −0.00490
Construction * Sai Ying Pun *Walk Time −0.03111*** −0.01126* −0.02740*** −0.03129*** −0.02123***

Construction *HKU *Walk Time −0.01299 −0.02452*** −0.01165 −0.01403* −0.00707
Construction * Kennedy Town *Walk Time −0.03463*** −0.03579*** −0.03790*** −0.03769*** −0.03216***

Opening * Chai Wan *Walk Time (reference)
Opening * Sheung Wan *Walk Time −0.05874*** −0.04425*** −0.04238*** −0.03559** −0.04588***

Opening * Sai Ying Pun *Walk Time −0.02935*** −0.02482** −0.02446** −0.03298*** −0.03767***

Opening *HKU *Walk Time −0.02340* −0.03126** −0.02334* −0.02703** −0.03299**

Opening * Kennedy Town *Walk Time −0.04527*** −0.04490*** −0.05212*** −0.04668*** −0.04730***

Property Characteristics
Balcony (0–1) −0.02396*** −0.04594*** −0.02667*** −0.03391*** −0.03387***

Bay Window (0–1) 0.01944*** 0.01130* 0.02016*** 0.01237** 0.01900***

Bedrooms 0.00980* 0.01182** 0.00871* 0.01079* 0.01769***

Building Age (years) −0.03066*** −0.03212*** −0.03092*** −0.03145*** −0.03218***

Building Age2 0.00038*** 0.00038*** 0.00037*** 0.00037*** 0.00040***

Carpark (0–1) 0.13819*** 0.12975*** 0.12332*** 0.11496*** 0.12605***

Club House (0–1) 0.03370*** 0.03448*** 0.03379*** 0.03391*** 0.02990***

Direction Facing: North (0–1) 0.02885*** 0.02160** 0.02790*** 0.02428** 0.02295**

Direction Facing: North-East (0–1) 0.00088 0.00417 0.00173 0.00646 0.00245
Direction Facing: North-West (0–1) 0.01017* 0.01515** 0.00986 0.01188* 0.00810
Flat Roof (0–1) 0.11726*** 0.09067*** 0.10785*** 0.09186*** 0.09873***

Living Rooms/Dining Rooms 0.01952*** 0.01666** 0.01976*** 0.01691** 0.01074*

Pool (0–1) 0.05495*** 0.04235*** 0.04558*** 0.04205*** 0.04471***

Rooftop (0–1) 0.05507*** 0.06743*** 0.08529*** 0.05823*** 0.07098***

Terrace (0–1) 0.13301 0.37512** 0.54225** −0.11202 0.12051
Unit Elevation (metres) 0.00249*** 0.00243*** 0.00246*** 0.00252*** 0.00244***

Neighbourhood Attributes
Median Household Income (HK$1,000s) 0.00185*** 0.00205*** 0.00195*** 0.00212*** 0.00196***

Quarter of Sale
2001 Quarter 1 (reference)
2001 Quarter 2 −0.05579** −0.04757* −0.05952** −0.07796*** −0.07163***

2001 Quarter 3 −0.10246*** −0.07611*** −0.10201*** −0.11019*** −0.07086***

2001 Quarter 4 −0.08436*** −0.08949*** −0.07381** −0.12474*** −0.09740***

2002 Quarter 1 −0.07624** −0.06769** −0.07771** −0.10709*** −0.08259***

2002 Quarter 2 −0.12004*** −0.10570*** −0.10903*** −0.13465*** −0.09759***

2002 Quarter 3 −0.16202*** −0.15047*** −0.14271*** −0.15824*** −0.16962***

2002 Quarter 4 −0.26731*** −0.24417*** −0.27520*** −0.30843*** −0.23651***

2003 Quarter 1 −0.25131*** −0.25524*** −0.25082*** −0.26915*** −0.23227***

2003 Quarter 2 −0.28553*** −0.28299*** −0.26711*** −0.29943*** −0.29848***

2003 Quarter 3 −0.25932*** −0.24281*** −0.25353*** −0.27763*** −0.24769***

2003 Quarter 4 −0.20569*** −0.19212*** −0.20001*** −0.21096*** −0.19028***

2004 Quarter 1 −0.10571*** −0.05598** −0.08325*** −0.10759*** −0.06092**

2004 Quarter 2 −0.02550 −0.01065 −0.02034 −0.02347 −0.01647
2004 Quarter 3 0.00500 0.01239 0.01301 −0.03712 0.00058
2004 Quarter 4 0.06158** 0.06772** 0.06832** 0.03412 0.07184***

2005 Quarter 1 0.15884*** 0.17722*** 0.15568*** 0.14824*** 0.14921***

2005 Quarter 2 0.18645*** 0.18442*** 0.17162*** 0.16122*** 0.14980***

2005 Quarter 3 0.24041*** 0.20711*** 0.22005*** 0.19614*** 0.20552***

2005 Quarter 4 0.24690*** 0.22581*** 0.23729*** 0.22556*** 0.20645***

2006 Quarter 1 0.26131*** 0.26287*** 0.25406*** 0.22865*** 0.25772***

2006 Quarter 2 0.27781*** 0.29557*** 0.30240*** 0.26089*** 0.26870***

2006 Quarter 3 0.28180*** 0.28359*** 0.28110*** 0.25467*** 0.26697***

2006 Quarter 4 0.28441*** 0.30581*** 0.30917*** 0.27365*** 0.29854***
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2007 Quarter 1 0.32684*** 0.35095*** 0.36469*** 0.34645*** 0.33601***

2007 Quarter 2 0.41302*** 0.41718*** 0.41709*** 0.39949*** 0.39252***

2007 Quarter 3 0.45147*** 0.45602*** 0.44336*** 0.42776*** 0.43628***

2007 Quarter 4 0.39977*** 0.38917*** 0.37713*** 0.36128*** 0.38711***

2008 Quarter 1 0.52071*** 0.53161*** 0.50375*** 0.48955*** 0.52432***

2008 Quarter 2 0.56847*** 0.54973*** 0.52313*** 0.52838*** 0.54579***

2008 Quarter 3 0.53255*** 0.50906*** 0.48533*** 0.51487*** 0.51979***

2008 Quarter 4 0.34771*** 0.38016*** 0.33538*** 0.32831*** 0.35227***

2009 Quarter 1 0.34951*** 0.35408*** 0.38108*** 0.36101*** 0.37822***

2009 Quarter 2 0.46867*** 0.47136*** 0.45964*** 0.45030*** 0.45594***

2009 Quarter 3 0.58235*** 0.60122*** 0.58053*** 0.54890*** 0.56789***

2009 Quarter 4 0.63114*** 0.63341*** 0.61936*** 0.58478*** 0.60981***

2010 Quarter 1 0.75464*** 0.68788*** 0.73494*** 0.70381*** 0.68050***

2010 Quarter 2 0.73124*** 0.73950*** 0.72325*** 0.71087*** 0.73278***

2010 Quarter 3 0.76967*** 0.79137*** 0.76365*** 0.74134*** 0.76437***

2010 Quarter 4 0.83655*** 0.86092*** 0.85270*** 0.80499*** 0.84157***

2011 Quarter 1 0.92608*** 0.93830*** 0.92462*** 0.91419*** 0.92819***

2011 Quarter 2 0.94458*** 1.00047*** 0.97198*** 0.96520*** 0.96636***

2011 Quarter 3 0.94232*** 0.98146*** 0.94658*** 0.94867*** 0.96105***

2011 Quarter 4 0.96688*** 0.95566*** 0.96143*** 0.92336*** 0.98529***

2012 Quarter 1 1.00876*** 1.03630*** 1.02435*** 0.99338*** 1.00833***

2012 Quarter 2 1.08421*** 1.09348*** 1.10209*** 1.06192*** 1.06809***

2012 Quarter 3 1.10457*** 1.15127*** 1.10933*** 1.08780*** 1.12270***

2012 Quarter 4 1.17936*** 1.19176*** 1.17863*** 1.13982*** 1.16857***

2013 Quarter 1 1.21747*** 1.26013*** 1.21546*** 1.19947*** 1.23735***

2013 Quarter 2 1.22296*** 1.28691*** 1.24287*** 1.21752*** 1.24970***

2013 Quarter 3 1.19712*** 1.26634*** 1.19826*** 1.21257*** 1.24350***

2013 Quarter 4 1.18760*** 1.23391*** 1.20996*** 1.19474*** 1.18155***

2014 Quarter 1 1.20077*** 1.20407*** 1.16983*** 1.19043*** 1.18742***

2014 Quarter 2 1.21680*** 1.25829*** 1.27181*** 1.23952*** 1.25377***

2014 Quarter 3 1.26477*** 1.28196*** 1.27203*** 1.24528*** 1.25292***

2014 Quarter 4 1.28592*** 1.32268*** 1.29843*** 1.29325*** 1.32348***

2015 Quarter 1 1.50129*** 1.49220*** 1.50230*** 1.49149*** 1.45260***

2015 Quarter 2 1.42737*** 1.46080*** 1.40841*** 1.44881*** 1.40312***

2015 Quarter 3 1.49113*** 1.51514*** 1.44672*** 1.49056*** 1.45332***

2015 Quarter 4 1.42717*** 1.43245*** 1.36412*** 1.41686*** 1.37380***

2016 Quarter 1 1.35230*** 1.33628*** 1.29368*** 1.32075*** 1.34439***

2016 Quarter 2 1.31985*** 1.43646*** 1.34410*** 1.36258*** 1.32580***

2016 Quarter 3 1.40514*** 1.45025*** 1.38363*** 1.39946*** 1.40507***

2016 Quarter 4 1.49114*** 1.53743*** 1.45236*** 1.49341*** 1.44657***

2017 Quarter 1 1.49371*** 1.49618*** 1.43727*** 1.49804*** 1.47647***

2017 Quarter 2 1.53709*** 1.58675*** 1.49762*** 1.51383*** 1.53936***

2017 Quarter 3 1.50722*** 1.57955*** 1.48994*** 1.54434*** 1.56356***

8.17067*** 8.18908*** 8.17734*** 8.19900*** 8.19599***

0.01087*** 0.00585*** 0.01181*** 0.01147*** 0.00594***

5.51206*** 3.18978*** 3.97644*** 4.45493*** 3.73557***

n 23,681 23,681 23,681 23,681 23,681
Pseudo-R2 0.8860 0.8830 0.8807 0.8843 0.8880

***p < 0.001; **p < 0.01; *p < 0.05.
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