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High-throughput 3D reconstruction of stochastic
heterogeneous microstructures in energy storage materials
Yanxiang Zhang1, Mufu Yan1, Yanhong Wan2, Zhenjun Jiao3, Yu Chen4, Fanglin Chen5, Changrong Xia2 and Meng Ni6

Stochastic heterogeneous microstructures are widely applied in structural and functional materials, playing a crucial role in
determining their performance. X-ray tomography and focused ion beam serial sectioning are frequently used methods to
reconstruct three-dimensional (3D) microstructures, yet are demanding techniques and are resolution-limited. Here, a high-
throughput multi-stage 3D reconstruction method via distance correlation functions is developed using a single representatively
large-sized 2D micrograph for stochastic microstructures, and verified by X-ray micro-tomography datasets of isotropic and
anisotropic solid oxide fuel cell electrodes. This method provides an economic, easy-to-use and high-throughput approach for
reconstructing stochastic heterogeneous microstructures for energy conversion and storage devices, and can readily be extended
to other materials.
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INTRODUCTION
Solid oxide fuel cells (SOFCs) are developed world wide for clean
and efficient electricity generation from fuels such as hydrogen,
natural gas, gasoline, coal, and even biomass. In the past several
decades, significant efforts have been made to the development
of advanced electrode materials for durable, fuel flexible, and
efficient operation of SOFC at reduced temperatures.1 In addition,
development of advanced electrode microstructures, with abun-
dant electrochemically active sites, high catalytic activity, and
stability, has been another major direction of research; however, a
long-standing challenge.2–5 There are difficulties in probing and
controlling the complex microstructures. Morphologies and
distributions of the heterogeneously interpenetrating percolating
networks of materials, nanoscale internal surfaces and interfaces,
and three-phase boundaries (TPBs) are very sensitive to the
processing histories6–9 and working conditions,10–12 while playing
crucial roles in determining electrode performance.13,14 Therefore,
quantification of electrode microstructures is critical for under-
standing the processing–microstructure–performance relationship
and designing high-performance SOFCs. To this point, two-
dimensional (2D) stereological methods have been employed to
quantify electrode geometric characteristics.15,16 However, this
method is limited to the isotropic microstructures, and incapable
of determining tortuosity factors and the percolated portions of
the phase networks, surfaces, interfaces, and TPBs. Over the past
decade, X-ray nanotomography (XNT) and focused ion-beam serial
sectioning-scanning electron microscopy (FIB-SEM) have been
employed to image the three-dimensional (3D) microstructures of
SOFC electrodes.15,17–22 However, both XNT and FIB-SEM show
limited spatial resolution (typical 10–50 nm), which is insufficient

to image the nanofeatures (<50 nm) of SOFC electrodes; for
instance, the infiltrated/precipitated or in situ exsoluted nano-
particles and boundaries between phases of different
functionalities.
Therefore, developing economic, easy-to-use, and super-

resolution technologies for the 3D reconstruction is far from
trivial. A potentially alternative technology is the stochastic
reconstruction based on distance correlation functions (DCFs).
Theoretically, this principle is capable of reconstructing stochastic
3D microstructures using a single 2D micrograph, which is easy to
reach super-resolutions using 2D imaging technologies, such as
scanning electron micrographs. The proof of concept, algorithm,
and applications to reconstruction of porous media have been
developed by Quiblier,23 Torquato and co-workers,24–29 and is first
introduced to reconstruct a porous Ni-YSZ anode by Suzue et al. in
2008;30 however, it has been rarely applied to SOFCs, and other
energy devices where the stochastic microstructures are being
extensively used. There are several challenging issues regarding
the algorithm. The first issue concerns the computational
efficiency. The basic idea of the algorithm is to exchange two
voxels of different phases in a randomly generated voxel matrix so
that its DCFs converge to the objective DCFs of the 2D
micrograph. The two-point exchanging procedure is extremely
inefficient for big volumes. For a typical volume dimension
obtained by XNT and FIB-SEM, say 400 × 400 × 400 voxels, the
convergence will be computationally intractable. At present, the
feasible size of volume is around 150 × 150 × 150 voxels,24–30

which is insufficient to represent statistically big volumes with
10 nm and higher resolutions. The second issue concerns the
robustness. It is not verified that if the reconstructed volume has
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the same statistical information with the real microstructure. If yes,
it is not clear what degree the tolerance of DCFs should be
converged to so that the geometric properties of the recon-
structed volume can represent their realistic values. The third issue
concerns the applicability. Similar to the difficulty encountered
when using stereological method, the algorithm is currently
limited to reconstructing isotropic structures. Although most of
SOFC electrodes are isotropic produced by mixing-sintering of
powders and infiltration of solution, some innovative anisotropic
microstructures produced by, for example, freeze-drying and
phase inversion have demonstrated promising performance. Thus,
there is a need to generalize the algorithm.
Recently, several promising algorithms, such as cellular auto-

mata,31 Markov random fields,32 and truncated plurigaussian

random fields,33 are developed. These algorithms have potential
to do reconstructions in a short duration and claimed to be
applicable to (an)isotropic31,32 or grading microstructures.33 At
present, the DCFs cannot be converged well to the true values,
raising concerns in the accuracy in capturing multi-scale features
in microstructure. More effort is needed in regard to pursuing an
efficient reconstruction while preserving high accuracy.
In this work, the conventional two-point exchanging algorithm

is improved to a highly practical level, capable of overcoming the
above-mentioned limitations. We develop a multi-stage recon-
struction process (Fig. 1) that first reconstructs the three-
dimensional volume with a coarse resolution, then increases the
resolution to finer levels stage-by-stage by breaking each voxel
into multiple voxels of the same phase, followed by conducting

Fig. 1 Schematic of the distance correlation function (DCF) method. a N-stage deduction in resolution of the original high-resolution two-
dimensional (2D) image of the microstructure. b the N-stage reconstruction of the 3D microstructure
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two-point exchanging among only the interfacial voxels. Calcula-
tion of DCFs is fully optimized using a new mathematical model.

RESULTS
Mathematical methodology
A 2D micrograph can be represented by a m1 ×m2 matrix M1

2D,
where the superscript “1” denotes the 1st/original image with a
pixel size of δ. The various phases are distinguished by different
integers in the matrix. The objective is to reconstruct a 3D image
with a representative volume, say m1 ×m2 ×m3 × δ3, at the
original resolution δ, while possessing nearly identical DCFs with
M1

2D. To this end, a multi-stage downscaling of the 2D image
followed by a multi-stage upscaling 3D reconstruction process is
proposed. As illustrated in Fig. 1a, the 2D image is downscaled
stage-by-stage by a factor of λ (typical 2) using nearest-neighbor
(NN) interpolation. Thus, the resolution of the Nth stage coarsened
2D image MN

2D is λN−1δ, and the number of pixels is decreased to
m1 ×m2/λ

2(N−1), while the spatial area of image m1 ×m2 × δ2

maintains unchanged. As illustrated in Fig. 1b, the final 3D image,

MN
3D can be reconstructed using an N-stage upscaling process that

uses the DCFs of the MN
2D,…, M1

2D as the objective DCFs of the 1st,
2nd,…, Nth stage of the 3D reconstruction, successively. The 1st
stage 3D image M1

3D is obtained by exchanging voxels of a
randomly generated 3D matrix with the same fractions of phases
as in M1

2D until its DCFs converge to that of MN
2D. To accelerate

convergence, the two-point swaps are first performed among all
the voxels (until a number of continuous failures) and then among
the interfacial voxels that share edges/facets with different phase
voxels. For the nth (n > 1) stage reconstruction, the (n− 1)th stage
Mn�1

3D is first upscaled by a factor of λ using NN interpolation,
which is replacing each voxel with a λ × λ × λ matrix of the same
phase, as illustrated in Fig. 1b. Then, the DCFs of the upscaled
Mn�1

3D are recalculated, and updated after each successful two-
point exchanging, so that the DCFs converge to that of MNþ1�n

2D .
The voxels to be exchanged are selected only among the
interfacial voxels, as shown in Fig. 1b. This will dramatically
promote the computational efficiency because the interfacial
voxels are only a small part of the whole, and the energy

(b)

(a)

Fig. 2 Check of the representativeness of the three-dimensional
(3D) X-ray micro-tomography (XMT) dataset consisting of 200-by-
200-by-64 voxels for the porous Ni-YSZ electrode (green—solid,
transparent—pores, voxel size= 4.5 μm) for determination of
distance correlation functions (DCFs). a A cubic sub-domain with a
side length of L is illustrated to study the effects of L on the DCFs.
b The DCFs for solid–solid in the next-nearest neighbor (NNN) [011]
direction calculated at different sizes (L) of the sub-domain, showing
that the DCF is not changed obviously when l > 160 voxels
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Fig. 3 Sweep of the energy tolerance to determine a rational value
of the tolerance in this study. a The distance correlation functions
(DCFs) of solid–solid in next-nearest neighbor (NNN) [011] direction
determined from different energy tolerances and the true values of
DCFs of the anisotropic porous anode from the X-ray micro-
tomography (XMT) dataset. b The calculated tortuosity factor of the
solid network along z-axis and solid–pore interface area as a
function of the tolerance of energy functional. Five times 3D
reconstructions are performed at each tolerance of relative error
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functional of DCFs is mainly derived from the interfacial regions.
The isolated voxels are removed by random two-point swaps at
the end of each stage. Once the DCFs are well converged, the 3D
image is returned as the nth stage Mn

3D.
For easy and efficient calculation, the DCFs can be defined in a

vectorized fashion. In general, the DCF between phases i and j
depends on directions if the microstructure is anisotropic. In
analogy with the crystallographic directions of a cubic lattice, we
consider the effects of the NN directions denoted by [100], [010],
and [001], and the next-NN (NNN) directions denoted by [110],
[11̄0], [101], [101̄], [011], and [011̄]. For the nth stage 3D image,
represented by a m1/λ

(N− n) ×m2/λ
(N− n) ×m3/λ

(N− n) matrix Mn
3D,

the DCF between phases i and j along direction Γ= [Γ1Γ2Γ3] can be
defined by,

DCFn3D;i;j;ΓðmÞ ¼ Mn
3D;i;mΓ �Mn

3D;j;�mΓ

D E
; (1)

The physical meaning of Eq. (1) is the probability of finding a
vector mΓ within Mn

3D with the beginning and end voxels being,
respectively, i and j phases. Herein, m denotes the distance in unit
of voxel. The syntax “*” denotes element-by-element product of
the two matrixes. The syntax “< >” denotes average value
of elements. Mn

3D;i;mΓ and Mn
3D;j;�mΓ are direction dependent
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Fig. 4 Three-dimensional (3D) reconstruction of a porous anisotropic solid oxide fuel cell (SOFC) anode. a Comparison of distance correlation
functions (DCFs) of solid–solid, pore–pore, solid–pore along the next-nearest neighbor (NNN) directions between the X-ray micro-tomography
(XMT) b and the DCF c reconstructed microstructures. d Comparison between the generic field distributions conducting macroscopically
along x-, y-, and z-axis directions within the XMT and DCF reconstructed microstructures by solving Laplace’s equation of the generic field
within the solid network with Dirichlet boundary conditions. e The tortuosity factors of the solid network along x-, y-, and z-axis of the XMT
and DCF reconstructed microstructures. The voxel size is 4.5 μm. A corner is cropped off for showing the internal microstructure and the
generic field

100 101 102 103
10-7

10-6

10-5

10-4

10-3

10-2

10-1

ε = 10-4

ε = 10-7

 simu. ann.

E
ne

rg
y 

fu
nc

tio
na

l, 
[-]

Computing time, sec.

Fig. 5 Comparison on computing time. The energy functional of
distance correlation functions (DCFs) as a function of computing
time for the three-stage reconstructions with energy tolerances of
10–4 (blue) and 10−7 (black) and the three-stage reconstruction
using a simulated annealing algorithm with a temperature of 10−8/
16 stage (gray) of the isotropic porous Ni-YSZ anode with a final
dimension of 200-by-200-by-64 voxels
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sub-matrixes of phases i and j, given by,

Mn
3D;i;±mΓ ¼ Mn

3D;i ζ0± ;1 : ζ
1
± ;1; ζ

0
± ;2 : ζ

1
± ;2; ζ

0
± ;3 : ζ

1
± ;3

� �
: (2)

Herein, Mn
3D;i designates the matrix of phase i Mn

3D ¼ i
� �

, with
the voxel value of 1 for phase i and 0 for the other phases. The
indexes are given by,

ζ‘± ;k ¼ 1� ‘þ ‘mk=λ
N�n ∓ ½Γkm± ð2‘� 1ÞΓ2km�=2: (3)

Equations (1)–(3) utilize all the voxels of Mn
3D; therefore, giving a

precious definition of DCFs. Exchanging two randomly selected
voxels v1 and v2 of Mn

3D renews the DCFs by a increment of,

Λn
3D;i;j;Γ mð Þ ¼ Δn

i;j;Γðv1; v2;mÞQ
k ðmk=λ

N�n � Γ2kmÞ ; (4)

where

Δn
i;j;Γðv1; v2;mÞ ¼

X
a; b ¼ 1; 2; a≠b

α; β ¼ i; j; α≠β

vað Þα� vbð Þα
� �ðvb þ ð�1ÞδβimΓÞβ:

(5)

Herein, ðvb þ ð�1ÞδβimΓÞβ is 1 if the voxel vb þ �1ð ÞδβimΓ
belongs to phase β, and inside Mn

3D, otherwise 0. δβi denotes the

Kronecker function. Note that the vector v1− v2 should not be in
parallel with any of Γ. Equation (5) is efficient for updating DCFs,
because only the voxels v1,2 ±mΓ are involved in the calculation.
For isotropic microstructures, the DCFs are independent of

directions, and thus can be given by the NN- or NNN-directional
average,

DCFn3D;i;j;ΩðmÞ ¼ Mn
3D;i;mΓ �Mn

3D;j;�mΓ : Γ 2 Ω
D E

: (6)

where Ω denotes “NN” or “NNN”. Statistically, we have
DCFn3D;i;j;NNð

ffiffiffi
2

p
mÞ= DCFn3D;i;j;NNNðmÞ. However, in order to avoid

cuboid-shaped patterns in the reconstruction, both the NN- and
NNN-directional DCFs are considered here. Exchanging voxels v1
and v2 renews the DCFs by a increment of,

Λn
3D;i;j;Ω mð Þ ¼

P
Γ2Ω Δn

i;j;Γðv1; v2;mÞP
Γ2Ω

Q
k ðmk=λ

N�n � Γ2kmÞ : (7)

Above equations are applicable to 2D images (m3= 1). There-
fore, the target DCFNþ1�n

2D;i;j;Γ ðmÞ of the nth stage reconstruction can
be calculated using Eqs. (1) or (6). The global objective is to
minimize the energy functional, defined by,

ε ¼ 1
maxðmÞ

X
i;j;Γ;m

log10DCF
n
3D;i;j;ΓðmÞ � log10DCF

Nþ1�n
2D;i;j;Γ ðmÞ

� �2
:

(8)

Herein, the Monte-Carlo Metropolis rule (e.g., simulated
annealing temperature) is not used. That is, the two-point
exchange is accepted only if the energy functional is decreased.
This strategy avoids calibration of the simulated annealing
temperature. The risk of getting trapped in a local minimum of
the energy functional probably induced by this strategy can be
suppressed effectively by the multi-stage method. In addition, the
convergence seems not be accelerated obviously by a simulated
annealing strategy, as will be demonstrated later. However, one
can easily introduce a Monte-Carlo Metropolis rule if necessary.
Note that logarithmic DCFs are used in the energy functional since
they are sensitive to the tiny variations in the DCFs, especially with
small values, and therefore effective to capture the fine features of
interfaces and the phase distributions with small volume fractions.
The two-point exchanging for each stage is continued until the
energy functional is decreased to a sufficiently small tolerance, or
the energy functional is not decreased after a number of
continuous attempts of two-point exchanging. The algorithm is
realized using MATLAB.

Validation by a X-ray micro-tomography dataset
The DCF method is first verified using the X-ray micro-tomography
(XMT) dataset of an anisotropic porous anode support with a
dimension of 200 × 200 × 64 voxels and a voxel size of 4.5 μm,
published in our prior study.34 This dimension is shown to be
representatively large for determination of the DCFs (Fig. 2). A
three-stage downscaling of the dataset is performed so that the
XMT dataset is finally downscaled to 50 × 50 × 16 voxels. For each
stage of downscaling, the objective NN- and NNN-directional DCFs
for the binary pairs of solid-solid, pore-pore, and solid-pore are
calculated using Eq. (1). Then, the 3D microstructure of the anode
with a final dimension of 200 × 200 × 64 voxels is reconstructed
using a three-stage reconstruction, implemented in a 2.8 GHz,
16GB RAM computer. Geometric properties of the 3D volumes are
calculated using the algorithms we reported in refs 35,36. First of all,
the tolerance of energy functional should be determined. It is
shown in Fig. 3a that the fitting goodness of the reconstructed
DCFs under an energy tolerance of 10−4 seems higher than
the results in refs 31–33, where macroscopic departures from the
true values are presented. However, under this tolerance, the
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Fig. 6 Comparison on the computing efficiency and algorithm
complexity for the direct one-stage and three-stage reconstructions
of the anisotropic anode. a The energy functional of distance
correlation functions (DCFs) as a function of computing time with an
energy tolerances of 10−7. b The computing time as a function of
the total number of voxles (n) for the one-stage and the three-stage
reconstructions, showing the computing complexities (Big O
notation). Different numbers of voxels of the objective volumes
are randomly selected sub-domains from the original X-ray micro-
tomography (XMT) dataset
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solid-pore interfacial area and the tortuosity factor of the solid
network are systematically overestimated and scatter significantly
(Fig. 3b). Thus, a lower tolerance of 10−7 is used to guarantee a
high accuracy of evaluation of geometric properties. Under this
tolerance, the small dispersion of geometric properties indicates a
good robustness of the algorithm. Figure 4 shows the typical
reconstruction results, showing that the DCFs along the six NNN
directions of the reconstructed microstructure are converged well
to those of the XMT dataset (Fig. 4a). The 3D microstructures by
the XMT (Fig. 4b) and the DCF method (Fig. 4c) show that the
reconstructed microstructure is not exactly a duplicate of the real
microstructure. The DCFs are in nature reduce-dimension descrip-
tors of microstructures, and thus cannot reproduce the real
microstructure, but generate a microstructure that has the same
statistical significance of geometric properties with the real
microstructure. The solid-pore interfacial areas by the XMT and
the DCF method are very close, being 0.040 and 0.042 μm2/μm3,
respectively. The anisotropy of the anode support is evaluated
using tortuosity factors along x-, y-, and z-axis, showing that the
distributions of the generic field conducting along x-, y-, and z-axis
by the DCF method are similar with that by the XMT (Fig. 4d). The
tortuosity factors along x-, y- and z-axis by the DCF method are in
good agreement with those by the XMT (Fig. 4e). The computing
duration under the energy tolerance of 10−7 is about 1.3 h, which
is not further accelerated by a simulated annealing strategy
(Fig. 5). Note that the duration under the energy tolerance of 10−4

is quite short, only about 0.4 h (Fig. 5), which is, however,
inadvisable due to the low accuracy (Fig. 3). In addition, we
attempt to directly reconstruct the 200 × 200 × 64 volume by a

one-stage reconstruction (as defined in the section of Mathema-
tical methodology) where two-point swaps are randomly selected
among all the voxels. However, the energy functional is not
decreased obviously after 1.3 h running (Fig. 6a). The accelerated
convergence using the multi-stage protocol is attributed to the
following three contributions: (1) the two-point exchange is
performed among only the interfacial voxels, only a small portion
of the bulk; (2) the exchange is highly likely accepted since the
downscaling usually degrades the quality interfaces and the
energy functional derives mainly from the interfacial regions; (3)
the calculation (Eq. 1) and the update (Eq. 4) of DCFs are
vectorized, so that the computational efficiency is promoted.
Technically, the efficiency could be further increased by employ-
ing a compiled language, such as C++ or Fortran. We further
compare the computational complexities of the three-stage and
the one-stage protocols by plotting the computing time as a
function of the total number of voxels (n). As shown in Fig. 6b, the
complexity of the one-stage protocol is about O(n1.6). However,
the multi-stage protocol has a lower complexity of O(n1.3). Thus,
the multi-stage protocol permits a high-throughput reconstruc-
tion, showing the feasibility of reconstructing bigger volumes. The
algorithm can tackle substantial material phases, although the
presented case is a two-phase microstructure.

DISCUSSION
The applicability and the high-throughput merit of the multi-stage
reconstruction method is further verified by the XMT dataset of an
isotropic porous SOFC anode. The dataset has a dimension of
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300 × 300 × 80 voxels with a voxel size of 4.5 μm (see the
Methods for 3D imaging). The 3D microstructure is shown in
Fig. 7a, where the solid phase (green) and pores (transparent)
are segmented. A representative 2D slice with a dimension of
300 × 300 pixels (Fig. 7b) is selected from the dataset for use of
the input 2D micrograph of the multi-stage 3D reconstruction.
A three-stage reconstruction is performed with a target
dimension of 300 × 300 × 80 voxels, and is accomplished within
10.3 h. The reconstructed microstructure (Fig. 7c) is very similar
to the XMT measurements (Fig. 7a). The DCFs are converged
nicely to the objective values, without detectable fitting errors
(Fig. 7d). In addition, the key geometric characteristics are
well recovered by the multi-stage reconstruction. As shown in
Fig. 7e–g, the reconstructed distribution of particle diameters
(Fig. 7e), internal surface area (Fig. 7f) and tortuosity factor
(Fig. 7g) of the solid phase agree quantitatively with those of
the XMT dataset.
The above discussion provides a demonstration of reconstruct-

ing representatively large-sized 3D microstructures from 2D
micrograph alone. The multi-stage 3D reconstruction based on
DCFs opens an economic, easy-to-use, and high-throughput path
for quantifying the stochastic heterogeneous microstructures.
Although the present results are focused on SOFC electrodes, this
approach is generally applicable to a wide range of isotropic and
anisotropic microstructures, and can also be extended to under-
stand the correlations between processing, microstructure, and
performance.

METHODS
Reconstruction of the isotropic SOFC anode by XMT
The isotropic SOFC anode substrate was first fabricated by mixing of
powders (NiO, Ga-doped ceria, graphite) followed by dry-pressuring and
sintering process.2 Xradia X-ray tomographic microscope (Xradia Inc.,
Micro-XCT400) was then used to image the 3D microstructure of the
anode substrate, under a source setting of 140 kV and 70 mA with an
exposure time of 1.5 s per radiograph. The source-rotation axis (RA)
distance was 40 mm, and the detector-RA distance was 20 mm. The pixel
size was 4.5 μm. The optical magnification was ×4. Then, anisotropic
diffusion smoothing was applied on the raw XMT micrographs to
eliminate noise. The solid phase and pores were segmented using a
watershed algorithm.

Code availability
A version of software written with MATLAB for the multi-stage
reconstruction method is available from the authors upon reasonable
request.
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